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Abstract

Much work has been done recently to make
neural networks more interpretable, and one
approach is to arrange for the network to use
only a subset of the available features. In lin-
ear models, Lasso (or ¢;-regularized) regres-
sion assigns zero weights to the most irrel-
evant or redundant features, and is widely
used in data science. However the Lasso
only applies to linear models. Here we intro-
duce LassoNet, a neural network framework
with global feature selection. Our approach
achieves feature sparsity by allowing a feature
to participate in a hidden unit only if its lin-
ear representative is active. Unlike other ap-
proaches to feature selection for neural nets,
our method uses a modified objective func-
tion with constraints, and so integrates fea-
ture selection with the parameter learning di-
rectly. As a result, it delivers an entire regu-
larization path of solutions with a range of
feature sparsity. In experiments with real
and simulated data, LassoNet significantly
outperforms state-of-the-art methods for fea-
ture selection and regression. The LassoNet
method uses projected proximal gradient de-
scent, and generalizes directly to deep net-
works. It can be implemented by adding just
a few lines of code to a standard neural net-
work.

1 Introduction

1.1 Background

In many problems of interest, much of the information
in the features is irrelevant for predicting the responses
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and only a small subset is informative. Feature selec-
tion methods provide insight into the relationship be-
tween features and an outcome while simultaneously
reducing the computational expense of downstream
learning by removing features that are redundant or
noisy.

With high-dimensional data sets becoming ever more
prevalent, feature selection has seen widespread usage
across a variety of real-world tasks, including speech
(Cai et al., 2018), object recognition (Li et al., 2017),
and disease detection from protein data (Wulfkuhle
et al., 2003). The benefits of feature selection include
reducing experimental costs, enhancing interpretabil-
ity, computational speed up, memory reduction and
even improving model generalization on unseen data
(Min et al., 2014). For example, feature selection is es-
pecially valuable in biomedical studies where the data
with the full set of features is expensive or difficult to
collect, as it can alleviate the need to measure irrel-
evant or redundant features, and allows to identify a
small set of features while maintaining prediction per-
formance — this can significantly save on future data
collection costs. While feature selection methods have
been extensively studied in the setting of linear regres-
sion (e.g. LASSO), identifying relevant features for
highly nonlinear models remains an open challenge.

As a motivating example, consider a data set that con-
sists of the expression levels of various proteins across
tissue samples. Such measurements are increasingly
carried out to assist with disease diagnosis, as biol-
ogists measure a large number of proteins with the
aim of discriminating between disease classes. Yet,
it remains expensive to conduct all of the measure-
ments that are needed to fully characterize proteomic
diseases. It is natural to ask: Are there redundant
or unnecessary features? What are the most effective
and representative features to characterize the disease?
Furthermore, when a small number of proteins are
selected, their biological relationship with the target
diseases is more easily identified. These "marker” pro-
teins thus provide additional scientific understanding
of the problem.
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Figure 1. Feature selection path produced by
our method on the MICE Protein Dataset. Con-
sidering the cost of proteomic measurements, a trade-
off between the number of features kept and statistical
performance is often desirable. In this example, the
method captures 70% of the signal with about 20%
of the features. This allows to narrow down the list
of important features, making the conclusions of the
prediction task more actionable.

Figure 1 shows an example of feature selection path
produced by our method on the MICE Protein Dataset
(Higuera et al., 2015), which contains protein expres-
sion levels of normal and trisomic mice exposed to
different experimental conditions. We see that only
about 35 proteins are needed to obtain maximal clas-
sification accuracy. This kind of steeply concave curve
explains why feature selection is a key pre-processing
step in many machine learning tasks.

Section 1 discusses related works on feature selection.
Section 2 formulates the problem. Section 3 intro-
duces our main proposal, and Section 4 the optimiza-
tion strategy. In Section 5, we conduct experiments
on several real-world datasets. Finally, Sections 6 and
7 extend LassoNet to the unsupervised learning and
matrix completion problems, respectively.

1.2 Related Works

Feature selection methods can generally be divided
into three groups: filter, wrapper and embedded meth-
ods.

e Filter methods operate independently of the
choice of the predictor by selecting individual fea-
tures that maximize the desired criteria. For
example, the popular Fisher score (Gu et al.,
2012) selects features such that in the data space
spanned by the selected features, the distances
between data points in different classes are as
large as possible, while the distances between data
points in the same class are as small as possi-
ble. Filter methods select features independently
of the learning method to be used, and this is a

major limitation. For example, since filter meth-
ods evaluate individual features, they generally
do not detect features that participate mainly in
interactions with other features.

e Wrapper methods use learning algorithms to eval-
uate subsets of features based on their predictive
power. For example, the recently proposed HSIC-
LASSO (Yamada et al., 2014) uses kernel learning
to discover non-linear feature interactions.

e Similarly to wrapper methods, embedded meth-
ods use specific predictors to select features, and
are generally able to detect interactions and re-
dundancies among features. However, embedded
methods tend to do so more efficiently as they
combine feature selection and learning into a sin-
gle problem. A well-known example is the lasso
(Tibshirani, 1996), which can be used to select
features for regression by varying the strength of
1 regularization. The limitation of lasso, how-
ever, is that it only applies to linear models. Re-
cently, Feng and Simon (2017) proposed an input-
sparse neural network, where the input weights
are penalized using the group LASSO penalty. As
will become evident in Section 3, our proposed
method extends and generalizes this approach in
a natural way.

1.3 Proposed Method

We propose a new approach that extends lasso regres-
sion and its feature sparsity to feed-forward neural net-
works. We call our procedure LassoNet. The method
is designed so that only a subset of the features are
used by the network. Our procedure uses an input-
to-output residual connection and allows a feature to
have non-zero weight in a hidden unit only if its linear
connection is active.

The linear and nonlinear components are optimized
jointly, allowing to capture arbitrary nonlinearity. As
we show through experiments in Section 5, this leads to
lower classification errors on real-world datasets com-
pared to the aforementioned methods. A visual ex-
ample of results from our method is shown in Fig. 2
, where LassoNet selects the most informative pixels
on a subset of the MNIST dataset, and classifies the
original images with high accuracy.

We test LassoNet on a variety of datasets, and find
that it generally outperforms state-of-the-art methods
for feature selection and regression.
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Figure 2. Demonstrating LassoNet on the
MNIST dataset.  Here, we show the results of using
LassoNet to simultaneously select informative pixels
and classify digits 5 and 6 from the MNIST dataset.
Top: The classi cation accuracy by number of se-
lected features. Bottom: 3 samples from the model
with 84, 110 and 158 active features out of the 784
features respectively.

2 Problem Formulation

We now describe the problem of global feature se-
lection. Although global feature selection is relevant
for both supervised and unsupervised settings, we de-
scribe here the supervised case, which is the focus of
this paper, and defer discussion of the unsupervised
case to Section 6.

We assume a data-generating modeb(x;y) over a d-
dimensional space, wherex 2 RY is the covariate andy
is the response, such as class labels. The goal isto nd
the best function f (x) for predicting y. We empha-
size that the problem of learningf is non-parametric,
so that for example no linear or quadratic restriction
is assumed. We seek to minimize the empirical recon-
struction error:

min_ - E[L(y:f (xs))] (1)
whereS f 1;2:::dg is a subset of featuresxs de-
notes the vector x with elements x; set to zero for
i 2 S, andL is a loss function specied by the user.
For example, in a univariate regression problem, the
function class might be the set of all linear functions,
and the loss function might be the squared error loss
L(y;f(x)) = (y f(x))2. The principal diculty
in solving (1) is due to the combinatorial nature of
the minimization|the choice of possible subsets S
grows exponentially in d, making the problem NP-
hard even for simple choices of , such as linear regres-
sion (Amaldi et al., 1998), and exhaustive search is in-

tractable if the number of features is large. In addition,
the function classF needs to exhibit strong expressive
power|that is, we seek to develop a method that can
approximate the solution for any given class of func-
tions, from linear regression to deep fully-connected
neural networks.

3 Our proposal: LassoNet

3.1 Background and notation

Here we chooseF to be the class of residual feed-
forward neural networks:
F= f:f(x)= Tx+fw(x) ;

where the width and depth of the network are arbi-
trary. Residual networks are known to be easier to
train (He et al., 2016a). Furthermore, they act as
universal approximators to any function class (Raghu
et al., 2017; Lin and Jegelka, 2018).

For the reader's convenience, we collect key notation
and background here. Throughout the papern de-

notes the total number of training points, d denotes
the data dimension, f\ denotes a fully connected
feed-forward network with parameters W, K denotes
the size of the rst hidden layer, W® 2 RY K de-

notes the rst hidden layer, an 2 RY denotes the
residual layer. L(;W) = ni i”=1 “(Xiyi; W) s

the loss on the training data set, where™ denotes
the loss on individual training samples. S (x) =

sign(x) maxfjxj ; Og is the soft thresholding op-
erator.

The general architecture of LassoNet is illustrated in
Fig. 3. The method consists of two main ingredients:

1. A penalty is introduced to the original empirical
risk minimization that encourages feature spar-
sity. The formulation transforms the combinato-
rial search to a continuous search by varying the
level of the penalty.

2. A proximal gradient algorithm is applied in a
mathematically elegant way, so that it admits a
simple and e cient implementation. The method
can be implemented by adding just a few lines of
code to a standard neural network. The mathe-
matical derivation of this algorithm is detailed in
Section 5.

3.2 Formulation

The LassoNet objective function is de ned as
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Figure 3. The architecture of LassoNet.

The architecture of LassoNet consists of a single resid-
ual connection, shown in green and an arbitrary feed-
forward neural network, shown in black. The resid-
ual layer and the rst hidden layer are jointly passed
through a hierarchical soft-thresholding optimizer.

minimize L(;W )+ k k;

" 2
subjectto W
where the loss functionL( ;W ) was de ned in Sec-
tion 3.1, and W@ denotes the rst hidden layer. We
emphasize that our goal is not just to sparsify the net-
work, but to do so in a structured way that selects
the relevant input features. Since the network is feed-
forward, we do not need to penalize the remaining hid-
den layers in any particular way.

The constraint

wdj ™
budgets the total amount of non-linearity involving
feature | according to the relative e ect importance
of X; as a main e ect. An immediate consequence is
that W; = 0 as soon as j = 0. In other words, fea-
ture j is completely inactive from the model without
the need for an explicit penalty on W, hence e cient
feature selection. In this framework, feature sparsity
becomes possible with a controllable trade-o between
the linear and nonlinear components. In the extreme
where M = 0, the formulation recovers exactly the
LASSO; in the other extreme (by letting M | +1),
one recovers a standard feed-forward neural network
with ";-penalty on the rst layer.

This formulation has several benets. First, it pro-
motes the linear component of the signal above the
nonlinear one and uses it to guide feature sparsity.
Such a strategy is not new, and bears close resem-
blance to the hierarchy principle which has been ex-
tensively studied in statistics (Choi et al., 2010; Rad-
chenko and James, 2010; Lim and Hastie, 2014; She

et al.,, 2016; Yan and Bien, 2017). In addition, the
formulation leverages the expressive power of residual
neural networks (He et al., 2016a). These are easier to
train and can uniformly approximate any measurable
function, unlike fully-connected networks which are
not universal approximators (Lin and Jegelka, 2018).
Finally, by tying every feature to a single coe cient
(the linear component), our formulation provides a
natural framework for feature selection.

One added bene t of the formulation is that the linear

and non-linear components are tted simultaneously,

allowing to capture arbitrary nonlinearity in the data.

If the best tting model would have kW;k large but

j jj only moderate, this can be accommodated with
a reasonable choice oM. Furthermore, Fig. 4 sug-

gests that the demand for hierarchy is analogous to
the demand for sparsity|{a form of \regularization."

Training LassoNet involves two steps. First, all the

model parameters are updated by stochastic gradient
descent. Then, a hierarchical proximal operator is ap-
plied to the input layer pair ( ;W ) . This sequential

nature makes the procedure extremely simple to im-
plement in popular machine learning frameworks, and
requires only modifying a few lines of code from a stan-
dard residual network. The procedure is summarized
in Alg. 1.

An added bene t of the method is its computational
attractiveness. The LassoNet regularization path can
be trained at a cost that is essentially that of training
a single model. This is achieved thanks to the use
of warm starts in a speci ¢ direction, as outlined in
Section 4.1.

3.3 Hyper-parameter tuning

LassoNet has two hyper-parameters:

the ";-penalty coe cient, , controls the complex-
ity of the tted model; higher values of  encour-
age sparser models;

the hierarchy coe cient, M, controls the relative
strength of the linear and nonlinear components.

It may be di cult to set the hierarchy coe cient, M,
without expert knowledge on the domain or task. We
can circumvent this situation easily, by treating the hi-
erarchy coe cient as a hyper-parameter. We may use
a naive search, which exhaustively evaluates the ac-
curacy for the prede ned hyper-parameter candidates
with a validation dataset. This procedure can be per-
formed in parallel.
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Algorithm 1

1: Input: training dataset X 2 R" 9, training labels
Y, feed-forward neural network fy, (), number of
epochsB, hierarchy multiplier M, path multiplier

, learning rate

2: Initialize and train the feed-forward network on
the lossL(X;Y ; ;W)

3: Initialize the penalty, =

active features,k = d

: while k> 0do
Update a1+ )
for b2f1l:::Bgdo

Compute gradient of the loss w.r.tto (; W)
using back-propagation

Training LassoNet

, and the number of

No gk

8: Update r LandwW W r,L

9: Update (;W @)  Hier-Prox (;W ®;:M)

10: end for

11 Update k to be the number of non-zero coordi-
nates of

12: end while

13: where Hier-Prox is de ned in Alg. 2

4  Optimization
4.1 Warm starts: a path from dense to sparse

The technique of warm starts is very e ective in op-
timizing models over an entire regularization path.
For example, this technique is employed in Lasso;-
regularized linear regression (Friedman et al., 2010).
In this approach, optimization is carried out for each
xed value of on a logarithmic scale from sparse to
dense, and using the solution from the previous as
a warm start for the next. This is e ective, since the
sparse models are easier to optimize and the sparse
solution is also of main interest.

Not surprisingly, for optimizing LassoNet, we nd that

a dense-to-sparsewarm start approach is far more ef-
fective than a sparse-to-denseapproach, in the sense
that the former approach returns models that gen-
eralize better than those returned from the latter.
This phenomenon is illustrated in Fig. 4, where the
standard sparse-to-dense approach gets caught in lo-
cal minima with poor generalization ability. On ther
other hand, the dense-to-sparse approach leverages the
favorable generalization properties of the dense solu-
tion and preserves them after drifting into sparse local
minima.

4.2 Hierarchical proximal optimization

The objective is optimized using proximal gradient
descent, as outlined in Alg. 1. The key novelty is
a numerically e cient algorithm for the proximal in-

Figure 4. Left: The path of residual coe cients
for the Boston housing dataset. We augmented the
Boston Housing dataset fromp = 13 features to 13
additional Gaussian noise features (corresponding to
the broken lines). The number of features selected by
LassoNet is indicated along the top. LassoNet achieves
the minimum test error (at the vertical broken line) at

13 predictors. Upon inspection of the resulting model,
12 of the 13 selected features correspond to the true
predictors, con rming the model's ability to perform
controlled feature selection. Right: Comparing two
kinds of initialization. The test errors for Lasso and
LassoNet using the sparse-to-dense (in red) and dense-
to-sparse (in green) strategies are shown. The dense-
to-sparse strategy achieves superior performance, con-
rming the importance of a dense initialization in or-
der to e ciently explore the optimization landscape.

ner loop. We call the proposed algorithmHier-Prox

and detail it in Alg. 2. Underlying its development

is the derivation of equivalent optimality conditions
that completely characterize the global solution of the
non-convex minimization problem de ning the proxi-
mal operator. As it turns out, the inner loop is de-
composable across features. As we show in Appendix
B, Hier-Prox  nds the global minimum of an opti-
mization problem of the form

minimize L (b; W)
b2 R;W 2 RK

subjectto kWk,

%(v b)2+%ku WIS+ jbj;
Mib

Remarkably, the complexity of Hier-Prox is con-
trolled by O(dK log(dK)), where dK is the total num-
ber of the parameters being updated. This overhead
is negligible compared to the computation of the gra-
dients with respect to the same parameters. Further-
more, implementing the optimizer is straightforward
in most standard deep learning frameworks. We pro-
vide more information about our implementation in
Appendix C.
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Algorithm 2 Hierarchical Proximal Operator
1: procedure Hier-Prox (;W @; M)

3 Sort the entries oij(l) into jW((]})l)j
aa @)
Wik )
for m2f0;:::;Kgdo
Compute Wy, > S jji+ M
P
()
1 WG
6: Find the rst m such that jW((j?r)n oy
. 1 .
Wi | Wi
7: end for
8: 7w sign(j) Wm
9: Wj(l) Sign(Wj(l)) min(wm;Wj(l))
10: end for
11:  return (TW®)
12: end procedure

13: Notation: d denotes the number of features;K

denotes the size of the rst hidden layer.

Conventions: Ln. 6,W((jﬁ)< ) =

Ln. 9, minimum is applied coordinate-wise.

14.

4.3 Computational Complexity

In most existing hierarchical models, computation re-
mains a major challenge. Indeed, the complex na-
ture of the regularizers used to enforce hierarchy pre-
vents most current optimization algorithms from scal-
ing with d. In contrast, training LassoNet is performed
at an attractive computational cost. Namely:

The bulk of the computational cost occurs when
training the dense network;

Subsequently, training over the path is compu-
tationally cheap. By leveraging warm starts and
the e cient Hier-Prox solver, the method e ec-
tively prunes the dense model. In practice, pre-
dictions across consecutive solutions in the path
are usually close, which explains the speed-ups we
observe in our experiments.

The use of warm starts dramatically reduces the num-
ber of rounds of gradient descent needed during each
iteration, as the solution with penalty is often very
similar to the solution with penalty (1 + ). This
added bene t distinguishes LassoNet from many com-
peting feature selection methods, which require ad-
vance knowledge of the optimal number of features to
select, and do not exhibit any computational savings
over the path of features. Finally, the computational
complexity of the method improves with hardware ac-
celeration and parallelization techniques commonplace

in deep learning.

5 Experiments

In this section, we show experimental results on real-
world datasets. These are drawn from several domains
including protein data, image data and voice data,
and have been used for benchmarking feature selec-
tion methods in prior literature (Abid et al., 2019) 1:

Mice Protein Dataset  consists of protein ex-
pression levels measured in the cortex of normal
and trisomic mice who had been exposed to di er-
ent experimental conditions. Each feature is the
expression level of one protein.

MNIST and MNIST-Fashion consist of 28-
by-28 grayscale images of hand-written digits and
clothing items, respectively. We choose these
datasets because they are widely known in the
machine learning community. Although these are
image datasets, the objects in each image are cen-
tered, which means we can meaningfully treat
each 784 pixels in the image as a separate feature.

ISOLET consists of preprocessed speech data of
people speaking the names of the letters in the En-
glish alphabet, and is widely used as a benchmark
in the feature selection literature. Each feature is
one of the 617 quantities produced as a result of
preprocessing, including spectral coe cients and
sonorant features.

COIL-20 consists of centered grayscale images
of 20 objects. Images of the objects were taken
at pose intervals of 5 degrees amounting to 72
images for each object. During preprocessing, the
images were resized to produce 20-by-20 images,
with each feature being one of the 400 pixels.

Smartphone Dataset for Human Activity
Recognition consists of sensor data collected
from a smartphone mounted on subjects while
they performed several activities such as walking
upstairs, standing and laying. Each feature rep-
resents one of the 561 raw or processed quantities
from the sensors on the phone.

We compare LassoNet with several supervised feature
selection methods mentioned in Related Works, in-
cluding HSIC-LASSO and the Fisher Score. We also
include principal feature analysis (PFA), a popular

method for selecting discrete features based on PCA,
proposed by Lu et al. (2007). Where available, we

1The data sets descriptions were provided by these au-
thors.
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