PClean: Bayesian Data Cleaning at Scale with Domain-Specific
Probabilistic Programming—Supplementary Materials

A Baseline Inference Algorithms

The paper’s Figure 6 shows median accuracy vs. time for five independent runs of nine inference algorithms.
These results were computed using the PClean program shown in Appendix on a version of the Hospital
dataset (Appendix with 20% of its cells deleted at random, to test both repair and imputation (the original
Hospital dataset has many errors, but very few missing cells). Below, we give descriptions of each inference
algorithm we test:

1. PClean SMC (2 particles) followed by PClean rejuvenation is the inference algorithm described in
Section 3. First, a complete run of 2-particle sequential Monte Carlo, using PClean’s enumeration-based
compiled proposals, is completed, incorporating all 1000 rows of the dataset. Then, one of the two particles
is selected, and for each object in its latent database, a block rejuvenation MCMC kernel is run, also using
PClean’s enumeration-based compiled proposal. (The number of MCMC moves completed during this sweep
will depend on the number of objects inferred for the latent database, a quantity that varies from run to
run. See note below this list for an explanation of how median accuracies were computed across runs with
different numbers of iterations.)

2. PClean SMC (2 particles) is the same as the above except that no rejuvenation sweep is performed.

3. PClean SMC (2 particles) followed by PClean rejuvenation, no subproblem hints is the same
as (1), except we disregard subproblem hints in the PClean program. (The program in question, shown in
Appendix has two subproblem hints.) As a result, SMC takes bigger steps, and enumerative proposals
take longer to execute (but are higher quality).

4. PClean SMC (20 particles) followed by PClean rejuvenation is the same as (1) except with 20
particles, instead of 2.

5. PClean MCMUC initializes the latent database using ancestral sampling, i.e., from the prior, but modified
to use observed values when they are available. It then performs two complete MCMC sweeps, using
PClean’s block rejuvenation proposals; each sweep performs an MCMC move for each object in the current
latent database.

6. Generic MCMC initializes the latent database as in (5), and performs ten complete sweeps using single-
site Metropolis-Hastings (tens of thousands of accept/reject steps). That is, each individual attribute or
reference slot is separately updated, using the prior as proposal. When a reference slot is proposed, there is
a chance that a new object is also proposed as its target. We note that our implementation is much faster
than most PPLs’ single-site Metropolis-Hastings implementations, as it re-evaluates only those likelihood
terms affected by the proposed single-variable change.

7. Generic SMC (100 particles) followed by generic PGibbs rejuvenation (100 particles) initializes
the latent database using 100-particle sequential Monte Carlo, using the same sequence of target distributions
as in PClean SMC, but with the prior as a proposal. This is followed by three sweeps of Particle Gibbs
rejuvenation moves: as in PClean rejuvenation from (1), we perform per-object updates, but the proposal
is generated not via PClean’s enumerative proposal compiler, but rather by using 100-particle conditional
sequential Monte Carlo (CSMC) [like a Gibbs move, this proposal is always accepted]. We note that this
baseline improves over existing PPLs’ support for Particle Gibbs in several ways. First, Particle Gibbs
updates only those variables connected to a particular latent object, rather than trying to update the entire
model state at once. Second, incremental SMC weights are computed incrementally, evaluating only those

Manuscript under review by AISTATS 2021

likelihood terms that are necessary. Third, a reweighting (and, based on ESS, possibly resampling) step is
triggered whenever a new likelihood term could possibly be evaluated, regardless of how the PClean program
is written. However, unlike PClean’s rejuvenation moves (but like many other PPL implementations), our
“generic PGibbs rejuvenation” uses proposals from the prior for its CSMC sweeps, greatly limiting its
effectiveness. (We note that delayed sampling [Murray et al., 2018, |Wigren et al., 2019] is a sophisticated
PPL technique that could provide benefits similar to those provided by PClean’s proposal; however, to our
knowledge delayed sampling is not implemented in any PPL capable of performing SMC in PClean’s model.)

8. Generic SMC (100 particles) followed by generic rejuvenation initializes the latent database us-
ing 100-particle sequential Monte Carlo, as in (7). It then performs five single-site Metropolis-Hastings
rejuvenation sweeps (tens of thousands of accept/reject steps), as described in (6).

9. Generic SMC (100 particles) initializes the latent database as in (7) and performs no additional reju-
venation.

For each run of each algorithm, time and accuracy were measured after each SMC step or MCMC transition.
Since steps/transitions finished at different timestamps across runs, and because each run of an algorithm lasted
a different number of steps (due to the stochastic number of objects in the latent database), we used linear
interpolation to approximate a continuous time/accuracy curve for each run. Then, to plot median performance
across the five runs, we took the median value across the interpolated curves at a fixed set of times. In all nine
algorithms, all five runs ended at roughly the same time; the plotted endpoint for each algorithm was chosen
as the time when the last run was complete. For any run that finished slightly earlier, the accuracy value was
extrapolated as the accuracy at its last timestamp.

B Evaluation on Data Cleaning Benchmarks: Datasets, Systems, and System
Configurations

Table 1 of our paper provides evidence of PClean’s applicability to data-cleaning problems, by comparing accuracy
and runtime for three PClean programs against state-of-the-art data cleaning systems applied to the same

benchmark datasets. The table reports Fy scores, but omits the breakdown in terms of recall (R = %)

and precision (P = %ﬁg?ﬁ), the metrics from which F; = 2PR/(P+ R) is derived. The table below presents
a fuller picture:

Task Metric | PClean (Ui;tﬁi:ﬁz q) HoloClean NADEEF NﬁEiE;ejrisNi?;“al
Flights Prec 0.91 0.79 0.39 0.76 0.92
Rec 0.89 0.55 0.45 0.03 0.88
P 0.90 0.64 0.41 0.07 0.90
Time 3.1s 45.4s 32.6s 9.1s 14.5s
Hospital Prec 1.0 0.95 1.0 0.99 0.99
Rec 0.83 0.85 0.71 0.73 0.73
3 0.91 0.90 0.83 0.84 0.84
Time 4.5s 1m 10s 1m 32s 27.6s 22.8s
Rents Prec 0.68 0.83 0.83 0 0.83
Rec 0.69 0.34 0.34 0 0.37
3} 0.69 0.48 0.48 0 0.51
Time | 1m 20s 20m 16s 13m 43s 13s 7.2s

The remainder of this appendix describes in detail: each benchmark dataset (Appendix , each baseline
system (Appendix , the HoloClean and NADEEF configurations used for each baseline (emphasizing the
ways in which we attempted to encode dataset-specific domain knowledge) (Appendix , and the PClean
programs we used for each dataset (Appendix [B.4)).

B.1 Description of Benchmarks

The three smaller benchmark datasets are available in the PClean repository; Physicians is excluded for size,
but is hosted by Medicare.

Hospital is a real-world Medicare dataset, but with artificially introduced typos in approximately 5% of its
19,000 cells (1000 rows, 19 columns). Each row reports the performance of a particular hospital on a particular
metric, and it includes metadata such as hospital address and phone number. This leads to a lot of duplicated
information, as the same hospital appears multiple times (with different metrics), and the same metrics also
appear multiple times (with different hospitals). All this duplication facilitates accurate cleaning even in the
presence of typos.

Flights consists of 2,377 rows describing real-world flight, their scheduled departure/arrival times, and their true
departure/arrival times, as scraped from the web. These times often conflict between the sources, so the task is
to integrate them to form a consistent dataset. We use the version from [Mahdavi et al., 2019].

Rents is a new synthetic dataset of apartment listings that we derived from census and housing statistics [US
Census Bureau, 2019|. It contains bedroom size, rent, county, and state. We first generated a clean dataset with
50,000 rows in the following manner:

e The county-state combination is chosen proportionally to its population in the United State
e The size of the apartment is chosen uniformly from studio, 1 bedroom, 2 bedroom, 3 bedroom, 4 bedroom.

e The rent is chosen according to a normal distribution in which the mean is the median rent for an apartment
of the chosen size in the chosen country and the standard deviation is chosen to be 10% of the mean

The dataset was then dirtied in the following ways:

e 10% of state names are deleted (many counties exist across multiple states, e.g. 30 states have a Washington
County).

e Approximately 1-2% of county names are misspelled
e 10% of apartment sizes are deleted

e 1% of apartment prices are listed in the incorrect units (thousands of dollars, instead of dollars)

B.2 Description of State-of-the-Art Data-Cleaning Systems

HoloClean is a data-cleaning system, which compiles user-provided integrity constraints and when available,
external ground-truth, into a factor graph with learned weights |Rekatsinas et al., 2017]. These integrity
constraints describe cells that should match, conditional on the agreement of other fields, e.g. if zip codes of
two rows match, the states in those two rows should match. These constraints can also be made with respect
to external data (e.g. if a row’s zip code in the table matches a zip code in a gazetteer, the row’s state should
match the corresponding state in the gazetteer).

NADEEF is a data-cleaning system that leverages user-specified cleaning rules [Dallachiesat et al., 2013].
NADEEF compiles users’ rules into a weighted MAX-SAT query and runs it through a solver, then uses the
results to clean the data. User-specified rules can either be integrity constraints (as HoloClean) or handcrafted
rules. These handcrafted rules take the form of Java classes, in which users write a detect function that takes in
a pair of tuples and outputs whether one or more violations have been detected, and if so, over which groupings
of cells. The user can also optionally write a repair function that takes in those detected cells, and returns a fix.
That is, unlike in PClean, user-encoded knowledge explicitly describes how to both detect and repair violations.

To our knowledge, neither system comes with special logic for handling text fields, dates, etc. as distinct from
general categorical data.

B.3 Settings for Data-Cleaning Systems

Below, we present the integrity constraints we encoded in both HoloClean and NADEEF, as well as the hand-
crafted Java rules for NADEEF. The integrity constraints are presented as “A determines B”, which means that
for two rows, if all columns in A match, one should expect all columns in B to also match.

Manuscript under review by AISTATS 2021

For each NADEEF Java rule, we describe the functionality and report the number of lines of code used to encode
it (ignoring imports, boilerplate, and parentheses). All integrity constraints and Java rules can also be found in
the PClean repository.

On encoding domain knowledge. Data cleaning is of course easier with accurate domain knowledge about
the data and the likely errors. This is one reason we developed PClean: to enable generatively encoded domain
knowledge to inform a data cleaning system. This does, however, raise the question of how to compare PClean
fairly to other data-cleaning systems: if PClean is more accurate only because it encodes more domain knowledge,
it would be misleading to claim that PClean is ‘better’ in some absolute sense than an existing system. Our
evaluation in Section 4 specifically explains that this is not our intention: we just mean to contextualize PClean’s
accuracy and runtime in the context of other data-cleaning systems, using reasonable configurations for those
systems.

That said, we tried our best to encode as much helpful domain knowledge as we could into the configurations for
HoloClean and NADEEF. Some of the settings below were chosen in response to direct advice from authors of
each system; others were based on existing scripts, written by the system authors, for cleaning these benchmark
datasets (some of our benchmarks also appeared in the papers presenting these systems). In addition, we tried
tweaking these configurations ourselves, and reported the best numbers we could.

It is likely that the approaches that NADEEF and HoloClean take, of using weighted logic and factor graphs,
could in principle express richer domain knowledge than our configurations here encode. But to our knowledge,
the current systems do not expose these capabilities in easy-to-exploit ways.

B.3.1 Hospital

Integrity Constraints

e Hospital Name determines Phone Number, City, ZIP Code, State, Address, Provider Number, County Name,
Hospital Type, and Hospital Owner.

Phone Number determines City, ZIP Code, State, Address1, Provider Number, County Name, Hospital Type,
Hospital Owner.

ZIP Code determines City and State.

Measure Code determines Measure Name and Condition.

Measure Code and State together determine State Average.

Java Rules

The State Average field is a concatenation of the Measure Code and State fields. For any row, we raise a violation
if the concatenation does not hold over those three cells. We do not provide a repair, since it’s unclear from that
row alone which of the three cells is the incorrect one. This took 9 lines of Java code.

B.3.2 Flights

Integrity Constraints

e Flight number determines both the Scheduled Departure Time and the Actual Departure Time

e Flight number determines both the Scheduled Departure Time and the Actual Departure Time

Java Rules

For a pair of rows, if both flights have the same flight number, a violation is already raised by the existing
integrity constraints if the departure or arrival time does not match. The source corresponding to the flight’s
airline tends to more correct than third-party sources. Therefore, when applicable over a pair of rows, we
provided the suggested repair of choosing the time from the website of the airline. This took 52 lines of Java
code.

B.3.3 Rent

Integrity Constraints
County determines State.
Java Rules

If a state was missing for a rental listing, we suggested that NADEEF choose the repair of the most common
state corresponding to a given county (which it would not otherwise do), requiring 48 lines of Java.

Additionally, if a rent was below a certain fixed threshold, the program would flag as a violation, and multiply
by the correct factor for a unit conversion. This second rule required 12 lines of Java.

B.3.4 Physician

Integrity Constraints

e The National Provider Identifier (NPI) determines the PAC ID and vice versa.

e The National Provider Identifier (NPI) determines First Name, Last Name, Medical School Name, and
Graduation Year.

e The Group Practice ID determines the Organization name.

e The Zip Code determines the Clity and State.

B.4 PClean Programs

In this section, we present the PClean programs we used to clean each benchmark dataset. This is the closest
analogue to a ‘configuration’ of an automated data-cleaning system. But rather than encode rules for detecting
and repairing errors, PClean programs encode generative models of relational databases and of the process by
which they are corrupted, filtered, and joined to yield flat, dirty, denormalized datasets.

B.4.1 Hospital

The Hospital dataset is modeled with seven classes: Records reflect typo’d attributes of Hospitals and the
Measures by which they are evaluated; Hospitals have HospitalTypes and are located in Places; Places
belong to County objects; and each Measure is related to some Condition. Typos are modeled as independently
introduced for each cell of the dataset. Some fields are modeled as draws from broad priors over strings, whereas
others are modeled as categorical draws whose domain is the set of unique observed values in the relevant column
(some of which are in fact typos).

Inference hints are used to focus proposals for string prior choices on the set of strings that have actually been
observed in a given column, and also to set a custom subproblem decomposition for the Record class (all other
classes use the default decomposition).

latent class County
parameter state_proportions ~ dirichlet(ones(num_states))
state ~ discrete(observed_values[:State]l, state_proportions)
county ~ string_prior(3, 30) preferring observed_values[:CountyName]
end
latent class Place
county ~ County
city ~ string_prior(3, 30) preferring observed_values[:City]
end
latent class Condition
desc ~ string_prior(5, 35) preferring observed_values[:Condition]
end
latent class Measure
code ~ uniform(observed_values[:MeasureCode])
name ~ uniform(observed_values[:MeasureName])
condition ~ Condition
end
latent class HospitalType
desc ~ string_prior(10, 30) preferring observed_values[:HospitalTypel
end

Manuscript under review by AISTATS 2021

latent class Hospital
parameter owner_dist ~ dirichlet(ones(num_owners))
parameter service_dist ~ dirichlet(ones(num_services))
loc ~ Place
type ~ HospitalType
id ~ uniform(observed_values[:ProviderNumber])
name ~ string_prior(3, 50) preferring observed_values[:HospitalName]
addr ~ string_prior(10, 30) preferring observed_values[:Addressi]
phone ~ string_prior(10, 10) preferring observed_values[:PhoneNumber]
owner ~ discrete(observed_values[:HospitalOwner], owner_dist)
zip ~ uniform(observed_values[:ZipCode])
service ~ discrete(observed_values[:EmergencyService], service_dist)
end
latent class Record
subproblem begin

hosp ~ Hospital; service ~ typos(hosp.service)
id ~ typos(hosp.id); name ~ typos(hosp.name)
addr ~ typos(hosp.addr); city ~ typos(hosp.loc.city)
state ~ typos(hosp.loc.county.state); zip ~ typos(hosp.zip)
county ~ typos(hosp.loc.county.county); phone ~ typos(hosp.phone)
type ~ typos(hosp.type.desc); owner ~ typos(hosp.owner)

end

subproblem begin
metric ~ Measure
code ~ typos(metric.code); mname ~ typos(metric.name);
condition ~ typos(metric.condition.desc)
stateavg = "$(hosp.loc.county.state)_$(metric.code)"
stateavg_obs ~ typos(stateavg)

end

end

B.4.2 Flights

The model for Flights uses three classes: each observed Record comes from a TrackingWebsite and is about a
Flight:

latent class TrackingWebsite
name ~ string_prior(2, 30) preferring observed_values[:website]
end
latent class Flight
flight_id ~ string_prior(10, 20) preferring flight_ids; index on flight_id
sdt ~ time_prior() preferring observed_values["$flight_id-sched_dep_time"]
sat ~ time_prior() preferring observed_values["$flight_id-sched_arr_time"]
adt ~ time_prior() preferring observed_values["$flight_id-act_dep_time"]
aat ~ time_prior() preferring observed_values["$flight_id-act_arr_time"]
end
latent class Record
parameter error_probs[_] ~ beta(10, 50)
flight ~ Flight; src ~ TrackingWebsite
error_prob = lowercase(src.name) == lowercase(flight.flight_id[1:2]) ? le-5 : error_probs[src.name]
sdt ~ maybe_swap(flight.sdt, observed_values["$(flight.flight_id)-sched_dep_time"], error_prob)

sat ~ maybe_swap(flight.sat, observed_values["$(flight.flight_id)-sched_arr_time"], error_prob)

adt ~ maybe_swap(flight.adt, observed_values["$(flight.flight_id)-act_dep_time"], error_prob)

aat ~ maybe_swap(flight.aat, observed_values["$(flight.flight_id)-act_arr_time"], error_prob)
end

In the parameter declaration for error_probs, we use the syntax error_probs[.] ~ beta(10, 50) to introduce
a collection of parameters; the declared variable becomes a dictionary, and each time it is used with a new index,
a new parameter is instantiated. We use this to learn a different error_prob parameter for each tracking website.
We could alternatively declare error_prob as an attribute of the TrackingWebsite class. However, PClean’s
inference engine uses smarter proposals for declared parameters (taking advantage of conjugacy relationships),
so for our experiments, we use the parameter declaration instead. We hope to extend automatic conjugacy
detection to all attributes, not just parameters, in the near future.

As in Hospital, we use observed_values to provide inference hints to the broad time_prior; this expresses a
belief that the true timestamp for a certain field is likely one of the timestamps that has actually been observed,
in the dirty dataset, with the given flight ID.

B.4.3 Rents

The program we use for Rents contains two classes: Listings are for apartments in some County:

data_table.block = map(x -> "$(x[1])$(x[end])", data_table.County)
units = [Transformation(identity, identity, x -> 1.0),

Transformation(x -> x/1000.0, x -> x*1000.0, x -> 1/1000.0)]
latent class County
parameter state_pops ~ dirichlet(ones(num_states))
block ~ unmodeled(); index by block
name ~ string_prior(10, 35) preferring observed_values[block]
state ~ discrete(states, state_pops)
end
latent class Listing
parameter avg_rent[_] ~ normal(1500, 1000)
subproblem begin
county ~ County
county_name ~ typos(county.name, 2)
br ~ uniform(room_types)
unit ~ uniform(units)
rent_base = avg_rent["$(county.state)_$(county.name) _$(br)"]
observed_rent ~ transformed_normal(rent_base, 150.0, unit)
end
rent = round(unit.backward(observed_rent))
end

We model the fact that the rent may be in grand instead of dollars, as well as that the county name may contain
typos. We introduce an artificial field, block, consisting of the first and last letters of the observed (possibly
erroneous) County field, and use it to inform an inference hint: we hint that posterior mass for a county’s name
concentrates on those strings observed somewhere in the dataset that share a first and last letter in common with
the observed county name for this row. Without this approximation, inference is much slower (but potentially
more accurate).

B.4.4 Physicians

The model for Physicians contains five classes: Records reference Practices and Physicians; each Physician
attended some medical School; and each Practice is in a City:

latent class School
name ~ unmodeled(); index by name
end

latent class Physician
parameter error_prob ~ beta(1.0, 1000.0)
parameter degree_proportions[_] ~ dirichlet(3 * ones(num_degrees))
parameter specialty_proportions[_] ~ dirichlet(3 * ones(num_specialties))
npi ~ number_code_prior()
school ~ School
subproblem begin
degree ~ discrete(observed_values[:Credentiall, degree_proportions[school.name])
specialty ~ discrete(observed_values[Symbol("Primary specialty")], specialty_proportions[degree])
degree_obs ~ maybe_swap(degree, observed_values[:Credential], error_prob)
end
end

latent class City

c2z3 ~ unmodeled(); index by c2z3

name ~ string_prior(3, 30) preferring cities[c2z3]
end

latent class Practice
addr ~ unmodeled(); index by addr
addr2 ~ unmodeled(); index by addr2
zip ~ string_prior(3, 10); index by zip
legal_name ~ unmodeled(); index by legal_name
subproblem begin
city ~ City
city_name ~ typos(city.name)
end
end

latent class Record
physician ~ Physician
address ~ Practice
end

Many columns are not modeled. Similar to Rents, we use a parameter in the Physician class for degree_probs,
although it might seem more natural to use an attribute of the School class; the resulting model is the same,
but using parameter allows PClean to exploit conjugacy.

Manuscript under review by AISTATS 2021

B.5 Effect of Additional Domain Knowledge

The quality of PClean’s inference depends on the PClean program one uses to model the data. To demonstrate
this, we apply four different PClean programs on Flights. In our baseline (16 lines of code), we assume all sources
are equally reliable and achieve an F1 score of 0.56. By additionally modeling the timestamp format, we achieve
an F1 of 0.60. If we program PClean to learn a per-source reliability (one extra line of code), F1 climbs to 0.69.
Finally, if we provide our program that the airline’s own website is likely to be the most reliable for a given flight
(one additional line of code for a total of 18), F1 jumps to 0.90.

We also implemented a user-defined cleaning rule in NADEEF, manually specifying a repair procedure for flight
times that searched for a reported time from the flight’s airline, and used that if available. This rule enabled
NADEEF to clean the Flights data, but required 52 lines of Java (beyond the boilerplate required for every
NADEEF rule). Furthermore, as Table 1 of the paper shows, even encoding manual Java rules is, for some
datasets, not enough to yield accurate cleaning.

C Additional Model Details

C.1 Discrete Random Measure representation

Our non-parametric structure prior p(S) is described by Section 2 of the paper in terms of the two-parameter
Chinese Restaurant Process. It is also possible to represent the generative process encoded by a PClean program
using the Pitman-Yor process:

GENERATEDATASET():
for latent class C' € TOPOLOGICALSORT(C) do

0c ~ poc()
Gc ~ GENERATECOLLECTION(C, 0c, {Gcr Y orepa(cy)

00bs ~ Poows ()
forie{1,....,n} do
7; ~ GENERATEOBJECT(Cops, Ocop. s G} cePa(Coss))

GENERATECOLLECTION(C, 0c, {Gcr }ore pa(ey):
sc ~ Gamma(1,1)
do ~ Beta(1,1)
Gc ~ PY (sc,dc, GENERATEOBIJECT(C, 0c, {Gc' }orepa(c)))

GENERATEOBJIECT(C, 0, {Ger }orepa(cy):
for reference slot Y € R(C) do
r.Y ~ Gr.y)

for attribute X € A(C) do
r.X ~ ¢C‘X(907 {T'T}TEPG(C.X))

We process classes one at a time, in topological order. For each latent class, we (1) generate class-wide hyper-
parameters f¢ from their corresponding hyperpriors, and (2) generate an infinite weighted collection of objects
of class C'. In this setting, an object r of class C' is an assignment of each attribute C.X to a value r.X and of
each reference slot C.Y to an object r.Y of class T(C.Y). An infinite collection of latent objects is generated via
a Pitman-Yor Process [Teh and Jordan, 2011]:

Gc ~ PY(sc,dc, GENERATEOBJECT(C, 0c, {Gcr Y orepa(cy))

The Pitman-Yor Process is a discrete random measure that generalizes the Dirichlet Process. It can be un-
derstood as first sampling an infinite vector of probabilities p ~ GEM (s¢,dc) from a two-parameter GEM
distribution, then setting Go = >~ piéric, where each of the infinitely many objects r{ is distributed accord-
ing to GENERATEOBJECT(C, 0c, {Gcr}crepa(cy). This itself is a distribution over objects, which first samples
reference slots and then attributes.

To generate the objects of the observation class, which will be translated by the program’s query into the flat
dataset D, we sample ¢,,,. from its prior distribution, then, for i € {1,...,n}, generate the i observed entry:
7; ~ GENERATEOBJECT(Cops, 0cop. s G} cePa(Con))-

C.2 Description of primitive distributions

Our models for particular datasets make use of PClean’s built-in probability distributions, which include not
just the common distributions for categorical and numerical data, but also several domain-specific distributions
useful for modeling strings and random errors. We briefly summarize several of PClean’s built-in distributions
here, before showing how to compose them into short PClean programs:

e string prior(min, max) encodes a prior over strings between min and maz characters long. The length is
uniformly distributed within that range, and characters follow a Markov model based on relative character
bigram frequencies in English.

e typos(str) is a distribution over strings centered at str. The generative process it represents is to sample
a number of typos from a negative binomial distribution whose number-of-trials parameter depends on the
length of str. That many typos (random insertions, deletions, substitutions, or transpositions) are then
performed. The likelihood is computed approximately using dynamic programming.

e maybe_swap(x, ys, p) returns a true value x with probability 1 — p, but chooses a replacement uniformly
from ys otherwise.

e transformed normal(mean, std, bijection) samples a real number from a Gaussian distribution with
the given mean and standard deviation, but then applies a transformation (the bijection). We use this
distribution to model unit errors.

C.3 Discussion of expressiveness of PClean

PClean imposes restrictions relative to universal PPLs, which helped us to develop an inference algorithm that,
for many PClean programs, produces results quickly and scales to large datasets. In this section, we discuss
these restrictions and their implications for cleaning dirty data using PClean.

Our non-parametric prior vs. explicit user-specified priors over number of objects and link struc-
ture. A primary difference between general-purpose open-universe languages, like BLOG, and PClean’s modeling
language is that PClean does not give the user control over the prior distribution over the number of objects of
each class, or which objects of particular classes are related to one anotherﬂ Instead, it imposes a domain-general
non-parametric prior. This limitation might be mitigated by (1) the use of strength and discount hyperparame-
ters of the Chinese Restaurant Process to control the prior expected size of each class (for a particular amount
of data), and (2) the fact that in many data-cleaning applications, accurate prior knowledge about the number
of objects may not be unavailable, or else is not a deciding factor in making cleaning judgments.

Of course, there are exceptions. As an interesting example, consider the Hospital dataset: if we knew the
population of each city, we may have been able to specify accurate priors over the number of distinct hospitals
in each city, allowing us to resolve co-reference questions differently in small cities (where it is more likely that
two hospitals reported with similar names are in fact the same hospital) and large cities (where it may be more
plausible that two hospitals exist with very similar names). However, this factor is likely to be decisive only
in high-uncertainty regimes (where the data entries themselves do not help much to resolve the co-reference

"However, note that BLOG also has limitations when it comes to expressing priors over link structure. It allows users to
specify predicates that the targets of a reference slot must satisfy, and the choice is then assumed to be uniform among all
objects satisfying the predicate. Thus, BLOG cannot express that certain objects are more “popular” targets of reference
slots than others—an assumption that is built in to PClean’s Pitman-Yor-based model. We also note that by introducing
additional classes, PClean can represent more interesting priors over link structure. For example, suppose A.Y and B.Y
are two reference slots to objects from C', and we wish each reference slot to be filled using different distributions over the
objects in C. We can create dummy classes for each reference slot, AC and BC, each with a single reference slot (AC.Y
and BC.Y') to the target class C. We then have the reference slots A.Y and B.Y target AC and BC respectively, instead
of directly targeting C. This implements a hierarchical Pitman-Yor process; by analogy with the HDP-LDA topic model,
objects of A and B play the role of words from two different documents, and objects of class C' are the topics.

Manuscript under review by AISTATS 2021

question), and it is unclear whether a data-cleaning system should trust such high-uncertainty answers (vs.
reporting ‘I don’t know—see Appendix ??). If the use case is such that it is desirable to represent such priors,
similar logic might be encoded in PClean by creating two different classes for hospitals in large and small cities,
and allowing their strength and discount parameters to vary independently.

On schemas with cyclic vs. acyclic class dependency graphs. PClean requires that the schema of
the latent database have an acyclic class dependency graph: there cannot be a chain of reference slots K such
that T(C.K) = C. Although, generally speaking, many relational modeling and inference tasks may be well-
served by cyclic class dependencies, we found during literature review that none of the benchmark data-cleaning
problems in [Abedjan et al., 2016, [Dallachiesat et al., 2013| Rekatsinas et al., 2017, [Heidari et al., 2019} [Hu et al.,
2012, [Mahdavi et al., 2019] were naturally modeled using cyclic class dependencies. In addition, [Pasula et al.,
2003, [Milch and Russell, 2006|, who use BLOG for deduplication, do not use its support for reference cycles.
There are, of course, some tasks for which cyclic references may be a natural fit, e.g. denoising genealogical data,
where we may want to model that people have parents, who are other people, with many attributes inherited
from one’s ancestors. One could still model such datasets using coarser PClean models, e.g., by clustering people
into families without modeling parent/child relationships explicitly. More generally, when we wish to model
objects of the same class C' (e.g. Person) as related via some chain of reference slots, we can often instead
introduce an additional class C’ (e.g. Family), and model any related objects of class C as referring to a shared
object of class C’.

D Additional Inference Details

D.1 Object-wise rejuvenation moves

In sequential Monte Carlo, rejuvenation moves are transition kernels that preserve the current target distribu-
tion 7;, similar to the kernels used in Markov chain Monte Carlo algorithms. But we do not run them until
convergence, instead using them to “rejuvenate” past decisions within SMC, in light of new data.

Any valid MCMC kernel for our model is also a valid rejuvenation kernel, and in particular, Gibbs kernels—which
update a single variable in the latent state according to its full conditional distribution, keeping the rest of the
state fixed—are a natural choice. However, variables in a model are often correlated, and it can be difficult to
escape local modes by updating them one at a time. PClean uses object-wise blocked rejuvenation to address
this challenge. Object-wise rejuvenation moves update all attributes and reference slots of a single object r in
the latent database instance R. In doing so, these moves may also lead to the “garbage collection” of objects
that are no longer connected to the observed dataset, or to the insertion of new objects as targets of r’s reference
slots.

Let » € R be any object in a relational database instance R. Then we define R™", D", AR R’ and D" as
follows:

e R is the partial instance obtained by erasing from R: (1) all attribute values and reference slot assignments
for the object r; (2) all attribute values of objects ' that depend on r; and (3) any objects r’ only accessible
from Cps via slot chains that pass through r;

e D77 is the partial dataset obtained from D by erasing any attribute values whose distributions depend on
values no longer specified within R™";

o AR is the partial instance specifying: (1) all attribute values and reference slot assignments for the object
r; and (2) all objects ' not in R™" (accessible from Cyps only via slot chains that pass through r), along
with their attributes and reference slots;

e R’ is the partial instance assigning values to all object attributes that depend on r’s attributes or reference
slots as parents; and

e D7 is the partial dataset assigning any attributes of observation objects that depend on on r’s attributes or

reference slots as parents.

The model density then factorizes as:

p(R,D) =pR", D ")p(AT |[R7")p(R",D" | A,,R", D7),

A blocked Gibbs sweep loops through each object r € R and updates it:
AR ~ p(AR |R",D,R").

Because resimulating AR may delete objects from classes that are reachable from r via reference slots, we perform
this sweep in reverse topological order, starting with the objects that have no reference slots, and working our
way up to the observation objects. If computing the blocked Gibbs distribution is intractable, then we can
further divide AR according to user-specified subproblem decompositions for Class(r), as discussed in Section
3.3 of the paper. As the user subproblems get smaller in size, the algorithm approaches ordinary one-variable-
at-a-time Gibbs sampling; thus, choosing subproblems is a simple way that users can trade off between runtime
and accuracy, based both on the needs of their application and the specific properties of their models or datasets.

Our rejuvenation kernels are compiled using PClean’s proposal compiler, and as such, also benefit from (1)
efficient enumeration strategies that take advantage of conditional independence in the variables being updated,
and (2) user-specified ‘preferred values’ inference hints (see Section 3.3). The paper’s Algorithm 1 can be adapted
for rejuvenation by adding observed variables to the Bayesian network for each attribute value specified in R”
(that is, each attribute value that, given the current link structure, depends on a latent variable being updated).
Some of the variables within AR may be constrained by the observed dataset D; this will depend on the patterns
of missingness in the observations that, under the current link structure, are connected in some way to the object
being updated. PClean recognizes when these patterns of missingness change (due to link structure changing),
and compiles new proposals as necessary.

D.2 Continuous variables and parameters

PClean allows users to include continuous variables in their models, either as parameters or attributes in class
declarations. To handle these, we augment the inference algorithm in three additional ways:

1. Gibbs rejuvenation for parameter values. Continuous parameters 6 are updated during SMC via
separate Gibbs rejuvenation moves. PClean recognizes certain conjugate relationships between parameter
hyperpriors and the attribute statements that use the parameters (e.g., Normal/Normal, Beta/Bernoulli,
and Dirichlet/Categorical), and automatically exploits these for efficient and rejuvenation moves informed
by all the relevant data. The inference engine tracks the relevant sufficient statistics as inference progresses,
so these updates need not perform costly counts or summations.

2. Mixing with the prior for proposals of continuous attributes. Continuous attributes are handled as
though they are discrete variables with ‘preferred values’ set to (). The effect of this is that the locally optimal
proposal for discrete variables is first derived without regard for the latent continuous attributes being
proposed as part of the same subproblem (meaning that any likelihoods that depend on latent continuous
attributes are not included during enumeration); then, once discrete values have been sampled, continuous
values are sampled from their prior CPDs given any of their parent values (which may have been more
intelligently proposed).

3. Particle Gibbs object-wise rejuvenation. Because the proposals generated by technique (2) for con-
tinuous variables may be poor, Metropolis-Hastings may often reject. To improve chances of acceptance,
users can enable Particle Gibbs rejuvenation, which, in order to propose an update AR to an object r of
class C, runs conditional SMC' on the sequence of user-defined subproblems within class C. Using Particle
Gibbs, PClean can compensate for poorer proposals by sampling many weighted particles for each sub-
problem, which are combined into a joint proposal for the object. Note that without continuous variables,
Metropolis-Hastings is generally preferred.

D.3 Optimality conditions for proposal compiler

The proposal compiler produces smart proposals by efficiently enumerating discrete variables (exploiting con-
ditional independence) and computing only those likelihood terms that are necessary for a particular SMC or
MCMC update. When all latent variables within a subproblem have finite discrete domains, and no variables
have preferred values hints specified, the proposals PClean produces are locally optimal SMC proposals, as de-
fined in [Naesseth et al., 2019], or, for MCMC, exact blocked Gibbs rejuvenation kernels. However, introducing
preferred-values hints that do not completely cover the posterior mass, or using continuous attributes within the
subproblem, will lead to suboptimal (but faster-to-compute) proposals.

Manuscript under review by AISTATS 2021

D.4 Observation hashing

Preferred values hints can help to limit the number of possibilities enumeration must consider for attribute
values, but reference slots can also pose a problem: as the sequential Monte Carlo algorithm progresses, the
latent database fills up with objects that could serve as possible targets, and considering each of them can be
expensive.

In many models, however, the value of a reference slot is highly constrained by observations in D. Consider
an object r of class C' with reference slot Y, and let W = {W | T(Cops.W) = C} be the set of slot chains
connecting observation objects to objects of class C'. Given a query map Q, we can check if there exist any
observed attributes z € A(D) that Q maps to a slot chain beginning W.Y. For each W € W, let Kw,cy =
{(U,z) | z € A(D) AQ(xz) = W.Y.U}. Then the only objects of the target class T(C.Y') that r.Y can possibly

point to are
N N (| { €Rrcy)ldiz=1"U}
WEW (i st rbs W=r} (Uz)ERw

PClean can maintain, for each class, an index that maps values v, to sets of objects r’ such that .U = v,.
PClean also maintains back-pointers from objects r to the observation objects that reference them, and stores
with each object r the observed attribute values d;.x that constrain it. This allows PClean to compute the set of
legal target objects for a given reference slot in O(|W|) time, which is constant in the number of latent objects
for many models. (Indexing does require memory. Users can optionally control which U values are indexed on
by including index on U statements within class declarations.) Of course, in some models and datasets, the
size of the computed set of possible target objects may still be large, necessitating enumeration. But in common
cases where the vast majority of possible targets have zero likelihood, this indexing plays a key role in helping
PClean to scale to large datasets.

References

[Abedjan et al., 2016] Abedjan, Z., Chu, X., Deng, D., Fernandez, R. C., Ilyas, I. F., Ouzzani, M., Papotti, P.,
Stonebraker, M., and Tang, N. (2016). Detecting data errors: Where are we and what needs to be done? In
Proceedings of the VLDB Endowment.

[Dallachiesat et al., 2013] Dallachiesat, M., Ebaid, A., Eldawy, A., Elmagarmid, A., Ilyas, I. F., Ouzzani, M.,
and Tang, N. (2013). NADEEF: A commodity data cleaning system. In Proceedings of the ACM SIGMOD
International Conference on Management of Data.

[Heidari et al., 2019] Heidari, A., McGrath, J., Ilyas, I. F., and Rekatsinas, T. (2019). HoloDetect: Few-shot
learning for error detection. In Proceedings of the ACM SIGMOD International Conference on Management
of Data.

[Hu et al., 2012] Hu, Y., De, S., Chen, Y., and Kambhampati, S. (2012). Bayesian Data Cleaning for Web Data.

[Mahdavi et al., 2019] Mahdavi, M., Madden, S., Abedjan, Z., Ouzzani, M., Tang, N., Fernandez, R. C., and
Stonebraker, M. (2019). Raha: A configuration-free error detection system. In Proceedings of the ACM
SIGMOD International Conference on Management of Data.

[Milch and Russell, 2006] Milch, B. and Russell, S. (2006). General-purpose MCMC inference over relational
structures. Proceedings of the 22nd Conference on Uncertainty in Artificial Intelligence, UAI 2006, pages
349-358.

[Murray et al., 2018] Murray, L., Lundén, D., Kudlicka, J., Broman, D., and Schon, T. (2018). Delayed sam-
pling and automatic rao-blackwellization of probabilistic programs. In International Conference on Artificial
Intelligence and Statistics, pages 1037-1046.

[Naesseth et al., 2019] Naesseth, C. A., Lindsten, F., and Schon, T. B. (2019). Elements of sequential monte
carlo. arXiv preprint arXiv:1903.04797.

[Pasula et al., 2003] Pasula, H., Marthi, B., Milch, B., Russell, S., and Shpitser, I. (2003). Identity uncertainty
and citation matching. Advances in Neural Information Processing Systems.

[Rekatsinas et al., 2017] Rekatsinas, T., Chuy, X., Ilyasy, I. F., and Ré, C. (2017). HoloClean: Holistic data
repairs with probabilistic inference. In Proceedings of the VLDB Endowment.

[Teh and Jordan, 2011] Teh, Y. W. and Jordan, M. I. (2011). Hierarchical Bayesian nonparametric models with
applications. Bayesian Nonparametrics, pages 158-207.

[US Census Bureau, 2019] US Census Bureau (2019). County Population Totals: 2010-2019.

[Wigren et al., 2019] Wigren, A., Risuleo, R. S., Murray, L., and Lindsten, F. (2019). Parameter elimination in
particle gibbs sampling. In Advances in Neural Information Processing Systems, pages 8918-8929.

	Baseline Inference Algorithms
	Evaluation on Data Cleaning Benchmarks: Datasets, Systems, and System Configurations
	Description of Benchmarks
	Description of State-of-the-Art Data-Cleaning Systems
	Settings for Data-Cleaning Systems
	Hospital
	Flights
	Rent
	Physician

	PClean Programs
	Hospital
	Flights
	Rents
	Physicians

	Effect of Additional Domain Knowledge

	Additional Model Details
	Discrete Random Measure representation
	Description of primitive distributions
	Discussion of expressiveness of PClean

	Additional Inference Details
	Object-wise rejuvenation moves
	Continuous variables and parameters
	Optimality conditions for proposal compiler
	Observation hashing

