
Last Iterate Convergence in No-regret Learning: Constrained
Min-max Optimization for Convex-concave Landscapes

Qi Lei Sai Ganesh Nagarajan Ioannis Panageas Xiao Wang
EE, Princeton ESD, SUTD CS, UC Irvine SIME, SUFE

Abstract

In a recent series of papers it has been
established that variants of Gradient De-
scent/Ascent and Mirror Descent exhibit last
iterate convergence in convex-concave zero-
sum games. Specifically, Daskalakis et al.
(2018); Liang and Stokes (2018) show last
iterate convergence of the so called “Op-
timistic Gradient Descent/Ascent" for the
case of unconstrained min-max optimiza-
tion. Moreover, in Mertikopoulos et al.
(2018) the authors show that Mirror Descent
with an extra gradient step displays last it-
erate convergence for convex-concave prob-
lems (both constrained and unconstrained),
though their algorithm uses vanishing step-
sizes. In this work, we show that "Optimistic
Multiplicative-Weights Update (OMWU)"
with constant stepsize, exhibits last iter-
ate convergence locally for convex-concave
games, generalizing the results of Daskalakis
and Panageas (2019) where last iterate con-
vergence of OMWU was shown only for the
bilinear case. To the best of our knowledge,
this is the first result about last-iterate con-
vergence for constrained zero sum games (be-
yond the bilinear case) in which the dynamics
use constant step-sizes.

1 Introduction

In classic (normal form) zero-sum games, one has to
compute two probability vectors x∗ ∈ ∆n,y

∗ ∈ ∆m
1

1∆n denotes the simplex of size n.
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that consist an equilibrium of the following problem

min
x∈∆n

max
y∈∆m

x>Ay, (1)

where A is n ×m real matrix (called payoff matrix).
Here x>Ay represents the payment of the x player
to the y player under choices of strategies by the two
players and is a bilinear function.

Arguably, one of the most celebrated theorems and a
founding stone in Game Theory, is the minimax theo-
rem by Von Neumann Von Neumann (1928). It states

min
x∈∆n

max
y∈∆m

f(x,y) = max
y∈∆m

min
x∈∆n

f(x,y), (2)

where f : ∆n × ∆m → R is convex in x, concave in
y. The aforementioned result holds for any convex
compact sets X ⊂ Rn and Y ⊂ Rm. The min-max
theorem reassures us that an equilibrium always exists
in the bilinear game (1) or its convex-concave analogue
(again f(x,y) is interpreted as the payment of the x
player to the y player). An equilibrium is a pair of
randomized strategies (x∗,y∗) such that neither player
can improve their payoff by unilaterally changing their
distribution.

Soon after the appearance of the minimax theorem,
research was focused on whether minmax solutions
of (1) can be reached when agents adopt simple and
natural update rules aligned with their selfish (and
possibly myopic behavior). An early method, pro-
posed by Brown Brown (1951) and analyzed by Robin-
son Robinson (1951), was fictitious play. Later on, re-
searchers discover several learning robust algorithms
converging to minimax equilibrium at faster rates, see
Cesa-Bianchi and Lugosi (2006). This class of learn-
ing algorithms, are the so-called “no-regret” and in-
clude Multiplicative Weights Update (MWU) method
Arora et al. (2012) and Follow the regularized leader
(FTRL) Abernethy et al. (2008). Formally, in the on-
line learning framework, at time t, each player chooses
a probability distribution (xt,yt respectively) simul-
taneously depending only on the past choices of both
players (i.e., x1, ...,xt−1,y1, ...,yt−1) and experiences
payoff that depends on choices xt,yt.
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1.1 Average Iterate Convergence vs Last
Iterate

Despite the rich literature on no-regret learning, most
of the known results have the feature that min-max
equilibrium is shown to be attained only by the time
average. This means that the trajectory of a no-
regret learning method (xt,yt) has the property that
1
t

∑
τ≤t x

τ>Ayτ converges to the equilibrium of (1),
as t → ∞. Unfortunately that does not mean that
the last iterate (xt,yt) converges to an equilibrium,
it commonly diverges or cycles. One such example is
the well-known Multiplicative Weights Update Algo-
rithm, the time average of which is known to converge
to an equilibrium, but the actual trajectory cycles to-
wards the boundary of the simplex (Bailey and Pil-
iouras (2018)). This is even true for the vanilla Gra-
dient Descent/Ascent, where one can show for even
bilinear landscapes (unconstrained case) last iterate
fails to converge Daskalakis et al. (2018). It is im-
portant to note that for most no-regret dynamics, the
chosen step-size is vanishing with time and it is not
known whether time-average convergence results per-
sist once the agents use constant step-sizes that are
independent of the dynamics’ time-steps. The reason
is that once constant step-size are used, the no-regret
property collapses.

Motivated by the training of Generative Adversarial
Networks (GANs), the last couple of years researchers
have focused on designing and analyzing procedures
that exhibit last iterate convergence (or pointwise con-
vergence) for zero-sum games. This is crucial for train-
ing GANs, the landscapes of which are typically non-
convex non-concave and averaging now as before does
not give much guarantees (e.g., note that Jensen’s in-
equality is not applicable anymore). In Daskalakis
et al. (2018); Liang and Stokes (2018) the authors show
that a variant of Gradient Descent/Ascent, called Op-
timistic Gradient Descent/Ascent has last iterate con-
vergence for the case of bilinear functions x>Ay where
x ∈ Rn and y ∈ Rm (this is called the unconstrained
case, since there are no restrictions on the vectors).
Later on, Daskalakis and Panageas (2019) generalized
the above result with simplex constraints, where the
online method that the authors analyzed was Opti-
mistic Multiplicative Weights Update. In Mertikopou-
los et al. (2018), it is shown that Mirror Descent with
extra gradient computation converges pointwise for
a class of zero-sum games that includes the convex-
concave setting (with arbitrary constraints), though
their algorithm does not fit in the online no-regret
framework since it uses information twice about the
payoffs before it iterates and moreover the chosen step-
size is vanishing with time. This was later generalized
with one call of the gradient in Hsieh et al. (2019),

again using vanishing step-sizes. Last but not least
there have appeared other works that show pointwise
convergence for other settings (see Palaiopanos et al.
(2017); Daskalakis and Panageas (2018) and Aber-
nethy et al. (2019) and references therein) to station-
ary points (but not local equilibrium solutions).

1.2 Main Results

In this paper, we focus on the constrained min-max
optimization problem

min
x∈∆n

max
y∈∆m

f(x,y), (3)

where f is a convex-concave function (convex in x, con-
cave in y). We analyze the no-regret online algorithm
Optimistic Multiplicative Weights Update (OMWU).
OMWU is an instantiation of the Optimistic Follow
the Regularized Leader (OFTRL) method with en-
tropy as a regularizer (for both players, see Prelimi-
naries section for the definition of OMWU).

We prove that OMWU exhibits local last iterate con-
vergence with constant step-size, generalizing the re-
sult of Daskalakis and Panageas (2019) and proving an
open question of Syrgkanis et al. (2015) (for convex-
concave games). Formally, our main theorem is stated
below:

Theorem 1.1 (Last iterate convergence of OMWU).
Let f : ∆n × ∆m → R be a twice differentiable func-
tion f(x,y) that is convex in x and concave in y.
Assume that there exists an equilibrium (x∗,y∗) that
satisfies the KKT conditions with strict inequalities
(see (4)). It holds that for sufficiently small constant
step-size, there exists a neighborhood U ⊆ ∆n × ∆m

of (x∗,y∗) such that for all for all initial conditions
(x0,y0), (x1,y1) ∈ U , OMWU exhibits last iterate
(pointwise) convergence, i.e.,

lim
t→∞

(xt,yt) = (x∗,y∗),

where (xt,yt) denotes the t-th iterate of OMWU.

Moreover, we provide experiments that indicate that
our results should hold globally (we conjecture global
convergence).

1.3 Technical Overview

In this subsection, we present a brief technical
overview. The main result of the paper boils down to
perform stability analysis of OMWU dynamics near
the min-max equilibrium. The stability analysis, the
understanding of the local behavior and the local con-
vergence guarantees of OMWU rely on the spectral
analysis of the computed Jacobian matrix. One of the
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key challenges is understanding the equilibrium min-
max solution in the boundary of the simplex. The
main reason is that the min-max solution (x∗,y∗)
does not necessarily satisfy ∇f(x∗, y∗) = 0 (gradient
zero). Especially, a min-max solution (x∗,y∗) that
lies on the boundary (some coordinates of (x∗,y∗)
are zero) of the simplex most likely will not have
∇f(x∗,y∗) = 0. So, works such as Malitsky and
Tam (2020), that try to understand convergence to
first order stationary points alone is not applicable.
Furthermore, the techniques for bilinear games (as in
Daskalakis and Panageas (2019)) are no longer valid in
convex-concave games. Allow us to explain the differ-
ences from Daskalakis and Panageas (2019). In gen-
eral, one cannot expect a trivial generalization from
linear to non-linear scenarios. The properties of bi-
linear games are fundamentally different from that of
convex-concave games, and this makes the analysis
much more challenging in the latter. The key result
of spectral analysis in Daskalakis and Panageas (2019)
is in a lemma (Lemma B.6) which states that a skew
symmetric2 has imaginary eigenvalues. Skew symmet-
ric matrices appear since in bilinear cases there are
terms that are linear in x and linear in y but no higher
order terms in x or y. However, the skew symmetry
has no place in the case of convex-concave landscapes
and the Jacobian matrix of OMWU is far more compli-
cated. One key technique to overcome the lack of skew
symmetry is the use of Ky Fan inequality Moslehian
(2011) which states that the sequence of the eigen-
values of 1

2 (W + W>) majorizes the real part of the
sequence of the eigenvalues of W for any square matrix
W (see Lemma 3.1).

Notation The boldface x and y denote the vectors
in ∆n and ∆m. xt denotes the t-th iterate of the dy-
namical system. The letter J denote the Jacobian ma-
trix. I, 0 and 1 are preserved for the identity, zero
matrix and the vector with all the entries equal to 1.
The support of x is the set of indices of xi such that
xi 6= 0, denoted by Supp(x). (x∗,y∗) denotes the op-
timal solution for minimax problem. [n] denote the set
of integers {1, ..., n}.

2 Preliminaries

In this section, we present some background that will
be used later.

2.1 Equilibria for Constrained Minimax

From Von Neumann’s minimax theorem, one can
conclude that the problem minx∈∆n maxy∈∆ f(x,y)
has always an equilibrium (x∗,y∗) with f(x∗,y∗) be

2A is skew symmetric if A> = −A.

unique. Moreover from KKT conditions (as long as f is
twice differentiable), such an equilibrium must satisfy
the following (x∗ is a local minimum for fixed y = y∗

and y∗ is a local maximum for fixed x = x∗):

Definition 2.1 (KKT conditions). The facts below
are straightforward from KKT conditions because of
non-negativity and equality constraints (linear con-
straints).

x∗ ∈ ∆n, i.e., x∗ is in simplex,
If x∗i > 0 then ∂f

∂xi
(x∗,y∗) =

∑n
j=1 x

∗
j
∂f
∂xj

(x∗,y∗),

If x∗i = 0 then ∂f
∂xi

(x∗,y∗) ≥
∑n
j=1 x

∗
j
∂f
∂xj

(x∗,y∗).

Last two equations indicate best strategy for x.

y∗ ∈ ∆mi.e., y∗ is in simplex,
y∗i > 0 then ∂f

∂yi
(x∗,y∗) =

∑m
j=1 y

∗
j
∂f
∂yj

(x∗,y∗),

y∗i = 0 then ∂f
∂yi

(x∗,y∗) ≤
∑m
j=1 y

∗
j
∂f
∂yj

(x∗,y∗),

Last two equations indicate best strategy for y.
(4)

Remark 2.2 (No degeneracies). For the rest of the
paper we assume the last inequalities hold strictly
for both players (if x∗i = 0 then ∂f

∂xi
(x∗,y∗) >∑n

j=1 x
∗
j
∂f
∂xj

(x∗,y∗) and similarly for y player). Intu-
itively, this assumption means that any unilateral de-
viation incurs a strict loss to the player that deviated.
We would like to note that this assumption is satis-
fied for “generic" bilinear zero-sum games Ritzberger
(1994) and guarantee uniqueness of minmax solution
(x∗,y∗), so we adapt the same assumption for convex-
concave landscapes. Moreover, we assume that the
Hessian of f(x,y) is invertible at the min-max solu-
tion (x∗,y∗). Let us note that these two assumptions
guarantee uniqueness (no continuums) of the min-max
solution for convex-concave landscapes. Finally, it is
easy to see that since f is convex concave and twice
differentiable, then ∇2

xxf (part of the Hessian that in-
volves x variables) is positive semi-definite and ∇2

yyf
(part of the Hessian that involves y variables) is neg-
ative semi-definite.

2.2 Optimistic Multiplicative Weights
Update

The equations of Optimistic Follow-the-Regularized-
Leader (OFTRL) applied to a problem
minx∈X maxy∈Y f(x,y) with regularizers (strongly
convex functions) h1(x), h2(y) (for player x,y respec-
tively) and X ⊂ Rn,Y ⊂ Rm is given below (see
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Daskalakis et al. (2018)):

xt+1 = argmin
x∈X

{η
t∑

s=1

x>∇xf(xs,ys)

+ ηx>∇xf(xt,yt)︸ ︷︷ ︸
optimistic term

+h1(x)}

yt+1 = argmax
y∈Y

{η
t∑

s=1

y>∇yf(xs,ys)

+ ηy>∇yf(xt,yt)︸ ︷︷ ︸
optimistic term

−h2(y)}.

η is called the step-size of the online algorithm. If η de-
pends on time (iteration) and goes to zero as t → ∞,
then it is vanishing; moreover if η does not depend
on time, then it is constant. OFTRL is uniquely de-
fined if f is convex-concave and domains X and Y are
convex. For simplex constraints and entropy regular-
izers, i.e., h1(x) =

∑
i xi lnxi, h2(y) =

∑
i yi ln yi, we

can solve for the explicit form of OFTRL using KKT
conditions, the update rule is the Optimistic Multi-
plicative Weights Update (OMWU) and is described
as follows:

xt+1
i =

xti · e
−2η ∂f∂xi

(xt,yt)+η ∂f∂xi
(xt−1,yt−1)∑

k x
t
ke
−2η ∂f

∂xk
(xt,yt)+η ∂f

∂xk
(xt−1,yt−1)

,

yt+1
j =

ytj · e
2η ∂f

∂yj
(xt,yt)−η ∂f

∂yj
(xt−1,yt−1)∑

k y
t
ke

2η ∂f
∂yj

(xt,yt)−η ∂f
∂yk

(xt−1,yt−1)

for all i ∈ [n], j ∈ [m].

2.3 Fundamentals of Dynamical Systems

We conclude Preliminaries section with some basic
facts from dynamical systems.

Definition 2.3. A recurrence relation of the form
xt+1 = w(xt) is a discrete time dynamical system,
with update rule w : S → S where S is a subset of Rk
for some positive integer k. The point z ∈ S is called
a fixed point if w(z) = z.

Remark 2.4. Using KKT conditions (4), it is not hard
to observe that an equilibrium point (x∗,y∗) must be a
fixed point of the OMWU algorithm, i.e., if (xt,yt) =
(xt−1,yt−1) = (x∗,y∗) then (xt+1,yt+1) = (x∗,y∗).

Proposition 2.5 (Galor (2007)). Assume that w is a
differentiable function and the Jacobian of the update
rule w at a fixed point z∗ has spectral radius less than
one. It holds that there exists a neighborhood U around
z∗ such that for all z0 ∈ U , the dynamics zt+1 = w(zt)
converges to z∗, i.e. limn→∞ wn(z0) = z∗ 3. w is
called a contraction mapping in U .

3wn denotes the composition of w with itself n times.

Note that we will make use of Proposition 2.5 to prove
our Theorem 1.1 (by proving that the Jacobian of the
update rule of OMWU has spectral radius less than
one).

3 Last iterate convergence of OMWU

In this section, we prove that OMWU converges point-
wise (exhibits last iterate convergence) if the initializa-
tions (x0,y0), (x1,y1) belong in a neighborhood U of
the equilibrium (x∗,y∗).

3.1 Dynamical System of OMWU

We first express OMWU algorithm as a dynamical sys-
tem so that we can use Proposition 2.5. The idea (sim-
ilar to Daskalakis and Panageas (2019)) is to lift the
space to consist of four components (x,y, z,w, in such
a way we can include the history (current and previ-
ous step, see Section 2.2 for the equations). First, we
provide the update rule g : ∆n × ∆m × ∆n × ∆m →
∆n ×∆m ×∆n ×∆m of the lifted dynamical system
and is given by g(x,y, z,w) = (g1, g2, g3, g4), where
gi = gi(x,y, z,w) for i ∈ [4] are defined as follows:

g1,i(x,y, z,w) = xi
e
−2η ∂f∂xi

(x,y)+η ∂f∂zi
(z,w)∑

k xke
−2η ∂f

∂xk
(x,y)+η ∂f

∂zk
(z,w)

, i ∈ [n]

g2,i(x,y, z,w) = yi
e

2η ∂f∂yi
(x,y)−η ∂f

∂wi
(z,w)∑

k yke
2η ∂f

∂yk
(x,y)−η ∂f

∂wk
(z,w)

, i ∈ [m]

g3,i(x,y, z,w) = xi, i ∈ [n]

g4,i(x,y, z,w) = yi, i ∈ [m].

Then the dynamical system of OMWU can be written
in compact form as

(xt+1,yt+1,xt,yt) = g(xt,yt,xt−1,yt−1).

In what follows, we will perform spectral analysis on
the Jacobian of the function g, computed at the fixed
point (x∗,y∗). Since g has been lifted, the fixed point
we analyze is (x∗,y∗,x∗,y∗) (see Remark 2.4). By
showing that the spectral radius is less than one, our
Theorem 1.1 follows by Proposition 2.5. The compu-
tations of the Jacobian of g are deferred to the supple-
mentary material.

3.2 Spectral Analysis

Let (x∗,y∗) be the equilibrium of min-max problem
(2). Next, we compute the equations of the Jacobian
at the fixed point (x∗,y∗, z∗,w∗). The following equa-
tions can be derived from the equations of the Jacobian
(see supplementary material) combined with the fact
that the fixed point for g is (x∗,y∗,x∗,y∗).
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(a) #iterations vs size of n (b) l1 error vs #iterations

Figure 1: Convergence of OMWU vs different sizes of the problem. For Figure (a), x-axis is n and y-axis is the
number of iterations to reach convergence for Eqn. (6). In Figure (b) we choose four cases of n to illustrate how
l1 error of the problem decreases with the number of iterations.

Derivatives of g1

∂g1,i

∂xi
= 1− x∗i − 2ηx∗i

(
∂2f

∂x∗i
−
∑
k

x∗k
∂2f

∂xi∂xk

)
, i ∈ [n].

∂g1,i

∂xj
= −x∗i − 2ηx∗i

(
∂2f

∂xi∂xj
−
∑
k

x∗k
∂2f

∂xj∂xk

)
, j ∈ [n].

∂g1,i

∂yj
= −2ηx∗i

(
∂2f

∂xi∂yj
−
∑
k

x∗k
∂2f

∂xk∂yj

)
, j ∈ [m].

∂g1, i

∂zj
= ηx∗i

(
∂2f

∂xi∂xj
−
∑
k

x∗k
∂2f

∂xk∂xj

)
, j ∈ [n].

∂g1,i

∂wj
= ηx∗i

(
∂2f

∂xi∂yj
−
∑
k

x∗k
∂2f

∂xk∂yj

)
, j ∈ [m].

Derivatives of g2, g3, g4

∂g2,i

∂xj
= 2ηy∗i

(
∂2f

∂xj∂yi
−
∑
k

y∗k
∂2f

∂xj∂yk

)
, j ∈ [n]

∂g2,i

∂yi
= 1− y∗i + 2η

(
∂2f

∂y2
i

−
∑
k

y∗k
∂2f

∂yi∂yk

)
, i ∈ [m]

∂g2,i

∂yj
= −y∗i + 2η

(
∂2f

∂yi∂yj
−
∑
k

y∗k
∂2f

∂yj∂yk

)
, j ∈ [m]

∂g2,i

∂zj
= ηy∗i

(
− ∂2f

∂xj∂yi
+
∑
k

y∗k
∂2f

∂xj∂yk

)
, j ∈ [n]

∂g2,i

∂wj
= ηy∗i

(
− ∂2f

∂yi∂yj
+
∑
k

y∗k
∂2f

∂yk∂yj

)
, j ∈ [m]

∂g3,i

∂xi
= 1 for all i ∈ [n] and zero for all the

other partial derivatives of g3,i

∂g4,i

∂yi
= 1 for all i ∈ [m] and zero for all the

other partial derivatives of g4,i.

Let i be the i-th coordinate of x∗. If i /∈ Supp(x∗)
(same for support of y∗), then from the KKT con-
ditions, the partial derivatives w.r.t the i-th coor-
dinate have entries that are zero except the di-
agonal entry which is less than one. For in-

stance, ∂g1,i∂xi
(x∗,y∗,x∗,y∗) = e

−η ∂f
∂xi

(x∗,y∗)∑n
t=1 x

∗
t e

−η ∂f
∂xt

(x∗,y∗)
and

all other partial derivatives of g1,i are zero, thus
e
−η ∂f

∂xi
(x∗,y∗)∑n

t=1 x
∗
t e

−η ∂f
∂xt

(x∗,y∗)
is an eigenvalue of the Jaco-

bian computed at (x∗,y∗,x∗,y∗). This is true be-
cause the row of the Jacobian that corresponds
to g1,i has zeros everywhere but the diagonal en-
try. Using Remark 2.2 (degeneracy assumption), It

also holds e
−η ∂f

∂xi
(x∗,y∗)∑n

t=1 x
∗
t e

−η ∂f
∂xt

(x∗,y∗)
< 1. Similarly, it

holds for j /∈ Supp(y∗) that ∂g2,j
∂yj

(x∗,y∗,x∗,y∗) =

e
η
∂f
∂yj

(x∗,y∗)

∑m
t=1 y

∗
t e
η
∂f
∂yt

(x∗,y∗)
< 1.

Thus it suffices to restrict our analysis to the mi-
nor of the Jacobian of size Supp(x∗) × Supp(y∗)
(the rows/cols of the variables we keep correspond to
the support of (x∗,y∗), and show the particular sub-
matrix has spectral radius less than 1.

We focus on the submatrix of the Jacobian of g com-
puted at (x∗,y∗,x∗,y∗) that corresponds to the non-
zero probabilities of x∗ and y∗. We denote Dx∗ to
be the diagonal matrix of size |Supp(x∗)|× |Supp(x∗)|
that has on the diagonal the nonzero entries of x∗ and
similarly we defineDy∗ of size |Supp(y∗)|×|Supp(y∗)|.
For convenience, let us denote kx := |Supp(x∗)| and
ky := |Supp(y∗)|. The Jacobian submatrix is the fol-
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lowing

J =


A11 A12 A13 A14

A21 A22 A23 A24

Ikx×kx 0kx×ky 0kx×kx 0kx×ky
0ky×kx Iky×ky 0ky×kx 0ky×ky


where

A11 = Ikx×kx −Dx∗1kx1
>
kx − 2ηDx∗(Ikx×kx

− 1kxx
∗>)∇2

xxf,

A12 = −2ηDx∗(Ikx×kx − 1kxx
∗>)∇2

xyf

A13 = ηDx∗(Ikx×kx − 1kxx
∗>)∇2

xxf,

A14 = ηDx∗(Ikx×kx − 1kxx
∗>)∇2

xyf

A21 = 2ηDy∗(Iky×ky − 1kyy
∗>)∇2

yxf,

A22 = Iky×ky −Dy∗1ky1
>
ky

+ 2ηDy∗(Iky×ky − 1kyy
∗>)∇2

yyf

A23 = −ηDy∗(Iky×ky − 1kyy
∗>)∇2

yxf,

A24 = −ηDy∗(Iky×ky − 1kyy
∗>)∇2

yyf.

(5)

We note that I,0 capture the identity matrix and
the all zeros matrix respectively (the appropriate
size is indicated as a subscript). The vectors
(1kx ,0ky ,0kx ,0ky ) and (0kx ,1ky ,0kx ,0ky ) are left
eigenvectors with eigenvalue zero for the above matrix.
Hence, any right eigenvector (vx,vy,vz,vw) should
satisfy the conditions 1>vx = 0 and 1>vy = 0. Thus,
every non-zero eigenvalue of the above matrix is also
a non-zero eigenvalue of the matrix below:

Jnew =


B11 A12 A13 A14

A21 B22 A23 A24

Ikx×kx 0kx×ky 0kx×kx 0kx×ky
0ky×kx Iky×ky 0ky×kx 0ky×ky


where

B11 = Ikx×kx − 2ηDx∗(Ikx×kx − 1kxx
∗>)∇2

xxf,

B22 = Iky×ky + 2ηDy∗(Iky×ky − 1kyy
∗>)∇2

yyf.

The characteristic polynomial of Jnew is obtained by
finding det(Jnew − λI). First observe that λ = 1 is
an eigenvalue of Jnew with left eigenvector the all ones
(which correspond to a zero eigenvalue for initial ma-
trix J). Moreover, if the eigenvalue λ = 1 has mul-
tiplicity more than two, it follows that the Hessian is
singular (which violates our assumption). So we may
assume for the rest of the proof that λ 6= 1.

One can perform row/column operations on Jnew to
calculate this determinant, which gives us the following
relation:

det(Jnew−λI2kx×2ky ) = (1− 2λ)
(kx+ky)

q

(
λ(λ− 1)

2λ− 1

)

where q(λ) is the characteristic polynomial of the fol-
lowing matrix

Jsmall =

[
B11 − Ikx×kx A12

A21 B22 − Iky×ky ,

]
and B11, B12, A12, A21 are the aforementioned sub-
matrices. Notice that Jsmall can be written as

Jsmall = 2η

[
−(Dx∗ − x∗x∗>) 0kx×ky

0ky×kx (Dy∗ − y∗y∗>)

]
H

where

H =

[
∇2

xxf ∇2
xyf

∇2
yxf ∇2

yyf

]
.

Notice here that H is the Hessian matrix evaluated at
the fixed point (x∗,y∗), and is the appropriate sub-
matrix restricted to the support of |Supp(y∗)| and
|Supp(x∗)|. Although, the Hessian matrix is symmet-
ric, we would like to work with the following represen-
tation of Jsmall:

Jsmall = 2η

[
(Dx∗ − x∗x∗>) 0kx×ky

0ky×kx (Dy∗ − y∗y∗>)

]
H−

where

H− =

[
−∇2

xxf −∇2
xyf

∇2
yxf ∇2

yyf

]
.

Let us denote any non-zero eigenvalue of Jsmall by ε
which may be a complex number. Thus ε is where q(·)
vanishes and hence the eigenvalue of Jnew must satisfy
the relation λ(λ−1)

2λ−1 = ε.

We are to now show that the magnitude of any eigen-
value of Jnew is strictly less than 1, i.e, |λ| < 1. Triv-
ially, λ = 1

2 satisfies the above condition. Thus we
need to show that the magnitude of λ where q(·) van-
ishes is strictly less than 1. The remainder of the proof
proceeds by showing the following two lemmas:

Lemma 3.1 (Real part non-positive). Let λ be an
eigenvalue of matrix Jsmall. It holds that Re(λ) ≤ 0.

Proof. Assume that λ 6= 0. All the non-zero eigenval-
ues of matrix Jsmall coincide with the eigenvalues of
the matrix

R : =

[
(Dx∗ − x∗x∗>) 0kx×ky

0ky×kx (Dy∗ − y∗y∗>)

] 1
2

×H−

×
[

(Dx∗ − x∗x∗>) 0kx×ky
0ky×kx (Dy∗ − y∗y∗>)

] 1
2

.

This is well-defined since[
(Dx∗ − x∗x∗>) 0kx×ky

0ky×kx (Dy∗ − y∗y∗>)

]
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is positive semi-definite. Moreover, we use KyFan in-
equalities which state that the sequence (in decreas-
ing order) of the eigenvalues of 1

2 (W +W>) majorizes
the real part of the sequence of the eigenvalues of W
for any square matrix W (see Moslehian (2011), page
4). We conclude that for any eigenvalue λ of R, it
holds that Re(λ) is at most the maximum eigenvalue
of 1

2 (R+R>). Observe now that R+R> is equal to[
(Dx∗ − x∗x∗>) 0kx×ky

0ky×kx (Dy∗ − y∗y∗>)

] 1
2

× (H− +H−>)

×
[

(Dx∗ − x∗x∗>) 0kx×ky
0ky×kx (Dy∗ − y∗y∗>)

] 1
2

.

Since

H− +H−> =

[
−∇2

xxf 0
0 ∇2

yyf

]
by the convex-concave assumption on f it follows that
the matrix above is negative semi-definite (see Remark
2.2) and so is R+R>. We conclude that the maximum
eigenvalue of R + R> is non-positive. Therefore any
eigenvalue of R has real part non-positive and the same
is true for Jsmall.

Lemma 3.2. If ε is a non-zero eigenvalue of Jsmall
then, Re(ε) ≤ 0 and |ε| ↓ 0 as the stepsize η → 0.

Proof. Let λ = x +
√
−1y and ε = a +

√
−1b. The

relation λ(λ−1)
2λ−1 = ε gives two equations based on the

equality of real and imaginary parts, i.e., : x2−x−y2 =
2ax−a−2by and 2xy−y = 2bx+2ay−b.Notice that the
above equations can be transformed to the following
forms:

(x− 2a+ 1

2
)2 − (y − b)2 = −a− b2 +

(2a+ 1)2

4

(x− 2a+ 1

2
)(y − b) = ab.

For each ε = a+
√
−1b, there exist two pairs of points

(x1, y1) and (x2, y2) that are the intersections of the
above two hyperbola. First consider the case when,
a < 0. As |ε| → 0, the hyperbola can be obtained
from the translation by ( 2a+1

2 , b) of the hyperbola

x2 − y2 = −a− b2 +
(2a+ 1)2

4
and xy = ab

where the translated symmetric center is close to ( 1
2 , 0)

since (a, b) is close to (0, 0). So the two intersections of
the above hyperbola, (x1, y1) and (x2, y2), satisfy the
property that x2

1 +y2
1 is small and x2 >

1
2 since the two

intersections are on two sides of the axis x = 2a+1
2 , On

the other hand, we have

λ(λ− 1)

2λ− 1
=

(x+
√
−1y)(x− 1 +

√
−1y)

2x− 1 +
√
−12y

= ε = a+
√
−1b

and then the condition a < 0 gives the inequality

Re(ε) =
(x2 − x+ y2)(2x− 1)

(2x− 1)2 + 4y2
< 0

that is equivalent to x > 1
2 and x2 − x + y2 < 0,

where only the case x > 1
2 is considered since if the

intersection whose x-component satisfying x < 1
2 has

the property that x2 +y2 is small and then less than 1.
Thus to prove that |λ| < 1, it suffices to assume x > 1

2 .
It is obvious that x2 − x+ y2 = (x− 1

2 )2 + y2 − 1
4 < 0

implies that x2 + y2 < 1.

Now consider the case when a = 0. Here, the quadratic
system becomes (x − 1

2 )2 − (y − b)2 = −b2 + 1
4 and

(x− 1
2 )(y − b) = 0. It must hold that x = 1

2 or y = b.
Since the step-size η can be arbitrarily small constant,
when |ε| → 0, we get b → 0 and then y must be a
complex number, contradicting that y is real. So we
can only have y = b, and from the equation (x− 1

2 )2 =

−b2 + 1
4 , we have x = 1

2 ±
√
−b2 + 1

4 . In this case it

also holds x2 + y2 = 1
2 ±

√
−b2 + 1

4 < 1 for |b|, |ε| → 0

(i.e., small enough).

Remark 3.3. In our proof we showed that the spec-
tral radius sp(J) of the Jacobian of the update rule
of OMWU is upper-bounded by a positive number
sp(J) < ρ < 1 less than one. From a standard
dynamical systems argument, if this is the case for
a twice continuously differentiable function f , then
‖xt − x∗‖ ≤ Ce−ρt where ρ depends on the dimension
of f , Lipschitzness L, strong-convexity µ etc but not
on t and C on the initialization. Thus, to reach ε close
(in `2) to the solution, we can do it after O

(
log 1

ε

)
iterations (as long as we start close enough to x∗).
Observe also that it must be the case that ε� η (the
claim holds for ε much smaller than η). Nevertheless,
the constants in O

(
log 1

ε

)
are not clear as we do not

know how ρ depends on n,m,L.

4 Experiments

In this section, we primarily target to understand
two factors that influence the convergence speed of
OMWU: the problem size and the learning rate. We
also compare our algorithm with Optimistic Gradient
Descent Ascent (OGDA) with projection, and demon-
strate our superiority against it. We start with a sim-
ple bilinear min-max game:

min
x∈∆n

max
y∈∆n

x>Ay. (6)

We first vary the value of n to study how the learn-
ing speed scales with the size of the problem. The
learning rate is fixed at 1.0, and we run OMWU with
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n ∈ {25, 50, 75, · · · , 250} and matrix A ∈ Rn×n is gen-
erated with i.i.d random Gaussian entries. We output
the number of iterations for OMWU to reach conver-
gence, i.e., with l1 error to the optimal solution to be
less or equal to 10−5. The results are averaged from
10 runs with different randomly initializations. As re-
ported in Figure 1, generally a larger problem size re-
quires more iterations to reach convergence. We also
provide four specific cases of n to show the conver-
gence in l1 distance in Figure 1(b). The shaded area
demonstrates the standard deviation from the 50 runs.

To understand how learning rate affects the speed of
convergence, we conduct similar experiments on Eqn.
(6) and plot the l1 error with different step sizes in
Figure 2(a)-(c). For this experiment the matrix size is
fixed as n = 100. We also include a comparison with
the Optimistic Gradient Descent AscentDaskalakis
and Panageas (2018). For the setting we considered,
we observe a larger learning rate effectively speeds up
our learning process, and our algorithm is relatively
more stable to the choice of step-size. In comparison,
OGDA is quite sensitive to the choice of step-size. As
shown in Figure 2(b), a larger step-size makes the al-
gorithm diverge, while a smaller step-size will make
very little progress. Furthermore, we also choose to
perform our algorithm over a convex-concave but not
bilinear function f(x,y) = x2

1 − y2
1 + 2x1y1, where

x,y ∈ ∆2 and x1 and y1 are the first coefficients of x
and y. With this low dimensional function, we could
visually show the convergence procedure as in Figure
2(b), where each arrow indicates an OMWU step. This
figure demonstrates that at least in this case, a larger
step size usually makes sure a bigger progress towards
the optimal solution.

Remark 4.1. Notice that our experiments doesn’t show
slow convergence of OGDA. Figure 5(b)(c) shows that
when we use the learning rate of e2, OGDA is even
faster than OMWU, with linear convergence. How-
ever, OGDA is much more sensitive to hyperparameter
tuning. When the learning rate is too big (e4 in (b)),
it diverges, and while it’s too small (e−2), it converges
slowly (but still achieves linear convergence). The up-
date rule for OGDA follows exactly from Daskalakis
and Panageas (2019), and we use the same projection
steps for our method and OGDA as presented in Chen
and Ye (2011).

Finally we show how the KL divergence
DKL((x∗,y∗) ‖ (xt,yt)) decreases under differ-
ent circumstances. Figure 3 again considers the
bilinear problem (Eqn.(6)) with multiple dimen-
sions n and a simple convex-concave function
f(x,y) = x2

1 − y2
1 + 2x1y1 with different learning

rate. We note that in all circumstances we consider,
OMWU achieves global convergence.

5 Conclusion

In this paper we analyze the last iterate behavior of
a no-regret learning algorithm called Optimistic Mul-
tiplicative Weights Update for convex-concave land-
scapes. We prove that OMWU with constant stepsize
exhibits last iterate convergence in a neighborhood of
the fixed point of OMWU algorithm, generalizing pre-
vious results that showed last iterate convergence for
bilinear functions. The provided experiments indicate
that OMWU achieves global convergence. One possi-
ble open question is to show global last iterate conver-
gence of OMWU for generic convex-concave games.
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(a) OMWU (b) OGDA

(c) Convergence time comparisons (d) OMWU trajectories with different learning rate

Figure 2: Time comparisons of OMWU and projected OGDA vs different choices of learning rate. For Figure
(a)(b)(c), x-axis is iterations and y-axis is the l1 error to the stationary point for Eqn. (6) with n = 100. We
observe that OMWU (as in (a)) always converges while projected OGDA (as in (b)) will diverge for large learning
rate. In figure (c) we remove the divergent case and compare the efficiency of the two algorithm measured in CPU
time. In Figure (d) we visually present the trajectories for the min-max game of minx∈∆2

maxy∈∆2
{x2

1 − y2
1 +

2x1y1} with learning rate 0.1, 1.0 and 10. Here x-axis is the value of x1 and y-axis is the value of y1 respectively.
The equilibrium point the algorithm converges to is x = [0, 1],y = [0, 1].

(a) KL divergence vs #iterations with different n (b) KL divergence vs #iterations with different η

Figure 3: KL divergence decreases with #iterations under different settings. For both images, x-axis is the
number of iterations, and y-axis is KL divergence. Figure (a) is OMWU on bilinear function Eqn.(6) with
n = {25, 100, 175, 250}. Figure (b) is OMWU on the quadratic function f(x,y) = x2

1 − y2
1 + 2x1y1 with different

learning rate η in {0.01, 0.1, 1.0, 10.0}. Shaded area indicates standard deviation from 10 runs with random
initializations. OMWU with smaller learning rate tends to have higher variance.
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