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Abstract

Distribution regression refers to the super-
vised learning problem where labels are only
available for groups of inputs instead of in-
dividual inputs. In this paper, we develop
a rigorous mathematical framework for dis-
tribution regression where inputs are com-
plex data streams. Leveraging properties of
the expected signature and a recent signature
kernel trick for sequential data from stochas-
tic analysis, we introduce two new learning
techniques, one feature-based and the other
kernel-based. Each is suited to a different
data regime in terms of the number of data
streams and the dimensionality of the indi-
vidual streams. We provide theoretical re-
sults on the universality of both approaches
and demonstrate empirically their robust-
ness to irregularly sampled multivariate time-
series, achieving state-of-the-art performance
on both synthetic and real-world examples
from thermodynamics, mathematical finance
and agricultural science.

1 INTRODUCTION

Distribution regression (dr) on sequential data de-
scribes the task of learning a function from a group
of data streams to a single scalar target. For instance,
in thermodynamics (Fig. 1) one may be interested in
determining the temperature of a gas from the set of
trajectories described by its particles (Hill, 1986; Re-
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ichl, 1999; Schrödinger, 1989). Similarly in quantita-
tive finance practitioners may wish to estimate mean-
reversion parameters from observed market dynam-
ics (Papavasiliou et al., 2011; Gatheral et al., 2018;
Balvers et al., 2000). Another example arises in agri-
cultural science where the challenge consists in pre-
dicting the overall end-of-year crop yield from high-
resolution climatic data across a field (Panda et al.,
2010; Dahikar and Rode, 2014; You et al., 2017).

dr techniques (Póczos et al., 2013; Oliva et al., 2014;
Szabó et al., 2016) have been successfully applied to
handle situations where the inputs in each group are
vectors in Rd. Recently, there has been an increased
interest in extending these techniques to non-standard
inputs such as images (Law et al., 2018b) or persis-
tence diagrams (Kusano et al., 2016). However dr for
sequential data, such as multivariate time-series, has
been largely ignored. The main challenges in this di-
rection are the non-exchangeability of the points in a
sequence, which naturally come with an order, and the
fact that in many real world scenarios the points in a
sequence are irregularly distributed across time.

In this paper we propose a framework for dr that ad-
dresses precisely the setting where the inputs within
each group are complex data streams, mathematically
thought of as Lipschitz continuous paths (Sec. 2). We
formulate two distinct approaches, one feature-based
and the other kernel-based, both relying on a recent
tool from stochastic analysis known as the expected
signature (Chevyrev and Oberhauser, 2018; Chevyrev
et al., 2016; Lyons et al., 2015; Ni, 2012). Firstly, we
construct a new set of features that are universal in
the sense that any continuous function on distribu-
tions on paths can be uniformly well-approximated by
a linear combination of these features (Sec. 3.1). Sec-
ondly, we introduce a universal kernel on distributions
on paths given by the composition of the expected sig-
nature and a Gaussian kernel (Sec. 3.2), which can be
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Figure 1: Simulation of the trajectories traced by 20 particles of an ideal gas in a 3-d box under different
thermodynamic conditions. Higher temperatures equate to a higher internal energy in the system which increases
the number of collisions resulting in different large-scale dynamics of the gas.

evaluated with a kernel trick. The former method is
more suitable to datasets containing a large number
of low dimensional streams, whilst the latter is better
for datasets with a low number of high dimensional
streams. We demonstrate the versatility of our meth-
ods to handle interacting trajectories like the ones in
Fig. 1. We show how these two methods can be used to
provide practical dr algorithms for time-series, which
are robust to irregular sampling and achieve state-of-
the-art performance on synthetic and real-world dr
examples (Sec. 5).

1.1 Problem definition

Consider M input-output pairs {({xi,p}Ni
p=1, y

i)}Mi=1,
where each pair is given by a scalar target yi ∈ R and
a group of Ni d-dimensional time-series of the form

xi,p = {(t1,xi,p1 ), . . . , (t`i,p ,x
i,p
`i,p

)}, (1)

of possibly unequal lengths `i,p ∈ N, with time-stamps
t1 < . . . < t`i,p and values xi,pk ∈ Rd. Every d-
dimensional time-series xi,p can be naturally embed-
ded into a Lipschitz-continuous path

xi,p : [t1, tli,p ]→ Rd, (2)

by piecewise linear interpolation with knots at
t1, . . . , tli,p such that xi,ptk = xi,pk . After having for-
mally introduced a set of probability measures on
this class of paths, we will summarize the informa-
tion on each set {xi,p}Ni

p=1 by the empirical measure
δi = 1

Ni

∑Ni

p=1 δxi,p where δxi,p is the Dirac measure
centred at the path xi,p. The supervised learning prob-
lem we propose to solve consists in learning an un-
known function F : δi 7→ yi.

2 THEORETICAL BACKGROUND

We begin by formally introducing the class of paths
and the set of probability measures we are considering.

2.1 Paths and probability measures on paths

Let 0 ≤ a < T and I = [a, T ] be a closed time interval.
Let E be a Banach space of dimension d ∈ N (possibly
infinite) with norm ‖·‖E . For applications we will take
E := Rd. We denote by C(I, E) the Banach space (Friz
and Victoir, 2010) of Lipschitz-continuous functions
x : I → E equipped with the norm

‖x‖Lip = ‖xa‖+ sup
s,t∈I

‖xt − xs‖
|t− s| . (3)

We will refer to any element x ∈ C(I, E) as an
E-valued path.1 Given a compact subset of paths
X ⊂ C(I, E), with respect to the topology induced
by ‖·‖Lip, we denote by P(X ) the set of (Borel) prob-
ability measures on X .
The signature has been shown to be an ideal feature
map for paths (Lyons, 2014). Analogously, the ex-
pected signature is an appropriate feature map for
probability measures on paths. Both feature maps
take values in the same feature space. In the next
section we introduce the necessary mathematical back-
ground to describe the structure of this space.

2.2 A canonical Hilbert space of tensors T (E)

In what follows ⊕ and ⊗ will denote the direct sum
and the tensor product of vector spaces respectively.

1For technical reasons, we remove from C(I, E) a subset
of pathological paths called tree-like (Sec. 2.3 Fermanian,
2019; Hambly and Lyons, 2010). This removal has no the-
oretical or practical impact on what follows.
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For example, (Rd)⊗2 = Rd ⊗ Rd is the space of d × d
matrices and (Rd)⊗3 is the space of d× d× d tensors.
By convention E⊗0 = R. The following vector space
will play a central role in this paper

T (E) =

∞⊕

k=0

E⊗k = R⊕ E ⊕ E⊗2 ⊕ . . . (4)

If {e1, . . . , ed} is a basis of E, the elements {ei1 ⊗ . . .⊗
eik}(i1,...,ik)∈{1,...,d}k form a basis of E⊗k. For any A ∈
T (E) we denote by Ak ∈ E⊗k the k-tensor component
of A and by A(i1,...,ik) ∈ R its (i1 . . . ik)th coefficient.
If E is a Hilbert space with inner product 〈·, ·〉E , then
there exists a canonical inner product 〈·, ·〉E⊗k on each
E⊗k which extends by linearity to an inner product

〈A,B〉T (E) =
∑

k≥0

〈Ak, Bk〉E⊗k (5)

on T (E) that thus becomes also a Hilbert space
(Chevyrev and Oberhauser, 2018, Sec. 3).

2.3 The Signature of a path

The signature (Chen, 1957; Lyons, 1998, 2014) turns
the complex structure of a path x into a simpler vec-
torial representation given by an infinite sequence of
iterated integrals. In this paper, the iterated integrals
are defined in the classical Riemann-Stieltjes sense.
Definition 2.1. The signature S : C(I, E) → T (E)
is the map defined elementwise in the following way:
the 0th coefficient is always S(x)(0) = 1, whilst all the
others are defined as

S(x)(i1...ik) =

∫
. . .

∫

a<u1<...<uk<T

dx(i1)u1
. . . dx(ik)uk

∈ R, (6)

where t 7→ x
(i)
t denotes the ith path-coordinate of x.

It is well known that any continuous function on a com-
pact subset of Rd can be uniformly well approximated
by polynomials (Conway, 2019, Thm. 8.1). In full anal-
ogy, the collection of iterated integrals defined by the
signature provides a basis for continuous functions on
compact sets of paths as stated in the following result
(Fermanian, 2019, Prop. 3.).
Theorem 2.1. Let X ⊂ C(I, E) be a compact set of
paths and consider a continuous function f : X → R.
Then for any ε > 0 there exists a truncation level n ≥ 0
such that for any path x ∈ X

∣∣∣f(x)−
n∑

k=0

∑

J∈{1,...,d}k
αJS(x)J

∣∣∣ < ε, (7)

where αJ ∈ R are scalar coefficients.

2.4 Truncating the Signature

In view of numerical applications (Bonnier et al., 2019;
Graham, 2013; Arribas et al., 2018; Moore et al., 2019;
Kalsi et al., 2020), the signature of a path S(x) might
need to be truncated at a certain level n ∈ N yielding
the approximation in T ≤n(E) := R⊕ E⊗1 ⊕ . . . E⊗n,

S≤n(x) = (1, S(x)1, . . . , S(x)n) ∈ T ≤n(E). (8)

This approximation is given by the collection of the
first (dn+1 − 1)/(d − 1) iterated integrals in equation
(6). Nonetheless, the resulting approximation is rea-
sonable thanks to Lyons et al. (2007, Proposition 2.2)
which states that the absolute value of all neglected
terms decays factorially as |S(x)(i1,...,in)| = O( 1

n! ).
This factorial decay ensures that when the signature of
a path x is truncated, only a negligible amount of infor-
mation about x is lost (Bonnier et al., 2019, Sec. 1.3).

2.5 Robustness to irregular sampling

The invariance of the signature to a special class
of transformations on the time-domain of a path
(Friz and Victoir, 2010, Proposition 7.10) called time
reparametrizations, such as shifting t 7→ t + b and
acceleration t 7→ tb (b ≥ 0), partially explains its
effectiveness to deal with irregularly sampled data-
streams (Bonnier et al., 2019; Chevyrev and Kormil-
itzin, 2016). In effect, the iterated integrals in equation
(6) disregard the time parametrization of a path x, but
focus on describing its shape. To retain the informa-
tion carried by time it suffices to augment the state
space of x by adding time t as an extra dimension yield-
ing t 7→ x̂t = (t, x

(1)
t , . . . , x

(d)
t ). This augmentation

becomes particularly useful in the case of univariate
time-series where the action of the signature becomes
somewhat trivial as there are no interesting dependen-
cies to capture between the different path-coordinates
(Chevyrev and Kormilitzin, 2016, Example 5).

3 METHODS

The distribution regression (dr) setting for sequential
data we have set up so far consists of M groups of
input-output pairs of the form

{(
{xi,p ∈ C(I, E)}Ni

p=1, y
i ∈ R

)}M
i=1

, (9)

such that the finite set of paths X =
⋃M
i=1{xi,p}Ni

p=1 is
a compact subset of C(I, E). As mentioned in Sec. 1.1,
we can summarize the information carried by the col-
lection of paths {xi,p}Ni

p=1 in group i by considering the
empirical measure δi = 1

Ni

∑Ni

p=1 δxi,p ∈ P(X ), where
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Figure 2: Schematic overview of the action of pathwise expected signature Φ on a group of time-series {xp}Np=1.
(top) Representation of the information about the group of time-series available from start up to time tk.
(bottom) At each time tk this information gets embedded into a single point in T (Rd).

δxi,p is the Dirac measure centred at xi,p. This way the
input-output pairs in (9) can be represented as follows

{(
δi ∈ P(X ), yi ∈ R

)}M
i=1

. (10)

The sequence of moments (E[Z⊗m])m≥0 is classically
known to characterize the law µZ = P ◦ Z−1 of any
finite-dimensional random variable Z (provided the se-
quence does not grow too fast). It turns out that in the
infinite dimensional case of laws of paths-valued ran-
dom variables (or equivalently of probability measures
on paths) an analogous result holds (Chevyrev and
Oberhauser, 2018). It says that one can fully charac-
terise a probability measure on paths (provided it has
compact support) by replacing monomials of a vector
by iterated integrals of a path (i.e. signatures). At
the core of this result is a recent tool from stochastic
analysis that we introduce next.

Definition 3.1. The expected signature is the map
ES : P(X )→ T (E) defined elementwise

ES(µ)(i1,...,ik) =

∫

x∈X
S(x)(i1,...,ik)µ(dx), (11)

for any k ≥ 0 and any (i1, . . . , ik) ∈ {1, . . . , d}k.

We will rely on the following important theorem in
order to prove the universality of the proposed tech-
niques for dr on sequential data presented in the next
two sections.

Theorem 3.1. The expected signature map is injec-
tive and weakly continuous.

Proof. The injectivity has been proved in Chevyrev
and Oberhauser (2018, Thm. 5.3). We prove the weak
continuity in Appendix A.1.

3.1 A feature-based approach (ses)

As stated in Thm. 2.1, linear combinations of path-
iterated-integrals are universal approximators for con-
tinuous functions f on compact sets of paths. In this
section we prove the analogous density result for con-
tinuous functions F on probability measures on paths.
We do so by reformulating the problem of dr on paths
as a linear regression on the iterated integrals of an
object that we will refer to as the pathwise expected
signature. We start with the definition of this term
followed by the density result. Ultimately, we show
that our dr algorithm materializes as extracting sig-
natures on signatures. For any t ∈ I = [a, T ] consider
the projection

Πt : C(I, E)→ C([a, t], E) (12)

that maps any path x to its restriction to the sub-
interval [a, t] ⊂ I, such that Πt(x) = x|[a,t]

(see Fig. 2).
Definition 3.2. The pathwise expected signature is
the function Φ : P(X ) → C(I, T (E)) that to a prob-
ability measure µ ∈ P(X ) associates the path Φ(µ) :
I → T (E) defined as

Φ(µ) : t 7→ Ex∼µ [S (Πt(x))] . (13)

The action of Φ is illustrated on Fig. 2, and its im-
plementation is outlined in Alg. 1.2 In line 6 of the
algorithm we use an algebraic property for fast com-
putation of the signature, known as Chen’s relation
(see Appendix B.2). The next theorem states that any
weakly continuous function on P(X ) can be uniformly
well approximated by a linear combination of terms in
the signature of the pathwise expected signature.

2Equivalently Φ(µ) = ES(Πt#µ) where Πt#µ is the
push-forward measure of µ by the measurable map Πt.

supplement.pdf{}{}{}#subsection.A.1{}{}{}
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Algorithm 1 Pathwise Expected Signature (PES)
1: Input: N streams {xp}Np=1 each of length `
2: Create array Φ to store the PES
3: Create array S to store the signatures
4: Initialize S[p]← 1 for p ∈ {1, . . . , N}
5: for each time-step k ∈ {2, . . . , `} do
6: // Compute the signature via Chen’s relation
7: S[p]← S[p]⊗exp(xpk−x

p
k−1) for p ∈ {1, . . . , N}

8: Φ[k]← avg(S)

9: Output: The pathwise expected signature Φ

Theorem 3.2. Let X ⊂ C(I, E) be a compact set
of paths and consider a weakly continuous function
F : P(X ) → R. Then for any ε > 0 there exists a
truncation level m ≥ 0 such that for any probability
measure µ ∈ P(X )

∣∣∣F (µ)−
m∑

k=0

∑

J∈{1,...,d}k
αJS(Φ(µ))J

∣∣∣ < ε, (14)

where αJ ∈ R are scalar coefficients.

Proof. P(X ) is compact (see proof of Thm. 3.3) and
the image of a compact set by a continuous function
is compact. Therefore, the image K = Φ(P(X )) is
a compact subset of C(I, T (E)). Consider a weakly
continuous function F : P(X ) → R. Given that Φ
is injective (see Appendix A.2), Φ is a bijection when
restricted to its image K. Hence, there exists a con-
tinuous function f : K → R (w.r.t ‖·‖Lip) such that
F = f ◦ Φ. By Thm. 2.1 we know that for any ε > 0,
there exists a linear functional L : T (E) → R such
that ‖f − L ◦ S‖∞ < ε. Thus ‖F ◦Φ−1−L◦S‖∞ < ε,
implying ‖F −L◦S ◦Φ‖∞ < ε. The approximation er-
ror decays factorially with the truncation level m.

The practical consequence of this theorem is that the
complex task of learning a highly non-linear regression
function F : P (X ) → R can be reformulated as a lin-
ear regression on the signature (truncated at level m)
of the pathwise expected signature (truncated at level
n). The resulting ses algorithm is outlined in Alg.2,
and has time complexity O(M`dn(N+dm)), whereM
is the total number of groups, ` is the largest length
across all time-series, d is the state space dimension, N
is the maximum number of input time series in a single
group. The factorial decay mentioned in Sec. 2.4 also
applies to the terms of the (pathwise) expected sig-
nature hence low truncation levels n,m ∈ {2, 3} will
usually be sufficient in practice to achieve good pre-
dictive performances.

Algorithm 2 dr on sequential data with ses

1: Input: {({xi,p}Ni
p=1, y

i)}Mi=1

2: Create array A to store M signatures of the PES.
3: for each group i ∈ {1, ...,M} do
4: Φ = PES({xi,p}Ni

p=1) // Using Alg. 1
5: for each time-step k ∈ {2, . . . , `i} do
6: // Compute the signature of the PES
7: A[:, i]← A[:, i]⊗ exp (Φk − Φk−1)

8: (α0, . . . , αc) ← LinearRegression(A, (yi)Mi=1)
9: Output: Regression coefficients (α0, . . . , αc)

3.2 A kernel-based approach (kes)

The ses algorithm is well suited to datasets containing
a possibly large numberM×N of relatively low dimen-
sional paths. If instead the input paths are high di-
mensional, it would be prohibitive to deploy ses since
the number of terms in the signature increases expo-
nentially in the dimension d of the path. To address
this, in this section we construct a new kernel func-
tion k : P(X ) × P(X ) → R combining the expected
signature with a Gaussian kernel and prove its univer-
sality to approximate weakly continuous function on
probability measures on paths. The resulting kernel-
based algorithm (kes) for dr on sequential data is
well-adapted to the opposite data regime to the one
above, i.e. when the dataset consists of few number
M ×N of high dimensional paths.
Theorem 3.3. Let X ⊂ C(I, E) be a compact set of
paths and σ > 0. The kernel k : P(X ) × P(X ) → R
defined by

k(µ, ν) = exp
(
− σ2 ‖ES(µ)− ES(ν)‖2T (E)

)
, (15)

is universal, i.e. the associated RKHS is dense in the
space of continuous functions from P(X ) to R.

Proof. By Christmann and Steinwart (2010, Thm.
2.2) if K is a compact metric space and H is a sepa-
rable Hilbert space such that there exists a continuous
and injective map ρ : K → H, then for σ > 0 the
Gaussian-type kernel kσ : K × K → R is a universal
kernel, where kσ(z, z′) = exp

(
− σ2 ‖ρ(z)− ρ(z′)‖2H

)
.

With the metric induced by ‖·‖Lip ,X is a compact
metric space. Hence the set P(X ) is weakly-compact
(Walkden, 2014, Thm. 10.2). Given that (X , dX )—
where dX is the topology induced by || · ||Lip—is a
compact metric space, the topology describing weak
convergence of (Borel) probability measures can be
metrized (e.g. by the Prohorov metric dP (X )). There-
fore (P (X ), dP (X )) is also a compact metric space. By
Thm. 3.1, the expected signature ES : P(X ) → T (E)
is injective and weakly continuous. Furthermore T (E)
is a Hilbert space with a countable basis, hence it is

supplement.pdf{}{}{}#subsection.A.2{}{}{}
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separable. Setting K = P(X ), H = T (E) and ρ = ES
concludes the proof.

We note that Thm. 3.3 holds more generally for any
Taylor-type kernel of the form

k(µ, ν) =

∞∑

n=0

an||ES(µ)− ES(ν)||2n, an > 0 (16)

including the Gaussian-type kernel in eq. (15).

3.3 Evaluating the universal kernel k

When the input measures are two empirical measures
δ1 = 1

N1

∑N1

p=1 δx1,p and δ2 = 1
N2

∑N2

q=1 δx2,q , the eval-
uation of the kernel k in Equation (15) requires the
ability to compute the tensor norm on T (E)

∥∥ES(δ1)− ES(δ2)
∥∥2 = E11 + E22 − 2E12,

Eij =
1

NiNj

Ni,Nj∑

p,q=1

〈
S(xi,p), S(xj,q)

〉
, i, j ∈ {1, 2} (17)

where all the inner products are in T (E). Each of
these inner products defines another recent object
from stochastic analysis called the signature kernel ksig
(Király and Oberhauser, 2019). Recently, Cass et al.
(2020) have shown that ksig is actually the solution
of a surprisingly simple partial differential equation
(PDE). This result provides us with a “kernel trick”
for computing the inner products in Equation (17) by
a simple call to any numerical PDE solver of choice.

Theorem 3.4. (Cass et al., 2020, Thm. 2.2) The
signature kernel defined as

ksig(x, y) := 〈S(x), S(y)〉T (E) (18)

is the solution u : [a, T ]× [a, T ]→ R at (s, t) = (T, T )
of the following linear hyperbolic PDE

∂2u

∂s∂t
= (ẋTs ẏt)u u(a, ·) = 1, u(·, a) = 1. (19)

In light of Thm. 3.3, dr on paths with kes can
be performed via any kernel method (Drucker et al.,
1997; Quiñonero-Candela and Rasmussen, 2005) avail-
able within popular libraries (Pedregosa et al., 2011;
De G. Matthews et al., 2017; Gardner et al., 2018)
using the Gram matrix computed via Alg. 3 and lever-
aging the aforementioned kernel trick. When using a
finite difference scheme (referred to as PDESolve in
Alg. 3) to approximate the solution of the PDE, the
resulting time complexity of kes isO(M3+M2N2`2d).

Algorithm 3 Gram matrix for kes

1: Input: {xi,p}Ni
p=1, i = 1, . . . ,M and σ > 0.

2: Initialize 0-array G ∈ RM×M
3: for each pair of groups (i, j) such that i ≤ j do
4: Initialize 0-array Kij ∈ RNi×Nj

5: Similarly initialize Kii,Kjj ∈ RNi×Ni ,RNj×Nj

6: for p, p′ in group i and q, q′ in group j do
7: Kii[p, p

′]← PDESolve(xi,p, xi,p
′
)

8: Kjj [q, q
′]← PDESolve(xj,q, xj,q

′
)

9: Kij [p, q]← PDESolve(xi,p, xj,q)

10: G[i, j]← avg(Kii) + avg(Kjj)− 2× avg(Kij)
11: G[j, i]← G[i, j]

12: G← exp(−σ2G) // elementwise exp
13: Output: The gram matrix G.

Remark In the case where the observed paths are
assumed to be i.i.d. samples {xp}Np=1 ∼ µ from the law
of an underlying random process one would expect the
bigger the sample sizeN , the better the approximation
of µ, and therefore of its expected signature ES(µ).
Indeed, for an arbitrary multi-index τ = (i1, . . . , ik),
the Central Limit Theorem yields the convergence (in
distribution)

√
N
(
Ex∼µ[Sτ (x)]− 1

N

N∑

p=1

Sτ (xp)
)
D→ N (0, σ2

τ )

as the variance σ2
τ = Ex∼µ[Sτ (x)2] − (Ex∼µ[Sτ (x)])2

is always finite; in effect for any path x, the product
Sτ (x)Sτ (x) can always be expressed as a finite sum
of higher-order terms of S(x) (Chevyrev and Kormil-
itzin, 2016, Thm. 1). However, we note that Monte
Carlo sampling is only one way of estimating the ex-
pected signature. There are stochastic processes such
as Brownian motion, for which the expected signature
can be computed by solving a PDE (Ni, 2012).

4 RELATED WORK

Recently, there has been an increased interest in ex-
tending regression algorithms to the case where inputs
are sets of numerical arrays (Hamelijnck et al., 2019;
Law et al., 2018a; Musicant et al., 2007; Wagstaff et al.,
2008; Skianis et al., 2020). Here we highlight the pre-
vious work most closely related to our approach.

Deep learning techniques DeepSets (Zaheer
et al., 2017) are examples of neural networks designed
to process each item of a set individually, aggregate
the outputs by means of well-designed operations (sim-
ilar to pooling functions) and feed the aggregated out-
put to a second neural network to carry out the re-
gression. However, these models depend on a large
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number of parameters and results may largely vary
with the choice of architecture and activation func-
tions (Wagstaff et al., 2019).

Kernel-based techniques In the setting of dr, el-
ements of a set are viewed as samples from an under-
lying probability distribution (Szabó et al., 2016; Law
et al., 2018b; Muandet et al., 2012; Flaxman, 2015;
Smola et al., 2007). This framework can be intu-
itively summarized as a two-step procedure. Firstly,
a probability measure µ is mapped to a point in
an RKHS H1 by means of a kernel mean embedding
Φ : µ →

∫
x∈X k1(·, x)µ(dx), where k1 : X × X → R

is the associated reproducing kernel. Secondly, the
regression is finalized by approximating a function
F : H1 → R via a minimization of the form F ≈
arg ming∈H2

∑M
i=1 L(yi, g ◦ Φ(µi)), where L is a loss

function, resulting in a procedure involving a second
kernel k2 : H1 × H1 → R. In Sec. 5 we denote by
DR-k1 the models produced by choosing k2 to be a
Gaussian-type kernel. Despite the theoretical guaran-
tees of these methods (Szabó et al., 2016), the feature
map k1(·, x) acting on the support X is rarely provided
explicitly, especially in the setting of non-standard in-
put spaces X 6⊂ Rd, requiring manual adaptations to
make the data compatible with standard kernels.

The signature method The signature method con-
sists in using the terms of the signature as features to
solve supervised learning problems on time-series, with
successful applications for detection of bipolar disor-
der (Arribas et al., 2018) and human action recogni-
tion (Yang et al., 2017) to name a few. The signature
features have been used to construct neural network
layers (Bonnier et al., 2019; Graham, 2013) in deep
architectures. To the best of our knowledge, we are
the first to use signatures in the context of dr.

5 EXPERIMENTS

We benchmark our feature-based (ses) and kernel-
based (kes) methods against DeepSets and the ex-
isting kernel-based dr techniques discussed in Sec. 4
on various simulated and real-world examples from
physics, mathematical finance and agricultural sci-
ence. With these examples, we show the ability of
our methods to handle challenging situations where
only a few number of labelled groups of multivariate
time-series are available. We consider the kernel-based
techniques DR-k1 with k1 ∈ {RBF,Matern32,GA},
where GA refers to the Global Alignment kernel for
time-series from Cuturi et al. (2007). Unlike our meth-
ods, DeepSets, DR-RBF and DR-Matern32 are all for
static arrays on Rd. This is why, we also construct the
DR-GA method, which can be seen as a simplification

of kes, where some smaller terms are deleted in the
signature (see Király and Oberhauser (2019, Sec 5.)).

For kes and DR-k1 we perform Kernel Ridge Regres-
sion, whilst for ses we use Lasso Regression. All mod-
els are run 5 times and we report the mean and stan-
dard deviation of the predictive mean squared error
(MSE). Other metrics are reported in Appendix C.
The hyperparameters of kes, ses and DR-k1 are se-
lected by cross-validation via a grid search on the
training set of each run. Additional details about
hyperparameters search and model architecture can
be found in Appendix B. The code to reproduce
the experiments is available at https://github.com/
maudl3116/Distribution_Regression_Streams.

5.1 A defective electronic device

We start with a toy example to show the robustness
of our methods to irregularly sampled time-series. For
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Figure 3: Predictive MSE at various subsampling rates
for M = 50 circuits and N = 15 devices. The shaded
area indicates the standard deviation.

this, we propose to infer the phase ϕ of an electronic
circuit from multiple recordings of its voltage vϕ(t) =
sin(ωt) and current iϕ(t) = sin(ωt−ϕ). The data con-
sists of M simulated circuits with phases {ϕi}Mi=1 se-
lected uniformly at random from [π/8, π/2]. Each cir-
cuit is attached to N measuring devices recording the
two sine waves over 20 periods at a frequency 25 points
per period. We then randomly subsample the data at
rates ranging from 0% to 75% independently for each
defective device. As shown in Fig. 3, the predictive
performances of DR-RBF drastically deteriorate when
the subsampling rate increases, whilst results for kes
and ses remain roughly unchanged.

supplement.pdf{}{}{}#appendix.C{}{}{}
supplement.pdf{}{}{}#appendix.B{}{}{}
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Table 1: Ideal gas dataset. Radii of all particles com-
posing the simulated gases: r1 = 3.5·10−1(V/N)3 (few
collisions) and r2 = 6.5·10−1(V/N)3 (many collisions).

Model Predictive MSE [×10−2]

r1 r2 > r1

DeepSets 8.69 (3.74) 5.61 (0.91)
DR-RBF 3.08 (0.39) 4.36 (0.64)
DR-Matern32 3.54 (0.48) 4.12 (0.39)
DR-GA 2.85 (0.43) 3.69 (0.36)
kes 1.31 (0.34) 0.08 (0.02)
ses 1.26 (0.23) 0.09 (0.03)

5.2 Inferring the temperature of an ideal gas

The thermodynamic properties of an ideal gas of N
particles inside a 3-d box of volume V (3 cm3) can
be described in terms of the temperature T (K), the
pressure P (Pa) and the total energy U (J) via the two
equations of state PV = NkBT and U = cVNkBT ,
where kB is the Boltzmann constant (Adkins and Ad-
kins, 1983), and cV the heat capacity. The large-scale
behaviour of the gas can be related to the trajectories
of the individual particles (through theirmomentum =
mass × velocity) by the equation U = 1

2

∑N
p=1mp| #»vp|2.

The complexity of the large-scale dynamics of the gas
depends on T (see Fig. 1) as well as on the radius of
the particles. For a fixed T , the larger the radius the
higher the chance of collision between the particles.
We simulate M = 50 different gases of N = 20 parti-
cles each by randomly initialising all velocities and let-
ting particles evolve at constant speed.3 The task is to
learn T (sampled uniformly at random from [1, 1 000])
from the set of trajectories traced by the particles in
the gas. In Table 1 we report the results of two exper-
iments, one where particles have a small radius (few
collisions) and another where they have a bigger ra-
dius (many collisions). The performance of DR-k1 is
comparable to the ones of kes and ses in the simpler
setting. However, in the presence of a high number of
collisions our models become more informative to re-
trieve the global temperature from local trajectories,
whilst the performance of DR-k1 drops with the in-
crease in system-complexity. With a total number of
MN = 1 000 time-series of dimension d = 7 (after
path augmentation discussed in Sec. 2.5 and in Ap-
pendix B), kes runs in 50 seconds, three times faster
than ses on a 128 cores CPU.

3We assume (Chang, 2015) that the environment is
frictionless, and that particles are not subject to other
forces such as gravity. We make use of python code from
https://github.com/labay11/ideal-gas-simulation.

5.3 Parameter estimation in a pricing model

Financial practitioners often model asset prices via an
SDE of the form dPt = µtdt+σtdWt, where µt is a drift
term, Wt is a 1-d Brownian motion (BM) and σt is the
volatility process (Arribas et al., 2020). This setting
is often too simple to match the volatility observed in
the market, especially since the advent of electronic
trading (Gatheral et al., 2018). Instead, we model
the (rough) volatility process as σt = exp{Pt} where
dPt = −a(Pt−m)dt+ νdWH

t is a fractional Ornstein-
Uhlenbeck (fOU) process, with a, ν,m ≥ 0. The fOU
is driven by a fractional Brownian Motion (fBM) WH

t

of Hurst exponent H ∈ (0, 1), governing the regularity
of the trajectories (Decreusefond et al., 1999).4 In line
with the findings in Gatheral et al. (2018) we choose
H = 0.2 and tackle the task of estimating the mean-
reversion parameter a from simulated sample-paths of
σt. We consider 50 mean-reversion values {ai}50i=1 cho-
sen uniformly at random from [10−6, 1]. Each ai is
regressed on a collection of N = 20, 50, 100 (time-
augmented) trajectories {σ̂i,pt }Np=1 of length 200. As
shown in Table 2, kes and ses systematically yield
the best MSE among all compared models. Moreover,
the performance of kes and ses progressively improves
with the number of time series in each group, in accor-
dance to the remark at the end of Sec. 3, whilst this
pattern is not observed for DR-RBF, DR-Matern32,
and DeepSets. Both kes and ses yield comparable
performances. However, whilst the running time of
ses remains stable (≈ 1 min) whenMN increases from
1 000 to 5 000, the running time of kes increases from
≈ 1 min to 15 min (on 128 cores).

Table 2: Predictive MSE (standard deviation) on the
rough volatility dataset. N is the number of rough
volatility trajectories and (M,d, `) = (50, 2, 200).

Model Predictive MSE [×10−3]

N=20 N=50 N=100

DeepSets 74.43 (47.57) 74.07 (49.15) 74.03 (47.12)
DR-RBF 52.25 (11.20) 58.71 (19.05) 44.30 (7.12)
DR-Matern32 48.62 (10.30) 54.91 (12.02) 32.99 (5.08)
DR-GA 3.17 (1.59) 2.45 (2.73) 0.70 (0.42)
kes 1.41 (0.40) 0.30 (0.07) 0.16 (0.03)
ses 1.49 (0.39) 0.33 (0.12) 0.21 (0.05)

4We note that sample-paths of fBM are not in
C([0, T ],R) but we can assume that the interpolations ob-
tained from market high-frequency data provide a suffi-
ciently refined approximation of the underlying process.

supplement.pdf{}{}{}#appendix.B{}{}{}
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5.4 Crop yield prediction from GLDAS data

Finally, we evaluate our methods on a crop yield pre-
diction task. The challenge consists in predicting the
yield of wheat crops over a region from the longitudi-
nal measurements of climatic variables recorded across
different locations of the region. We use the publicly
available Eurostat dataset containing the total annual
regional yield of wheat crops in mainland France—
divided in 22 administrative regions—from 2015 to
2017. The climatic measurements (temperature, soil
humidity and precipitation) are extracted from the
GLDAS database (Rodell et al., 2004), are recorded
every 6 hours at a spatial resolution of 0.25° × 0.25°,
and their number varies across regions.5 We further
subsample at random 50% of the measurements. ses
and kes are the two methods which improve the most
against the baseline which consists in predicting the
average yield on the train set (Table 3).

Table 3: MSE and MAPE (mean absolute percentage
error) on the Eurostat/GLDAS dataset

Model MSE MAPE

Baseline 2.38 (0.60) 23.31 (4.42)
DeepSets 2.67 (1.02) 22.88 (4.99)
DR-RBF 0.82 (0.22) 13.18 (2.52)
DR-Matern32 0.82 (0.23) 13.18 (2.53)
DR-GA 0.72 (0.19) 12.55 (1.74)
kes 0.65 (0.18) 12.34 (2.32)
ses 0.62 (0.10) 10.98 (1.12)

6 CONCLUSION

We have developed two novel techniques for distribu-
tion regression on sequential data, a task largely ig-
nored in the previous literature. In the first technique,
we introduce the pathwise expected signature and con-
struct a universal feature map for probability measures
on paths. In the second technique, we define a univer-
sal kernel based on the expected signature. We have
shown the robustness of our proposed methodologies
to irregularly sampled multivariate time-series, achiev-
ing state-of-the-art performances on various dr prob-
lems for sequential data. Future work will focus on de-
veloping algorithms to handle simultaneously a large
number of groups of high-dimensional time-series.

5http://ec.europa.eu/eurostat/data/database
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