Online Forgetting Process for Linear Regression Models

Supplement to “Online Forgetting Process for Linear Regression Models”

This appendix contains the proof of the theoretical results, rank swinging phenomenon examples, and simulation
results to illustrate the FIFD-Adaptive Ridge algorithm’s performance. For the sake of simplicity, in the following
proof of lemmas and theorems in appendix, we denote a =t — s,b =1t — 1, and then the constant memory limit s
equals to b — a + 1 for the limited time window [t — s,t — 1] = [a, b].

A  FIFD-OLS Confidence Ellipsoid

Lemma 5. (Bernstein Concentration). Let {Dy, & }%2, be a martingale difference, and suppose that Dy, is a

o-subgaussian in an adapted sense, i.e., for all « € R. E[e*Px|&;_1] < e“= almost surely. Then, for allt >0,
2

Pri| iy Del > 1] < 2777

Lemma [5|is from Theorem 2.3 of Wainwright (2019) (Wainwright| |2019) when o, = a = 0 and v, = o for all k.

Lemma 6. Define the event
Fo() = {mag(2le" X T]/n) < Jo()}

where X is the v column of matriz X and A\o(7) = 20% maer/ (72 + 21logd) /n. Then, we have Pr{F(\o(7))] >
1 — 2exp[—72/2].

Proof. Let &; be the sigma algebra generated by random variables Xi,..., X;_; and Y3,...,Y;_1. First, using a
union bound, we can write

d
Pr{F(Ao(7)] = 1= Prlle" X > ndo(7)/2]

r=1
Now, for each r € [d], let D, , = ¢, X, and note that D1 ,,..., D, , is a martingale difference sequence adapted
to the filtration &; C ... C &,, since E[e; X} |&;] = 0. On the other hand, each Dy, is a (Zmax, 0)-subgaussian
random variable adapted to {&;}}, since

E(eaD“' &,_1) <Ex, [ea2xf,r02/2‘et_ﬂ < ea2(wmax0)2'

Then, using Lemma Pr[F(Mo(7))] > 1 — 2dexp[—(y% + 2logd)/2] = 1 — 2exp[—~?/2]. O

Lemma 7. (FIFD-OLS Confidence Ellipsoid) For any 6 > 0, if the event Apin(®@p—s¢—1)/8) > ¢[2t_s -1 > 0
holds, with probability at least 1 — §, for allt > s+ 1, 0, lies in the set

Clr—si = {9 eR: 0y ouy =0, <oqu VS 1og<2d/5>} (15)
[

t—s,t—1]

where qi_g4-1) = Hx[t—svt—llnoo /gb[zt_S t—1] is the adaptive constant and we denote Pz, 1) as the RHS bound.

Proof. Notation i?(x[a,b]) represents the normalized covariance matrix, so f](x[a’b]) = P p/s = xL7b]x[a,b]/s.
Note that, if the event )\min(i(x[aﬁb])) > q5[2a7b] holds,

é[a,b] - 9*

o H(XLJ’]X[W’])_IXLI?] (Xa,fx +€) = Ou 2

- H(X[T‘Ivb]x[a7b])71X[Tmb]e + 0. — 0, 2

= H(X[Ta,b}x[a,b])_lx[Ta,b]€H2

o
L) X[a,b)€
0a)

2
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Then, for any x > 0, we can write

Pr H é[a,b] — 0,

) < X:| > Pr |:<HX-[El’b]E 9 < SX(ZS[Qa,b]) N ()\min(i[a,b]) > ¢[2a,b]):|

(17)

ot e A 2
>1-— ZPI’ |€ X[a,b]| > \/g —Pr [Amin(z[a,b]) < ¢[a,b]):|
r=1

where we have let Xf;)b] denote the 7" column of X[q,b]- We can expand eTXE;)b] => jelab] e(j)xg-r), where we

note that D;, = e(k)xg-r) is a Tmaxo-subgaussian random variable, where xp.x = Hx[a’b]Hoo’ conditioned on
the sigma algebra &;_; that is generated by random variable X1, ..., X, 1,41, ...,yj—1. Defining Dy, = 0, the
sequence Do ., D1 g, ..., D@,y is a martingale difference sequence adapted to the filtration &; C &, C ...&,, since

E[G(j)XJ(-T)\Sj,l] = 0. Using Lemma

Pr |: ‘e[a,b] — 0, 9 < X:|
d . s, .
- Son o 2] o < ) "
sx2 El b R
>1-2d e -P )\minEa S 2@ )
21t | B e £ )

Since the event Apin(®Pp—si—17/5) > (b[ztfs,tfl] > 0 holds by the requirement of condition, then
Pr [Amm(i[a,b]) < 62 )| = 0. With probability 1 — 6, we have

2 44

SX“ Pl
1— 2dexp [—[fj} >1-4. (19)

20 [|x(a ||, o
Hence we have
[2d 2d

X((Sa S, Q[a,b],o,d) > 04[a,b] ? log(?) (20)
where g, = Hx[ayb] HOO / qS[Qa’b] is the adaptive constant for the limited time window [a,b] . Besides, we denote

Bia,p) as the RHS constant. Then with probability 1 —d, for the limited time window [t —s,t —1] and all t > 541,
we have the get the FIFD-0LS confidence ellipsoid, 6, lies in the set

Cliestn) = {9 eR?: Hé[t_s,t_l] - 9H < 01/ (2d]5) 10g(2d/5)}. (21)

P t—1]

O

B FIFD-Adaptive Ridge Confidence Ellipsoid

Lemma 8. (FIFD-Adaptive Ridge Confidence Ellipsoid) For any 6 € [0, 1], with probability at least 1 — 6, for all
t > s+ 1, if condition equation 1s satisfied and the event Amin(<1>)\7[t,s’t,1]/s) > ¢§\7[t751t71] > 0 holds, then
0, lies in the set

Cit—s,t—1] = {9 eR?: Hé)\,[t—s,t—l] - 9’

< ORVA\ [t—s,t—1]V d/25}7 (22)

Py [t—s,t—1]

where g fr—si-1] = |[Xi—1-alo /O3 g1y and K = \/10g2(6|7’(9*)l/5)/log(2d/5)- v = |10l /Prmin(0s)

represents the strongest signal to weakest signal ratio.
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Proof. For the sake of simplicity, We first denote 2>\(x[a,b]) = P [a,0]/5, 2)\,[a,b] = ix(x[a)b]), Afa,p) = A for the
limited time window [t — s,t — 1]. Note that, if the event )\min(f)A(x[a,b})) = )\min(f],\[a,b]) > ¢2 (a,p) > 0 holds,

|| GA,[a,b] - 9*2

= || (K, X(ab) + AD7IX g (Ko, )0 + )
= || (% Xael + AD 7 X 1€+ (5% (a) + AD (X, 45X (0] + AD O
= MX[o,X(a.0) + AD 6, — O

= || (X 5y Xap] + AD X €+ 0% — (X[, 4yX[a,) + AD) 10"

= (X-[[(;’b]X[a’b] + )\I)_lx[Ta,b]e — )‘(XL,b]X[a,b] + A1) 1o,

= || (XfaX[ao) + AD T (xTe = A0,) )

< (X[ab]xab +AD)” H [[xTe = 0.,

X1, 51€ —
- sqb)\ H [a.0]

th

We can expand €' x[a b = E]E[a b € e(4) ; ), where we let x[ b denote the r*" column of x[4 ) and D; ;. = e(k;) (r)

is & Tmaxo-subgaussian random variable, conditioned on the sigma algebra &;_; which is generated by random
variables X1, ..., X;_1,Y1,...,Y;_1. Defining Do, = 0, the sequence Dy ., D1, ..., D ) is a martingale difference

sequence adapted to the filtration &; C &, C ..., since E[e(j)Xj(-T) |&;_1] = 0. Using Lemma

ol
2
d ngbi a,b ]
Z 1— Z PI’ |€TXEa,)b] — )\9,(( )l > # - Pl" [Amln(z)\ a b]) ¢)\ a b )]
r=1 \/(j
2 (24)
d sxP? sXP3
_ PI' €TX(T) > )\H(T) _|_ )\,[a,b] + PI' ET (’r’) < Ae(r) _ )\,[a,b] ;
(; [a,b] * Vd Xla, * Vd )
XI,T(¢7>\70*) a X2,7‘(¢7Aa0*)

since the event )\min(f]A(x[%b])) > ¢?\7[a7b] > 0 holds, Pr [/\mm(flx,[a,b]) < ¢§\,[a7b]) =0.

2 2
Here we denote x1.(¢, A, 0%) = 2 4 SW*% and x2,(¢, A, 0%) = AL — &\/a["b] By Lemma |i7 we can get
the probability of this tail event,

B.1 Bounds the first part of inequality
In the following, we give a brief case by case analysis to decompose these two tail events’ probabilities.

Case B.1.1: I/ 0\") =0, then X1 (¢, N, 0%) = SX%% > 0. We have,

(25)

? * J )\7 0*
Pr[eTX) > y1,(6,2,67)] < exp [—Xl(‘b)] .

2
25 ||x(a ||, 0
When X becomes smaller, Xi,,((b,)\,H*) becomes smaller. Then the RHS exponential probability bound of B.4

becomes larger. We always hope [24]'s probability bound smaller, then we can get a larger confidence ellipsoid. So A
becoming smaller is our choice.
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Case B.1.2: If 0" > 0, then X1,r(P, A, 0,) = A0 4 SXd)\*[a > 0. We have,

Xir(d)r >‘v 0*)

— (26)
25 [|x(0, |7, 02

Prletx() > Xl,,.((b,)\,ﬁ*)} <exp|—

When X\ becomes smaller, X%,r(¢> A, 0.) becomes smaller. Then RHS exponential probability bound of B.5 becomes
larger. Then part B.1.2’s probability bound becomes smaller. We always hope the B.1.2’s probability bound smaller,
then we can get a larger confidence ellipsoid. So A becoming smaller is our choice.

Case B.1.3: If 0" <0 and \ < —S):? el then x1, (6, N, 05) = A0 4 ‘%% > 0. We have

PrieX™ > x1.,(6,A,0 )} exp (27)

X2, (6,7, 6%) ]

25 [[xja ]2, 02

When A becomes larger, Xir(gb, A, 0,) becomes smaller. Then RHS B.6’s exponential probability bound becomes
larger. Then part B.1.3’s probability becomes smaller. We always hope the B.1.3’s probability bound smaller, then
we can get a larger confidence ellipsoid. Then the final probability gets smaller. So A becoming larger is our
choice.

2
Case B.1.4: If 0" <0 and \ > —sfﬁe’([f;b] , then x1.,-(9, A, 0,) = PV st)\*f“ %l < 0, which means that this

probability is larger than because our € is symmetric random variable. We have

Pr [JXW > Xl,r(qs,)\,e*)} . (28)

If we want our confidence ellipsoid having a relative large probability, we need to avoid this case. So the choice

. 5X¢§ [a,b]
orAis A< — naol
f NZTIQ)

When consider bounding the first part of A should be in the interval A € [0, TeI/l;l/l(n - S%@’EZ;” ). Then we just
consider cases B.1.1, B.1.2 and B.1.3.

B.2 Bounds the second part of inequality

In following cases. We analyze the second part of [24] and get the probability upper bound.

Case B.2.1: If 9&’“) =0, then x2,(¢, A, 0,) = —ﬁ\/’é‘”b] < 0. We have,

PrleTX0) < xa,0(60,6,)] < exp |~ >
25 |[x(a,11]|2 o

(29)

When X becomes smaller, X%,r(d)? A, 0,) becomes smaller. Then RHS exponential probability bound of B.8 becomes
larger. We always hope[2]]'s probability bound smaller, then we can get a larger confidence ellipsoid. So X becoming
smaller is our choice..

2
Case B.2.2: If 0" <0, then X2, (¢, N, 0,) = 2L — &\/E[“b] < 0. We have,

N X%,r(¢,)‘320*) ] (30)

PT |:€TX(T) < XQ,T(¢? )‘7 0*)i| S exp
25 || x(a,| 5, 02

When X\ becomes larger, |x2.- (¢, A, 0x)| becomes larger. Then RHS exponential probability becomes smaller. Then
part B.2.2°s probability bound becomes smaller, we can get a larger confidence ellipsoid. So \ becoming larger is
our choice.

Case B.2.3: If 0" > 0 and \ < )\(ﬁ*{‘j)b , then x2.,(p, A, 04) = 2 SX%% < 0. We have

X%,r(¢v )‘7 9*) ]

(31)
25 || (0. ||-, 02

Prie"x™ < X2, (¢, A, 0 )} exp [
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When X becomes smaller, |x2.,(¢, A, 0x)| gets larger. Then RHS exponential probability bound becomes smaller.
Then part B.2.3’s probability bound becomes smaller, we can get a larger confidence ellipsoid. So \ becoming
smaller is our choice.

S S 2
Case B.2.4: If 0" > 0 and \ > )\(ﬁ*(i)b , then X2, (¢, N, 04) = L) — % > 0, which means that this

probability is larger than % because our € is symmetric random variable. We have

Pr [JXW < X2 (#,0,6,) (32)

1
> —.
-2
If we want our confidence ellipsoid having a relative large probability, we need to avoid this case. So the choice

3X¢§.[a b]
or A < /=12,
f Vot

s 2

When consider bounding the second part of A should be in the interval A € [0, mi(% )K%é([iib] ). Then we just
reP (0. *

consider cases B.2.1, B.2.2 and B.2.3.

B.3 Lower bound of inequality
Combining A from subsections of B.2 and B.3, we get one adaptive interval for A

SX¢§\,[a,b min 3X¢,\ [a,b] SX¢[2a,b] 1

N TN

(33)

APd = min{ min —

reN(0,) \/Egﬁr) 7reP f@ (r)

Since cases B.1.2, B.1.3 and B.2.2, B.2.3 are two counteractive cases. If we know the number of positive coordinate
of O, |P(6,)|, is more than the number of negative coordinate of 6,, [N (6,)|. We would prefer cases B.1.3, B.2.3;
otherwise, we prefer cases B.1.2, B.2.2. Therefore, it is a trade-off.

Now let dy = d — |P(64)| — [N (6x)| denotes the number of zero coordinate of 6. Then equation becomes

|

i, <

2 2
>1-( Y eXp[;ws,,ye*)]+ ) explw

oD ) 25 ||xtaul]2 02) S, 25 ||%[a,] o @

2 DWA 2 (o, )0, 2(, A,
—( Z exp [_W] + Z exXp [_W] + dp exp [—W] ).

1 EP(0.) 25 [ <ol ®1 v Enen) 28 ||| 0 28 || o

X3(6,2,0) ])

+doexp |—
[ 25 |[%(a,11]|7 02

(34)
If we assume A € [0, AFa%b]], then

=1 —do(eXp [_W] + exp [_X%((b’)\’o)‘|)

3

25 {|%(a,0 |
2 A, 0, 30 (0,00,

_( Z exp [_ Xl,mr((b ; ) ] + exp [_ X2, +(¢ . ) ‘|) (35)

ry o)) 25 || X[a,5) ||, 02 25 ||%(a)[| o o2

N (0.) 25 ||X(ap) || . o2 25 || X0 [| o 02

25 || (0. ||7, 02

52 2,4
Since we know the x3(¢, \,0) = x3(4, \,0) = w Thus

2.4
exp [_ X%(va )‘7 O) ] + exp [_ X%(¢7 >‘70) ‘|) _ 2exp(— SX (’b)\,[a,b] ) (36)

25 || X(a. || 02 25 |[X(a. || 02 20 ||xpq.0)]|2, 02
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Then the second positive coordinate of 6, part becomes

2

ey L 28 [xaull, o? 2s [|xa |2, 0
()\0:+ " sX‘i’%a,b] )2 ()\0:+ _ SX‘i’\i/gL,b] )2 (37)
= Z exp | — ) +exp | — o)
reren | 28 [%eall 0? 25 |[xa,01[| 2 o

Since we want to get upper bound of the above equation and then to get the confidence interval, we maximizes
this exponential value by selecting the minimum of x7 . andx3 ., .
sxd)i’[a,b] . . rooo .
——22L > ( and by selecting the min 6," given
d rieP(6,)
SXOX [ab] .
2 \/E ’
part of the exponential, we know in case B.2.3, x2,,, (¢, A, 0.) = AT — %\/’g’b] < 0. So if we want to minimize

Since in the case B.1.2, we know x1,,, (¢, A, 0,) = PV AT

fixed \. We denote the minimum positive coordinate of 6, as Prin(0x), C1(Px [a,p), X, d) = In the second

X2.r, | given fixed lambda, select the maximum: max 6,". We denote the maximum positive coordinate of 6,
N (8.)
r€P(04

as Pmax(0x). Thus, taking both of these into consideration to get an upper bound of this summation of probability,
we can obtain

< Z exp |- (APumin(0+) + C1 (Cb/\,[mb]a X d))2 texp |— (APumax(0x) — C1 (¢A7[a,b] » X d))2‘|

== 25 || (a1 2, o 25 [|(a,u1||2, o2

o \P(G )|(6X _ ()\,Pmin(e*) + Cl (qs)\,[a,b]a X d))2 +ex . ()\,Pmax(e*) - Cl(¢)\,[a,b] » X d))2 ) (38)
IR 25 [t o ’ 25 [t 0*

. 2 _ 2
< 2|77(9*)|max{exp [ (APrmin(0x) + Cl(¢x,[a,b]aX,d)) ] Lex [ (APrmax(0y) Cl(‘lSA,[a,b]vX,d)) ] },

25 || X0, ||, 02

25 |[%(a,11||7 o
SX¢§,[a,b] )

where constant C(dx a5, X, d) = i

2C1(Px,[a,b]5X>D)
Ifx< Pmax1(9*3ij\’}i]ax(0*), then (B.17)

)\,Pmin 9* + C ) ad 2
< 2P(0,)] exp | X Pmin(0) 1((@’[‘”’] x.4) (39)
25 ||x(a |, o2
This condition is easily to be satisfied since —ANjhax(6x) should be a very small value.
The third negative part becomes
X (9.0.69) X3 (9, A,60%)
= Z exXp |[——————5 = 5 +exp|————5—— 5
remoy L 25xaallLo 25 [|x(,[|,
4
()\0:_ n SX¢§,[a,b])2 ()\9:_ _ SX¢§,[a,b])2 ( O)
:Zexp— \:@2 +exp | — ‘gEQ
reney | 25 Ixenlle 25 [|xqa [l 0

Since we want to get an upper bound of the above equation and then to get the confidence interval, we maximizes
this exponential value by selecting the minimum of x7 , andx3,._.

2
In the case B.1.3, we know x1,_ (¢, ), 04) = My~ + SX%%) > 0 and by selecting minf,~ given fixed \. We
denote the minimum negative coordinate of 6, as Npin(64);

SXOA (a.0]

Nz ) <0, so if

we want to minimize |x2,_|, we need to select the maximum: mﬁf}({ )9:’. We denote the maximum negative
r_eN(0,

In the second part of the exponential, we know in case B.2.2, x2,_ (¢, A, 04) = (Aq,5)0r_ —

coordinate of 6, as Mpax(6)-
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Thus, taking both of these into consideration to get an upper bound of this summation of probability, we can
obtain

< Z exp [_ (ANmin(e*) + Cl(¢x\,[a,b]7Xad))2 +6Xp _()\./\/'max(é*) — Cl(éA,[a,b]7X7d))2‘|
— 2 2
v EN () 25 |[ %0, o 25 [l o
_ ‘N(@ )|(6Xp - (ANmin(g*) +Cy (¢)\,[a,b]a X5 d))2 +exp |— ()‘Nmax(e*) - Cl((rb/\,[a,b] » X d))2 ) (41)
’ 25 [[xjau1]1 %, o 25 [[x(a,01]1 2, o

< SN (6,)] max { o l_ (Mamin (62) + C1(82.f00] X d>>2] exp l_ (Mimax(6) — C1 (D2, fo]: X d))?] }

25 || (0. || 02 25 |[X(a. ||, 02

A-/\/,m(x 6 - C a,o| 7d 2
2 [[xpa.n1[|, 0
This is similar to the previous one in equation .
Finally, when we combine equations , , together, we get the estimated probability
Pr [ - o], <]
02 a,b| 7d >\,Pmin0 +C a,b|s 7d 2
> 1 2dyexp |- 1(Px,a,0) 2X ) 9P| exp ( (64) 1(¢2/\,[ b X d))
25 [|¢a.01][ 02 25 [|xa.01][ o o (43)

N (6 exp l_ (M (62) = C1 (6101 x,d))Q] |

25 |[X(a. || 02

Since we want to control the confidence set with probability at least 1 — 6, let Pr [ )é)\‘[a’b] — H*H < X] >1-46,
’ 2

we have
02 a,b|s ad >\2 Pmin 9 2 +2>\Pmin 0 C a,b|y 7d
dexp |- 1 (P2 [a,b) 2X ) (0] exp [ (Prain (64)) (2 )C1L(PA a,], X5 )
25 ||x(a,01 || o, 02 25 [|%{a,81 || o, 02

Part 1 Part II (44)

2 2 _ 2
+ |N(0*)| exp [_A (-/\[Inax(e*)) /\-/V'max(o*)cl(d))\}[a,b]ade)] S g

25 || (0. ||7 02

Part III
In the following, we present the assumption we need to make the above inequality to have an analytic solution.

Assumption 1. (Weakest Positive to Strongest Signal Ratio) This is the condition for considering the case that
positive coordinate of 0, dominates the bad events happening and without loss of generality, we assume that

P (0«
Prnin (04) —\/log &log 3 + \/log 8 10g 24 + s2]og 2% log 12[P(8.)| 5( )

WPSSR =
— d
Hg*”oo Slog%

(45)
Remarks. The WPSSR is monotone increasing in s and P (0, ), and is monotone decreasing in d. However, as
long as s > d, in most cases, the LHS is greater than one. For example, if s = 100,d = 110, = 0.05, |P(6,)| = 30,
then WPSSR needs to be less than 1.02, which is satisfied automatically.

First we have a weak assumption that Part I is always less than §/2, with this assumption, we can have a initial
interval for x(9),

Tmax,[a,b] 2d
0) > V2do——"—==\/log(—).
X( ) = U¢§ [wb]m Og( 5 ) (46)
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Then we plug in this initial x(§) into the AP9, we can get the initial interval for A,
A< 0 xprimsl., /25 1082d78)/ 10. (47)

To get an analytical confidence ellipsoid, without loss of generality, we assume Part II is greater than Part I
and Part I with assumption 1 and if select A following Lemma [T1], then

>\2 Pmin 0* 2‘~'2>\,Pmin G*C a,b] 7d o
X (Puin(62) (6.)C1 (@ fat): X >]§2. (48)

25 [|xa.01| 2, 02

3|P(64)| exp

Thus, with confidence 1 — §, we have the following confidence ellipsoid for FIFD-Adaptive Ridge method,

< ORVQ) [t—st—1]V/ d/25}7 (49)

where axz[t—s,t—1] = HX[t—l,t—s]Hoo /¢§,[t—s,t—1]’ K= \/10g2(6|7)(0*)|/5)/10g(2d/5), and v = ||9*||oo /Pmin(e*)-
U

Cxlt—s,t—1] = {9 e R?: ‘

Ol—st—1) — 9‘

D (t—s,t—1]

C FIFD-OLS Regret

Theorem 3. (Regret Upper Bound of The FIFD-OLS Algorithm). Assume that for allt € [s+ 1,T — 5] and X3
is 4.9.d random variables with distribution Px. With probability at least 1 — 6 € [0,1] and Lemmag holds, for all
T > s,s > d, we have an upper bound on the cumulative regret at time T':

Ry s(Aows) < 20¢+/(d/s)log(2d/8)(T — s) (dlog(sL?/d) + (T — s)), (50)
where the adaptive constant ( = s+r1n§x§Tq[t_s,t_1].

Proof. Here we use l; to denote the instantaneous absolute loss at time t. Let’s decompose the instantaneous
absolute loss as follows:

>

It = |[(Op—s,—17, Xt) — (O, X))

|
= |<é[tfs,t71] — O, x4)]
|

= [é[t—s,t—l] - 9*]T33t|
5 Tops —3
= H?[t—sat—l] —0.] (b[lt—s,t—l]q)[t—s,t—ll]zt‘ (51)
= [0—s,0-1 — 0*]T(I)[2tfs,t71]| x ‘q)[tjs,tfl]xd
|1 — -
= [Pl TP th”‘I’[tis,t—u
< Bre—s,e-1100) zellor s
where the last step from Lemma [I] Thus, with probability at least 1 — ¢, for all T' > s,
T
Ry (A) = | (T—5) Y r?
t=s+1 (52)
T
2
< @=9 3 Bewen@ ol
t=s+1 '
where the last step we use Lemma [2] to process the deletion and addition procedure. So we have
<\ |2AT 3 5) (a10gEy 4 (1
< (T - S)S+IIH;XST [t—s—1,6-1](9) 0g(7> +(T—s) (53)

< 20\/(d]5)10g(2/8)(T — 5) (dlog(sL?/d) + (T —5)),
where the last step uses the confidence ellipsoid from Lemma O
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Lemma 9. The cumulative regret of FIFD-OLS is partially determined by FRT at each time step,
da sL?
> ||mt||é[:is Ly S 2noLs + Z FRTjy 1) < 2 |dlog(~) + (T —5) (54)

t=s+1 t=s+1

where nors = log(det(®r_s 7)) is a constant based on data time window[T — s,T).

Proof. Here we use a =t — s,b =1t — 1 for the sake of simplicity. Elementary algebra gives

det(fID[a_,_l b+ 1] )

-
= det(Py [q,0] + $b+1xb+1 Taly)

(P
1/2 —1/2 \41/2
= det(® /a oI+ o1 [a.0] (@ — Tatg)®) [c{,b])q))\{[a,b])
= det(Py [q,p))det(I + & [({ 3 (:Ub+1xb+1 - :z:axT)CD_l[fb]) (55)
1/2 2 1/2
= det(®) (4,5 )det(I+ [/b]mb+1xb+1<1> [c{ n— 2y Lﬁ b Ta T<I>/\ [4 b})
1/2 1/2
= det(Dy o )det (T+ (@ {1 2001) (@5 (3 2040) T = (@5 1320) (@) 1/3)20)T)
2
= det (P [a,0)) ( (1+ H(I) buH H(I)_l 2z,]f‘fa )+ @;,1[43,]%4-1, (I’;,l[fb]xa>2) .
where the last step use lemma 10}
_ 2 _ 2 2
= det(Py a,1)) ((1 + ||xb““¢§ja,b])(1 ||x“”¢§,1[a,b]) + <~”Cb+1affa>¢%1[a1b]>
=det(®r o) ( 1+ mpralp—r  —lalls—r  +(@mrnza)es —lzeralle— lwallzr (56)
1 P lab] P a,0) ERE SN P lasb) P la.b)

_ 2 . 2 2 2 2 .
_det(<I>,\7[a,b])<1+||xb+1||q)x)1[a)b] lzallgsr |+ llzerilless  llzallozs (cosq);)l[a,b]a 1)).

(Zb+17$a> —1

where cosg-1 0 =
o [a.b] levtally—1 Nlzally—1
®x.la.b] )

, which measures the similarity of the vector of x3,1 and z, with

respect to <I>>\[ b If coscp_ 6 = 1, that means the incoming data x;,; and the deleted data x, are same.
X [a,b]
However, if cos? = 0 = 0, that means the incoming data and the deleted data are totally different with respect
X,[a,b]

to <I>_[a b

Now we switch to the notation ¢, where t — s = a,t — 1 = b. At time step T and combining equation , we have

T
det(@r_s 7)) = [ 0+ ez — Jlze—sll3-
i1 [t—s,t—1] [t—s,t—1] (57)
Flede w2 (o 0-1).
LIPS P o1 @

[t—s,t—1]

Taking log to both side of equation 7 we get

T
2 2
log(det(®r—s,17)) = > log(L+ [lellg = llzi—gllps
[t—s,t—1] [t—s,t—1]
t=s+1 (58)
2 2 2
+ ||xt||¢[ft:§ - | E (cosg -1 6 —1)).

[t—s,t—1] [t—s,t—1]

x

Combining log(1 + z) > iz which holds when x > —1, we first consider each part of the product and use the
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dissimilarity measure sinfb,l 0=1- cosfp,1 0. So we get
A, la,b] X, [a,b]
2 B 2 B 2 2 .2
1Og (1 + ||mt||q>[;is,t—1] ||$t75||¢)[;is,t—l] ||xt||¢)[tis,t71] ||‘/Et78||®[ti57t71] Sll’l¢,[7tiS’t_1] 9)
2 _ 2 _ 27 27 .2
S ||l‘t||q>[?is,t—1] ||xt_8||q>[7tis,t—l] ”mt”q)[tis,t—u ||$t_8||q>[tls,t—l] Sln‘l’[_tis,t,l] 0 (59)
2 _ 2 B 2 2 2
1+ ”xt”@[*tis’til] ”xt—s”@[*tis,til] ||xt||¢)[tls,171] ||xt_s‘|®[tis,t,71] bln@ﬁis,t,u 0
1 2 2 2 2 .2
> 5 |:||xt||q>[tis,t—1] B ||xt_s||(1>[:15,t—1] - ||xt||q>[:15,t—1] ||xt_s||q>[:15,t—1] Slnd’ﬁis.t,l] 0 ’

. T 2
Therefore, we can give a bound of ), th”@ﬁi&hl]’

T
X e,
=s
T T—s (60)
2 2 2 .2
= 210g(det(q}[T_s’T])) + Z ”xtiqu)[itis,tfl] + Z ||xt||q>[7tis,t71] ||$t75||q>[7tis,t71] Sm(b[itis,tfl] 0
t=s+1 t=1
Thus by combining the last two terms and extracting Hl‘t_s”%{)—l , we can get
[t—s,t—1]
T T—s
2 2 2 .2
- < _ _
tz;rl ”xt”@[tis,tq] < 2log(det(®pr_s,7)) + tz:l ”xt*S”‘I’[tis,hu (”xt”@[tis,tq] sing o 0+1). (61)
=s =

To make the formula simpler, we define ‘Forgetting Regret Term’ (FRT) term, at time window [t — s,t — 1] or
called at time step ¢ as follows,

2
FRT[j_st—1 = ||$t—s\|¢>[;is [t—s,t—1]

(lallg o sin(6, @52, 1) +1), (62)

t—1]

where FRT};_, ;1) € [0,2]. The detailed explanation and examples of ‘Forgetting Regret Term’ (FRT) can be
found in

So equation becomes

T T
> lleellg-r | <2nous+ D FRTj o, (63)
t=s+1 " t=s+1

where noLs = log(det(®r_ 77)) is a constant based on data time window[T' — s,T]. By Lemma we get

a sL?
2
S el <2 [dlog<d> +(r- s>} . (64)
t=s+1 '
O
Lemma 10.
det(T —aa” +bb") = (1+ [|b]*)(1 ~ [lal|*) + {a,b)* (65)
Proof. By Woodbury matrix identity
T
(I—aa") =T+ ad (66)

1—aTa
and by Matrix determinant lemma, suppose B is an invertible square matrix and u,v are column vectors. Then
the matrix determinant lemma states that

det(B+uv') = (14 v B u)det(B). (67)
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So combining above two equations, we get

det(I—aa" +bb") = (1+b"(I—aa’) 'b)det(I—aa’)

T
_ T aa T

= <1 +b (I+ T aTa)b> det(I—aa')

bTaa’b
= (1 +bTb+ 5 _aZTa)det(I —aa") (68)
T (a,b)? T
= 1—
(140 b+1—aTa)( a'a)

= (L+[Ibl*)(1 — llall*) + (a, ).
O

Lemma 11. (Determinant-Trace Inequality). Suppose x1,x2,...,xp € R and for any t € [b], ||z¢|, < L. Let
Q1 = Zle xix]. Then we have

det(Ppy p)) < (%)d. (69)

If Rank(x[1 ) = d, then det(®p p)) = det(X[Lb])2 < (%)d; else Rank(x[y ) < d, then det(®p p) = 0.

D Rank Swinging Phenomenon Examples

e Case 1: Introduce the minimum regret, then FRT = 0.
e Case 2: Introduce the maximum regret, FRT = 2.
e Case 3: Introduce medium regret scenario I, FRT = 1.

e Case 4: Introduce medium regret scenario II, FRT = 1.

0O o0 0 1 1 0 0 O 1 0 0 O 1 0 0 O
0 1 0 O 01 0 0 01 00 01 0O
Mi=|0 0 1 0[Me=|0 0 1 O0fM3z3=|0 1 0 O|Myg=|0 1 0 O (70)
0 0 0 1 0 0 01 0 0 01 0 0 01
v1 U2 U3 U4 01 0 0 1 0 0 O 0 0 1 0
Case 1. (Minimum Regret) Rank(®;_, ;1) < d and the delete term Hmt,SHi[_l = 0. So it won’t introduce
t—s,t—1
any extra regret no matter what the new data x;y is. So FRT = 0.
| H?{)[fl = 0 means that the old data z;_4 can be fully represented by the original data memory, so delete it
t—s,t—1

won’t influence the representation ability of data memory. For example, M; in , if s = 4,d = 4, rank(x[; 4)) = 3,
since z; and x4 are linearly correlated. By the FIFD scheme, the forgetting data is #; = (0,0,0,1)7, so

2
||171||<I>[*1}4] =0

Case 2. (Maximum Regret) If the old data and the new data are totally dissimilar sin® (6, <I>[_tis7t_1]) =1 and

2 _ . . 2 . 2 -1 _ _
||xt||¢);is,t—l] =1, then the weight difference term ||mt||¢,ﬁiw71] sin (9,<I>[t_s7t_1]) +1=2. So FRT=2.
-1
[t—s,t—
of data memory from time window [t—s+1,t—1], and the gram matrix’s rank will decrease by 1. For example, My

in , 21 = (1,0,0,0)T and 5 = (0,1,0,0)T. So Rank(®(35) = Rank(®( 4)) — 1. ||x5||§>ﬁ14] sin?(0, o) = 1.

which means that x; is totally dissimilar with z;_, with respect to ® 1 but x; can be represented by the rest

Case 3. (Medium Regret I) If the old data and the new data are perfectly similar sin®(6), @Eis’tiu) =0, then

2 . - ‘ ‘ 2 : -
||.’£t||q>[;15’t_1] Sln2(9,¢[tisyt71]) = 0. So the weight difference term ||xt||¢[15‘t_1] s1n2(0,<1>[tis’t71]) +1=1.5
FRT =1.
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which means that z; is perfectly simliar with x;_; with respect to <I>[t st—1]" For example, M3 in @),
z1 = (1,0,0,0)T and z5 = (1,0,0,0)", Rank(®p 5)) = Rank(® 4)), smfb,l 0 =0, ||x5||§,_1 sin?(6), @[114) 0.
[1,4] [1,4]

Then the weight difference term Hx5||¢, . sin?(6, @

2.
0, 4]) + 1 =1 no matter how large Hwt”‘i’ﬁ,lq is.

Case 4. (Medium Regret II) If the new data does not lie in the space generated by X[t 1], which

means that ||act||§)71 = 0, then thHiﬂ sin?(, @ " ) = 0. So the weight difference term

s t—1] [t—s,t—1] [t—s,t—1]

lellgr - sin 0 ', ) +1=1. S0 FRT=1.

For example, My in , 21 = (1,0,0,0)T and x5 = (0,0,1,0)T, Rank(®[y 5) = Rank(®p 4)) + 1, [[zs][5-1 =0,

[1,4]
||$L‘5||,I, 1 sin (9 o1

(1,4] ) = 1. Then the weight difference term ||a:5||q) L sin?(0, @[114 J+1=1.

E FIFD-Adaptive Ridge Regret

Theorem 4. (Regret Upper Bound of The FIFD-Adaptive Ridge algorithm) The same assumption in Theoremlz
and if Lemmal[{ holds, with probability at least 1 — 6, , the cumulative regret satisfies:

R o(Anidge) < owvGou/(d/3)(T = 8)iage + (T = 5)] (71)

where (\ = max ”:[flif]‘” is the mazimum adaptive constant over time, NRidge = dlog(3L2/d+)\[T,SAT,1])—
s+1<t<T A [t—s,t—1] ’

_ 11T s
log Co(@) is a constant related to the last data memory, Ca(¢p) = [[,—, (1 + RS VT

is a constant close to 1, and Aa [t—s41,] = At—s+1,6) — At—s,i—1] Tepresents the fluctuation of X over time steps.

AAt—s+1,4])

Proof. Here we use [y ; denote the instantaneous absolute loss at time ¢ using FIFD-Adaptive Redge algorithm.
Let’s decompose the instantaneous absolute loss as follows:

>

(0x Jt—s,t—1]» zt) — (Ox, T1)|
= [(0», [t—s,t—1] — Oxs Tt)|

[é)\ [t—s,t—1] — 9*] 33t|

[

R Tl
O ft—s,0-11 = 0s] @3 t—s,t— 1](I)>\ [2t sit— 1]xt| (72)

:Hék[t—syt—l] 9] (I)i [t—s,t— 1|>< |<I)>\ t—s,t— 1%‘
S‘A [t—

BA,[t—S»t 1( )”xt”q)/\l[t t—1]

]|

A lt—s,t—1] Aslt—s,t=1]

where the last step from Lemma E To compute the regret, we first denote r), as the instantaneous re-
gret at time f. Let’s decompose the instantaneous regret as follows, 7y = (0x t—st—1],Zt) — (Ou, 1) <

VB [t—s5,t—11(0) [|2¢]| 1 , where the inequality is from Lemma
A[t—s,t—1]

Thus, with probability at least 1 — ¢, for all T' > s,

Ry s(A) = | (T —s) Z ri,t

T—s) Z Bafe—syt—1)(8) el (73)

X\ [t—s,t—1]
t=s+1

IN

sH1<t<T d

< \/2<T—s> e B ea0) (201080 + Nr—ry) — 05 Cal9) + (7 - )]



Online Forgetting Process for Linear Regression Models

where the last step we use Lemma [I2 to deal with the online forgetting process to get the summation of

term |22 25! - for each time step. So we have the cumulative regret upper bound for the algorithm
A [t—s,t—1

FIFD-Adaptive Ridge as follows,

R s(Aridge) = 0KV \/(d/S)(T = 8)[MRiage + (T = s)] (74)
where we use the Lemma I to get the maximum ellipsoid confidence fnai(T]ﬁ)‘ [t—s,t—1](0)- O
te[s+

Lemma 12. The cumulative regret of FIFD-Adaptive Ridge is partially determined by FRT-Ridge at each time
step,

T

T
sL?
Z thHi;,l[t—s,t—l] < 2NRidge + Z FRTy [t—s,t—1) < 2 {dlog(d + Ar—s,7—-1)) —1og C2(@) + (T'—s)| (75)
t=s+1 t=s+1

where Nrigge = dlog(sL?/d+ Np_s r_1)) —log Ca(¢) is a constant based on the limited data time window|[T — s, T).
Proof. Here we still use a =t — s,b =t — 1 for the sake of simplicity. Elementary algebra gives

det(Py (ar1,641)) = det(Dy [,0) + To1Tp11 — TaZg + AA [at1,641]))s (76)

where AA [a41,641 = Aat1,p+1 — Ao and the choice of Ajgy1p41) Algp) 18 given by Lemma [11. Then
det(®y (o+1,041]) equals to

1/2 —1/2 \£1/2

= det I+o, [a b] ($b+155b+1 Tay + Aa a1, b+1]¢);1[a b])(I)/\ [a, b])(I)/\ [a,b])

o o T A8 ot 164112 [as)
= det (I))\

7

Ala,
-1/
det(I+ @, /% mpap,, (15 — @5 |

(@) 0y T+

= det(®y [q,p))det(I+ [({ ] (Tor17h41 — Tazl ) D)
( b)) ab]xa T‘I’A [ab]+/\A a+1,b+1] Py [ab])
(Px fa])

~1/2 1
= det(Py [q,5))det ( (@, [a,b]xb+1)(q))\,[z{,b]xb+1)T — (@, [é R a) (P, [é R o)+ Aa J[a+1, b+1](I))\ [a, b])

7

We first compute the second determinant of equation (77) and denote B = I+ (&, [/Q]xb_‘_l)(@;l[l{i}xb_l’_l)—r -
(@;bilxa)(@;l[ b]xa) and use the matrix technique det(A + €X) ~ det(A) + det(A)tr(A"'X)e + O(e?). So we
have
det(B + AA,[HLH”@;’L)H) ~ det(B) + det(B)tr(A™'®} }a )ALt 1,641] F OOR 01,041 (78)
So the second determinant part of equation becomes
det(B + Aa o141 P )
~ det(B) [1+ (B707], )Aa furn i)
= det(B) [1 + tr[(®x (0,/B) '] Aa, [a+l b1
= det(B) [1 + tr[(®x fa,p] + To4175 11 — TaTq) " TAA fat1.641]) (79)
= det(B) [1 4+ tr[(®x far1,6+1] — Aafatt.o0D) T IAA 01,0411
d

1+ 2 Y )‘A,[a+1,b+l]
Mla+1,b4+1]) — MAJat1,b+1]

> det(B)

where the last step we use the minimum eigenvalue of ® [q11,541) to get the inequality and we denote ¢y [q11,p41] =
1+ d AA [a+1,b+1]- So when we go back to equation (7 , 7)), det(®x [a41,5+1)) equals to

¢?\,[a+1,b+1]7)‘A1[a+1,b+1]

— det(Py (4 5)det (I + (@5 2 mn) (@ 1 mn) T — (@) }ﬁ]xax@;,g;]%ﬁ) €2, [a+1,b+1]

2 (80)

= det(Py [a,1)) [(1 + H‘I’;}[ﬁ]mbﬂH H@ 1/2 Tall )+ <q);,1[(§72b]xb+l, ‘I)A,l[,ﬁ]%y] C2,a+1,b+1]-
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where the last step use lemma same as the technique using in obtaining the regret upper bound of FIFD-0LS.
So we have

2 2
= det(®a ) (L Bavally, 0= el )+ G| ) eatorson

A, [a,b]
=det(®y o) ( 1+ [mpr1lle—1 = lzallz—r  + @122 — 7ozt lzalz—r ) eafaris
s[a,b] + L3 a) AN e b +1)-%a 5 el + L3 e TTANRY ) slat1,b+1]
=det(®rpap) ( 1+ 2ol —zallas  +lzpraller  lzallat  (cos2_s 0 —1)) cojaripra-
@ P a) @3 asb] @) lab] P ab) ‘1’ xlasb] ’ ’

(81)

where cosg-1 8 =
X,la,b] Hl’b+1||¢—1 Hl’a”q,—l
. [a,b] A[a,b]

0 = 1, that means the incoming data x,; and the deleted data z, are same. If

, which measures the similarity of the vector of x4 and z, with

respect to <I>/\ (b’ If Cos@;[ y

cosé 1 0 =0, that means the incoming data and the deleted data are totally different with respect to & N [a 0
A,[a,b]

Now we switch back to the notation time step ¢t and t — s = a,t — 1 = b. At time step T, and we use equation

, we have

T
_ 2 . 2
det(@ursr) = [T Qtllmelags = llwedan,
t=s+1 (82)
2 2
+||xt|‘<p;1[t ot H Ty s||q>—1t ] (C Se— l[t SYtille_l))CZ,[tferl,t]-
Taking log to both sides of equation , we can get
log(det(® r—s, T]))
log CQ Z log 1+ ||5Et||q,—l I — ||$t s”q))—\l[t o) (83)
t=s+1
2 2 B
o, |, ol osho  6-1),

where Cy(¢) = HtT:SJrl C2,[t—s+1,(- Combining the inequality of log(1 + x) > Tt Which holds when z > —1, we

first consider each part of the product and use the dissimilarity measure sm<I> o 0=1- cosé 1 0. So we get
X, la,b] X, la,b]
log {1+ e[| o — |3 e [ sing . 0
P ltmsrt—1] R ST P st P s i Py tmsit—1]
— 2 _ 2 B 2
||$t||q> R ”xt—qu);l[tisytil] HItH%}[FS, ”xt—SHfb e ]Sm@;}t ) 0
S P o -y Pt S o S S
tes lt—s,t—1] t=s P le—s,t—1] ¢ Py s, Ti—s @5 lms -1 Py ltmsit—1)
1 2 2 2 2 . 9
> 5 |:|xt||q>>\,l[t—s,f,—1] o th_s”q);,l[t—s,t—l] B ||xt||¢;,1[t—s,t—l] th_s”q);,l[t—s,t—l] Sln‘t’;\yl[t s,t—1] o).

- T 2 . .
Therefore, we can provide a upper bound of the term »Z,__ ., ||xt||q>;’1[tis,t71] combing equation (82))(83) (84),

T T
> lllaz, <2 [log(det(®rrosm) —log(Ca(o)] + D llze—sllasr
t=s+1 o t=s+1 -

-5
2 2 .2
i Z; ”xthD;\}[tfs,tfl] th_sH(bil Sln<I>_1 0.

A, [t—s,t—1] A, [t—s,t—1]
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Thus by combining the last two terms and extracting th,SHi_l[ ;) We can get
A [t—s,t—1

T
2
2 lellagy,

t=s+1 (86)

A [t—s,t—1] A [t—s,t—1]

T—s
<2 [log(det(®x (r—s77)) — log(Ca(e))] + ||33t—s|\<21>;}“781t71] (el sing 1 0 +1).
t=1

To make the formula simpler, we define ‘Forgetting Regret Term’ (FRT) term with respect to adaptive ridge
parameter A, at time window [t — s,t — 1] or called at time step ¢ as follows,

FRT o) = loallbo (ol sn0,930 ) +1), (87)

Mlt—s,t—1] A [t—s,t—1]

where FRT ), [, ;1) € [0,2]. The detailed explanation and examples of ‘Forgetting Regret Term’ (FRT) can be
found in

So equation becomes

T T
2
Z ||xt||<1>;1[J£7S o1 < 277Ridge + Z FRT)\,[t—s,t—l]v (88)
t=s+1 T t=s+1

where NRrigge = log(det(®y (r—s17)) — log(Ca(¢)) is a constant based on data time window[T' — s, T|. By Lemma
, we get

d sL?

> [EA[E <2 {dlog(d + Ar—s,r-17) —log C2(@) + (T' = s) | . (89)

A t—s,t—1]
t=s+1

O
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F Online Incremental Update for FIFD-OLS

The FIFD-0LS é[a,b} estimator based on data from decision point a to b is defined as

b
‘b[;}b] [Zyzxz] (90)

We present an incremental update formula from é[mb] to é[a+17b+1]:

Theorem 5 (Incremental Update for length s FIFD-least square estimator).
Orat1 i1 = (@, b]) 9(01a1)s o)), (91)

where f(A) is defined as
F(A) =T(A) = (2,7 = )7 [ (A)zaz, T(A)] (92)
with T'(A) = A — (v Azpy1 + 1) 7 [Azpawy A and g(0) is defined as

9(0,®) = PO+ yp11Tp41 — Yala- (93)

Proof. We break the proof into 2 steps. The first step is to update the inverse of sample covariance matrix from

<I>[ 1] to <I>[ 11 b1 The second step is simple algebra and the definition of least square estimator .

Step 01 Bases on Lemmas [14] and we can do incremental update on the inverse of sample covariance matrix

from é[ b) to @[GH p+1) 8
,1 71 1 — 1
{ [a+11b+1] = (1[ b]) (x TF((I)[a b]) H=Hr(e [a b]) TF((I)I[G b])]_ (94)
F(‘I)[a b]) (I)[a b] ($b+1‘p[ pLo+1 + 1)~ [(I)[a,b]xb+1mb+1q)[a,b]]

We write (I’[ Ly = f(@ b]), where the function f(-) is defined by the update scheme ([94).

Step 02. Put into . ) that 21 a1 Yiti = <I>[a7b]é[a,b] + Yb+1To+1 — Yala- O
Lemma 13 (Matrix Inversion Formula).
[A+BCD] ' =A"' -~ A'BDA'B+C']"'DA™. (95)
Lemma 14 (Update Scheme-Step 01).
Plobrr) = Pl — @i @y ort + 1) 7 [P Tz Py ] (96)
Proof. Note @4 441) = Plq 4] + $b+1$;r+1. Take A = @, 4, B =12p11,C=1,D = x,;l in Lemma O
Lemma 15 (Update Scheme-Step 02).
Oy = Oy — (@0 @l Ta = D) TR Tt Py ] (97)
Proof. Note ®(q41p41) = Plapt1) — zow) . Take A = P p41, B=2,,C=-1,D = x) in Lemma O

G Additional Simulation Results

In Figure|6] we show the Ly error of the FIFD-Adaptive Ridge method and the Fixed ridge method. From all of
the twelve subplots, we can see that Lo error of the adaptive ridge method can be bounded by 1. As we can see,
as the noise level ¢ increases, the Ly error increases. If we increase the constant memory limit s, the Lo error
will decrease. Besides, we can see the error bar of the FIFD-Adaptive Ridge is relative narrower than the Fixed
ridge over all settings. Without any prior knowledge, we can achieve the best or close to the best result compared
with the Fixed ridge method with prior knowledge of \.

In Figure[7, we show the choice of hyperparameter A over different time steps. Since the hyperparameter \ is
calculated over each time interval [t — s,t — 1],Vt € [s+1,T]. Thus, it is adaptive to the incoming data compared
with Fixed ridge method with pre-defined hyperparameter .
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Figure 6: Comparison of Lo error between FIFD-Adaptive Ridge method and Fixed Ridge method. The error
bars represent the standard error of the mean regret over 100 runs.
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Figure 7: The choice of FIFD-Adaptive Ridge and Fixed Ridge A.



