Supplementary: Distribution Regression for Sequential Data

A PROOFS

In this section, we prove that the expected signature ES is weakly continuous (Appendix [A.1]), and that the
pathwise expected signature ® is injective and weakly continuous (Appendix [A.2)).

Recall that in the main paper we consider a compact subset of paths X C C(I, E), where I is a closed interval
and F is a Banach space of dimension d (possibly infinite, but countable). We will denote by P(X) the set of
Borel probability measures on X and by S(X) C T(E) the image of X by the signature S : C(I, E) — T (E).

As shown in (Chevyrev and Oberhauser} [2018, Section 3), if E is a Hilbert space with inner product (-, -) g, then
for any k > 1 the following bilinear form defines an inner product on E®*

1, ifi=j,

0, ifi#j. 1)

k
<€i1 Q... Q€65 Q... ®ejk>E®k = H(Si,,_’j,,,, 61‘]’ = {

r=1

which extends by linearity to an inner product (A, B)7(g) = > ;> o(Ak, Br) ger on T (E) that thus becomes also
a Hilbert space. B

A.1 Weak continuity of the expected signature

Definition A.1. A sequence of probability measures p, € P(X) converges weakly to p if for every f € Cp(X,R)
we have fx fdu, — fX fdu as n — oo, where Cyp(X,R) is the space of real-valued continuous bounded functions
on X.

Remark. Since X is a compact metric space, we can drop the word "bounded” in|Def. A.1].
Definition A.2. Given two probability measures p,v € P(X), the Wasserstein-1 distance is defined as follows

Wi(u,v) = inf / T — dy(z, 2
1(1,v) ot WGX\I Yl pip dy(z,y) (2)

where the infimum is taken over all possible couplings of i and v.

Lemma A.1. (Chevyrev and Oberhauser, 2018, Theorem 5.3) The signature S : C(I, E) — T (E) is injectiveﬂ
Lemma A.2. (Chevyrev et al), 2016, Corollary 5.5) The signature S : C(I,E) — T(E) is continuous w.r.t.
RV

Lemma A.3. (Chevyrev and Oberhauser|, (2018, Theorem 5.6) The expected signature ES : P(X) — T(E) is
injectiveE]

Theorem A.1l. The expected signature ES : P(X) — T (E) is weakly continuous.

Proof. Consider a sequence {fi,}nen of probability measures on P(X) converging weakly to a measure u €
P(X). By Lemma the signature S : z — S(x) is continuous w.r.t. |||, Hence, by definition of weak-

convergence (and because X is compact), for any k > 0 and any multi-index (i1, ...,ix) € {1,...,d}* it follows
that [ _. S(x) i)y, (do) — Jocx S(x)@)y(dr). The factorial decay given by (Lyons et al. [2007,

Proposition 2.2) yields [, _, S(z)pn(dz) — [ 3 S(x)p(dr) in the topology induced by (-, )7 (). O

LUp to tree-like equivalence (see (Chevyrev and Oberhauser) 2018}, appendix B) for a definition and detailed discussion).

2This result was firstly proved in [Fawcett| (2002) for probability measures supported on compact subsets of C(I, E),
which is enough for this paper. It was also proved in a more abstract setting in |(Chevyrev et al.| (2016|). The authors
of [Chevyrev and Oberhauser| (2018]) introduce a normalization that is not needed in case of compact supports, as they
mention in (Chevyrev and Oberhauser| 2018, (I) - page 2)
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A.2 Injectivity and weak continuity of the pathwise expected signature

Theorem A.2. (Lyons et all 2007, Theorem 3.7) Let x € C(I,E) and recall the definition of the projection
Iz —a, . Then, the T (E)-valued path defined by

Spatn(x) 1 t —= S oIl (z) (3)

is Lipschitz continuous. Furthermore the map x + Sparn(x) is continuous w.r.t. ||| 1,

Theorem A.3. The pathwise expected signature ® : P(X) — C(I,T(E)) is injectiveﬂ

Proof. Let p,v € P(X) be two probability measures. If ®(p) = ®(v), then for any t € I, Ep,[S o Ii(x)] =
Ey~[S o i (y)]. In particular, for t = T, ES(u) = E;op[S(2)] = Eyer [S(y)] = ES(v). The result follows from
the injectivity of the expected signature ES (Lemma [A.3)). O

Theorem A.4. The pathwise expected signature ® : P(X) — C(I,T(E)) is weakly continuous.

Proof. Let {{tn }nen be a sequence in P(X’) converging weakly to u € P(X). As Spasn is continuous ,
it follows, by the continuous mapping theorem, that Spen#Fitn — SpanFFi weakly, where Spen#p is the
pushforward measure of p by Spetn. Given that Spqtp is continuous and X is compact, it follows that
the image Spain(X) is a compact subset of the Banach space C(I,7(E)). By (Villani, 2008, Theorem 6.8)
weak convergence of probability measures on compact supports is equivalent to convergence in Wasserstein-
1 distance. By Jensen’s inequality ||E[Spatn#itn] *E[Spath#H]HLiP < E[Hspath#un*Spath#MHLiP}. Tak-
ing the infimum over all couplings v € II(Spatn#in, Spatn## ) on the right-hand-side of the previous equa-
tion we obtain ||E[Spatn#fin] — E[Spath#ﬂmup < Wi (SpathFton, SpathF# ) — 0, which yields the convergence
E[Spatn#in] = E[Sparn#p] in ||| ;, over C(I, T(E)). Noting that E[Spen# ] = ®(n) concludes the proof. [

B EXPERIMENTAL DETAILS

In our experiments we benchmark KES and SES against DeepSets and DR-k; where k; € {RBF, Matern32, GA}.
Both KEs and SES do not take into account the length of the input time-series. Apart from DR-GA, all other
baselines are designed to operate on vectorial data. Therefore, in order to deploy them in the setting of DR on
sequential data, manual pre-processing (such as padding) is required. In the next section we describe how we
turn discrete time-series into continuous paths on which the signature operates.

B.1 Transforming discrete time-series into continuous paths

Consider a d-dimensional time-series of the form x = {(¢1,x1),..., (ts,x¢)} with time-stamps ¢t; < ... < ¢, and
values x5, € R, and the continuous path x obtained by linearly interpolating between the points xi,--- , xy.
The signature (truncated at level n) of x can be computed explicitly with existing Python packages |Reizenstein
and Graham| (2020); |Lyons| (2010); Kidger and Lyons (2020)), does not depend on the time-stamps (t1,...,%, ),
and produces (d"™! —1)/(d — 1) terms when d > 1. When d = 1 the signature is trivial since S="(z) =
(1, (we, — @4,), 5 (24, — 242)2%, -+, (x4, — x4,)™). As mentioned in Sec. 2.5 we can simply augment the paths
with a monotonous coordinate, such that & : ¢ — (¢,2¢), where t € [a,T], effectively reintroducing a time
parametrization. Another way to augment the state space of the data and obtain additional signature terms is
the lead-lag transformation (see which turns a 1-d data stream into a 2-d path. For example if the
data stream is {1, 5,3} one obtains the 2-d continuous path Z : ¢ — (xﬁle“d),xﬁlag)) where 2(°?® and z(%9) are
the linear interpolations of {1,5,5,3,3} and {1,1,5,5,3} respectively. A key property of the lead-lag transform
is that the difference between S(2)(1?) and S(#)1V is the quadratic variation QV () = Y4} (T4, — #4,)?
Chevyrev and Kormilitzin| (2016|). Hence, even when d > 1, it may be of interest to lead-lag transform the
coordinates of the paths for which the quadratic variation is important for the task at hand.

3For any u € P(X) the path ®(u) € C(I,T(E)). Indeed ®(u) is a continuous path because z, II;, S and ® are
all continuous and the composition of continuous functions is continuous. The Lipschitzianity comes from the fact that

L)l Lip < 1(X) sUP,e e [ISpatn ()]l Lz, < 400 by [Thm. A.2
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Definition B.1 (Lead-lag). Given a sequence of points x = {xy,...,%x,} in R? the lead-lag transform yields two
new sequences x99 and x(199) of length 20 — 1 of the following form

gleady _ | X i p=2k—1 Llag) _ [ xn ifp=2k—1
P x, if p=2k —2. P xg if p = 2k.

In our experiments we add time and lead-lag all coordinates except for the first task which consists in inferring
the phase of an electronic circuit (see|Sec. 5.1|in the main paper).

B.2 Implementation details

The distribution regression methods (including DR-k;, KES and SES) are implemented on top of the Scikit-
learn library |Pedregosa et al.| (2011), whilst we use the existing codebase https://github.com/manzilzaheer/
DeepSets| for DeepSets.

B.2.1 KES

The KES algorithm relies on the signature kernel trick which is referred to as PDESolve in the main paper. In
the algorithm below we outline the finite difference scheme we use for the experiments. In all the experiments
presented in the main paper, the discretization level of the PDE solver is fixed to n = 0 such that the time
complexity to approximate the solution of the PDE is O(d¢?) where £ is the length of the longest data stream.

Algorithm 1 PDESolve

1: Input: two streams {xk}f;’;l, {yk}i”zl of dimension d and discretization level n (step size = 27")
2: Create array U to store the solution of the PDE

3: Initialize Ui, :] < 1 for i € {1,2,...,2" * (£, — 1) + 1}

4: Initialize U[:, j] - 1 for j € {1,2,...,2" % (¢, — 1) + 1}

5: for each i € {1,2,...,2" % ({x — 1)} do

6: for cach j € {1,2,...,2" % (¢, — 1)} do

& Ax = (Xrij@my+1 = Xrif@)/2"

8: Ay = (¥rj/em+1 =~ Yri/en)/2"

9: Uli+1,7+1]=Uli,j+ 1]+ Uli+ 1,j] + (ALAy, — 1.) x U[i, j]
10: Output: The solution of the PDE at the final times U[—1, —1]

B.2.2 SES

The SES algorithm from the main paper relies on an algebraic property for fast computation of signatures, known
as Chen’s relation. Given a piecewise linear path x = Az, x...*xAx;, given by the concatenation * of individual
increments RY > Azy, = a4, —24,_,, k=2,...,¢, one has S(z) = exp(Ax,)®. ..®exp(Axy,), where exp denotes
the tensor exponential and ® the tensor product. Using Chen’s relation, computing the signature (truncated at
level n) of a sequence of length ¢ has complexity O(¢d™).

B.2.3 Baselines

For the kernel-based baselines DR-k;, we per-
form Kernel Ridge regression with the kernel de- Table 1: Kernels ky for the kernel-based baselines. See
fined by k(8%,67) = exp(—o?||p(6%) — p((gj)H?H ),  |Cuturi and Blondel (2017) for the definition of dtw, .,

where p(6%) = NZ-_1 Z;V:il ki(-,2P). For ki € in the GA kernel. 5 A
{RBF,Matern32}, if the time-series are multi- RBF exp(—=y* [lz — 2'|")
dimensional, the dimensions are stacked to form one Matern32 (1 + /372 [z — 2|]) exp(—v/3y? ||z — 2']))
large vector x € R%. See Table 1 for the expressions GA exp(—y dtwy /5 (z,2'))

of the kernels k1 used as baselines.

For DeepSets, the two neural networks are feedforward neural networks with ELU activations. We train by
minimizing the mean squared error.
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B.3 Hyperparameter selection

All models are run 5 times. The hyperparameters of KES, SES and DR-k; are selected by cross-validation via a
grid search on the training set (80% of the data selected at random) of each run. The range of values for each
parameter is specified in Table 2]

Table 2: Range of values for each parameter of DR-k;, KES and SES. We denote by « the regularization
parameter in Kernel Ridge regression and Lasso regression. The kernels parameters v and o are expressed in
terms of lengthscales 1 and /5 such that 42 = 1/(2¢2) and o2 = 1/(2¢3).

Model 2 2 « n m
DR-RBF {10-3,1072,...,10%,10}  {1073,1072,...,10%,103}  {107%,102,...,10%,103} N/A N/A

DR-Matern32  {1073,1072,...,10%,10®} {1073,1072,...,10%,10®} {107%,1072,...,10%,10°} N/A N/A
DR-GA {7-10%,7-10%} {1073,1072,--- /10%,10%} {1073,1072%,...,10%,103} N/A N/A
KES N/A {1073,1072,...,102,10%} {1073,1072,...,10%,103} N/A N/A
SES N/A N/A {10-5,107%,...,10%,10°}  {2,3} {2}

C ADDITIONAL RESULTS

C.1 Additional performance metrics

We report the mean absolute percentage error (MAPE) as well as the computational time on two synthetic
examples (the ideal gas and the rough volatility examples). As discussed in the main paper, these two datasets
represent two data regimes: in one case (the rough volatility model) there is a high number of low dimensional
time-series (see , whist in the other case (ideal gas), there is a relatively small number of time-series with
a higher state-space dimension. Apart from DeepSets (which is run on a GPU), all other models are run on a
128 cores CPU.
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Figure 1: Visualization of fOU sample-paths and their corresponding volatility. Each panel corresponds to a
different mean-reversion parameter a € {0.001,0.01,0.1}.

Table 3: Ideal gas example

Predictive MAPE

Model Time (s)
1 Ty > T
DeepSets 82.50 (20.20) 53.49 (13.93) 31
DR-RBF 32.09 (5.78) 41.15 (11.81) 58
DR-Matern32  33.79 (5.16)  40.20 (12.45) 55
_DR.GA ____3161(560) 39.17(13.87) _ 68__
KES 16.57 (4.86 4.20 (0.79) 49

—~
==
—

SES 15.75 (2.65 4.44 (1.36) 120




Table 4: Rough volatility example.

Predictive MAPE Time (min)

Model

N=20 N=50 N=100 N=20 N=50 N=100
DeepSets 44.85 (17.80) 44.75 (17.93) 45.00 (18.21) 1.31  1.86  2.68
DR-RBF 43.86 (13.36) 45.54 (10.05)  41.00 (12.98) 0.71 1.38 7.50
DR-Matern32 40.97 (10.81) 43.59 (9.79)  35.35 (9.18) 0.73 1.00 7.80
DR-GA 11.94 (7.14) 9.54 (6.85) 5.51 (2.78) 0.68  2.60 9.80
KES 6.12 (1.00)  2.83(0.49)  2.07(0.42) 071 400 1550
SES 6.67 (3.35)  3.58 (0.84)  2.14 (0.62)  0.60  0.65  0.78

C.2 Interpretability

When dealing with complex data-streams, cause-effect relations be-
tween the different path-coordinates might be an essential feature
that one wishes to extract from the signal. Intrinsic in the definition
of the signature is the concept of iterated integral of a path over an

I feature importance

ordered set of time indices a < u; < ... < ux < T. This ordering
of the domain of integration, naturally captures causal dependencies
between the coordinate-paths 2(11), ... z(i*),

Taking this property into account, we revisit the crop yield prediction
example (see|Sec. 5.4 in the main paper, and to show how the
iterated integrals from the signature (of the pathwise expected sig-
nature) provide interpretable predictive features, in the context of

distribution regression (DR) with SES. For this, we replace the cli- <« & & & &
matic variables by two distinct multi-spectral reflectance signals: 1) & & K& & &
near-infrared (nR) spectral band; 2) red (R) spectral band Q.% & &

. These two signals are recorded at a much lower tem- N & <

poral resolution than the climatic variables, and are typically used

to assess the health-status of a plant or crop, classically summarized

by the normalized difference vegetation inder (NDVI) [Huete et al|  Figure 2: The 5 most predictive features
(2002). To carry out this experiment, we use a publicly available  provided by (Lasso) sgs for the task of crop
dataset Hubert-Moy et al.| (2019) which contains multi-spectral time-  yield prediction.

series corresponding to geo-referenced French wheat fields from 2006

to 2017, and consider these field-level longitudinal observations to

predict regional yields (still obtained from the Eurostat database)ﬁ[nstead of relying on a predefined vegetation
index signal, such as the aforementionned NDVI : t + (22 — 28) /(22 + ), we use the raw signals in the

form of 2-dimensional paths x : t — x; = (27, 2F) to perform a Lasso DR with SES.

Interpretation Chlorophyll strongly absorbs light at wavelengths around 0.67um (red) and reflects strongly
in green light, therefore our eyes perceive healthy vegetation as green. Healthy plants have a high reflectance
in the near-infrared between 0.7 and 1.3um. This is primarily due to healthy internal structure of plant leaves
[Rahman et al.| (2004). Therefore, this absorption-reflection cycle can be seen as a good indicator of the health of
crops. Intuitively, the healthier the crops, the higher the crop-yield will be at the end of the season. It is clear
from that the feature in the signature that gets selected by the Lasso penalization mechanism corresponds
to a double red-infrared cycle, as described above. This simple example shows how the terms of the signature are
not only good predictors, but also carry a natural interpretability that can help getting a better understanding
of the underlying physical phenomena.

“http://ec.europa.eu/eurostat /data/database
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—— temperature —— humidity —— precipitation
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Figure 3: GLDAS/Eurostat dataset. Each panel shows the normalized time-series of temperature, humidity and
precipitation, measured over 10 different locations across a region within a year.
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