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Abstract

Motivated by the EU’s "Right To Be Forgot-
ten" regulation, we initiate a study of sta-
tistical data deletion problems where users’
data are accessible only for a limited period
of time. This setting is formulated as an on-
line supervised learning task with constant
memory limit. We propose a deletion-aware
algorithm FIFD-OLS for the low dimensional
case, and witness a catastrophic rank swinging
phenomenon due to the data deletion oper-
ation, which leads to statistical inefficiency.
As a remedy, we propose the FIFD-Adaptive

Ridge algorithm with a novel online regular-
ization scheme, that effectively offsets the un-
certainty from deletion. In theory, we pro-
vide the cumulative regret upper bound for
both online forgetting algorithms. In the ex-
periment, we showed FIFD-Adaptive Ridge

outperforms the ridge regression algorithm
with fixed regularization level, and hopefully
sheds some light on more complex statistical
models.

1 Introduction

Today many internet companies and organizations are
facing the situation that certain individual’s data can
no longer be used to train their models by legal require-
ments. Such circumstance forces companies and organi-
zations to delete their database on the demand of users’
willing to be forgotten. On the ground of the ‘Right
to be Forgotten’, regularization is established in many
countries and states’ laws, including the EU’s General
Data Protection Regulation (GDPR)(Council of Euro-
pean Union, 2016), and the recent California Consumer
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Privacy Act Right (CCPA) (State of California Depart-
ment of Justice, 2018), which also stipulates users to
require companies and organizations such as Google,
Facebook, Twitter, etc to forget and delete these per-
sonal data to protect their privacy. Besides, users also
have the right to request the platform to delete his/her
obsolete data at any time or only to authorize the
platform to hold his/her personal information such as
photos, emails, etc, only for a limited period. Unfor-
tunately, given these data are typically incrementally
collected online, it is a disaster for the machine learn-
ing model to forget these data in chronological order.
Such a challenge opens the needs to design and analyze
deletion-aware online machine learning method.

In this paper, we propose and investigate a class of
online learning procedure, termed online forgetting pro-
cess, to adapt users’ requests to delete their data before
a specific time bar. To proceed with the discussion,
we consider a special deletion practice, termed First
In First Delete (FIFD), to address the scenario that
the users only authorize their data for a limited period.
(See Figure 1 for an illustration of the online forgetting
process with constant memory limit s.) In FIFD, the
agent is required to delete the oldest data as soon as
receiving the latest data, to meet a constant memory
limit. The FIFD deletion practice is inspired by the
situation that, the system may only use data from
the past three months to train their machine learning
model to offer service for new customers (Jon Porter,
2019; Google, 2020). The proposed online forgetting
process is an online extension of recent works that
consider offline data deletion (Izzo et al., 2020; Ginart
et al., 2019; Bourtoule et al., 2019) or detect data been
forgotten or not (Liu and Tsaftaris, 2020).

In such a ‘machine forgetting’ setting, we aim to deter-
mine its difference with standard statistical machine
learning methods via an online regression framework.
To accommodate such limited authority, we provide
solutions on designing deletion-aware online linear re-
gression algorithms, and discuss the harm due to the
"constant memory limit" setting. Such a setting is
challenging for a general online statistical learning task
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Figure 1: Online Forgetting Process with constant memory limit s.

since the "sample size" never grows to infinity but
stays a constant size along the whole learning process.
As an evil consequence, statistical efficiency is never
improving as the time step grows due to the constant
memory limit.

Our Contribution. We first investigate the online
forgetting process in the ordinary linear regression. We
find a new phenomenon defined as Rank Swinging Phe-
nomenon, which exists in the online forgetting process.
If the deleted data can be fully represented by the
data memory, then it will not introduce any regret.
Otherwise, it will introduce extra regret to make this
online forgetting process task not online learnable. The
rank swinging phenomenon plays such a role that it
indirectly represents the dissimilarity between the dele-
tion data and the new data to affect the instantaneous
regret. Besides, if the gram matrix does not have full
rank, it will cause the adaptive constant ⇣ to be un-
stable and then the confidence ellipsoid will become
wider. Taking both of these effects into consideration,
the order of the FIFD-OLS’s regret will become linear
in time horizon T .

The rank swinging phenomenon affects the regret scale
and destabilizes the FIFD-OLS algorithm. Thus, to
remedy this problem, we propose the FIFD-Adaptive

Ridge to offset this phenomenon because when we add
the regularization parameter, the gram matrix will have
full rank. Different from using the fixed regularization
parameter in the standard online learning model, we
use the martingale technique to adaptively select the
regularization parameter over time.

Notation. Throughout this paper, we denote [T ] as
the set {1, 2, . . . , T}. |S| denotes the number of ele-
ments for any collection S. We use kxk

p
to denote

the p-norm of a vector x 2 Rd and kxk1 = supi|xi|.
For any vector v 2 Rd, notation P(v) ⌘ {i|vi > 0}
denotes the indexes of positive coordinate of v and
N (v) ⌘ {i|vi < 0} denotes the indexes of negative
coordinate of v. Pmin(v) ⌘ min{vi|i 2 P(v)} denotes
the minimum value of vi, where i is in the indexes of
positive coordinate and Nmax(v) ⌘ max{vi|i 2 N (v)}

denotes the maximum value of vi, where i is in the
indexes of negative coordinate.

For a positive semi-definite matrix � 2 Rd⇥d

⌫0 , �min(�)
denotes the minimum eigenvalue of �. We denote
�� as the generalized inverse of � if it satisfies the
condition � = ����. The weighted 2-norm of vec-
tor x 2 Rd with respect to positive definite matrix
� is defined by kxk� =

p

xT�x . The inner product
is denoted by h·, ·i and the weighted inner-product
is denoted by xT�y = hx, yi�. For any sequence
{xt}

1
t=0, we denote matrix x[a,b] = {xa, xa+1, . . . , xb}

and
��x[a,b]

��
1 = supi,j |x[a,b]|(i,j). For any matrix x[a,b],

notation �[a,b] =
P

b

t=a
xtx>

t
represents a gram matrix

with constant memory limit s = b� a+1 and notation
��,[a,b] =

P
b

t=a
xtx>

t
+�Id⇥d represents a gram matrix

with ridge hyperparameter �.

2 Statistical Data Deletion Problem

At each time step t 2 [T ], where T is a finite time
horizon, the learner receives a context-response pair
zt = (xt, yt), where xt 2 Rd is a d-dimensional context
and yt 2 R is the response. The observed sequence of
context {xt}t�1 are drawn i.i.d from a distribution of
PX with a bounded support X ⇢ Rd and kxtk2  L.
Let D[t�s:t�1] = {zi}

t�1
i=t�s

denote the data collected at
[t� s, t� 1] following the FIFD scheme.

We assume that for all t 2 [T ], the response yt is a
linear combination of context xt; formally,

yt = hxt, ✓?i+ ✏t, (1)

where ✓? 2 Rd is the target parameter that sum-
marizes the relation between the context xt and re-
sponse yt. The noise ✏t’s are drawn independently from
��subgaussian distribution. That is, for every ↵ 2 R,
it is satisfied that E[exp(↵✏t)]  exp(↵2�2/2).

Under the proposed FIFD scheme with a constant
memory limit s, the algorithm A at time t only can
keep the information of historical data from time step
t�s to time step t�1 and then to make the prediction,
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and previous data before time step t � s � 1 are not
allowed to be kept and needs to be deleted or forgotten.
The algorithm A is required to make total T�s number
of predictions in the time interval [s+ 1, T ].

To be more precise, the algorithm A first receives a con-
text xt at time step t, and make a prediction based only
on the information in previous s time steps D[t�s:t�1]

(|D[t�s:t�1]| = s) and hence the agent forgets the infor-
mation up to the time step t � s � 1. The predicted
value ŷt computed by the algorithm A based on infor-
mation D[t�s:t�1] and current the context xt, which is
denoted by

ŷt = A(xt, D[t�s:t�1]). (2)

After prediction, the algorithm A receives the true
response yt and suffers a pseudo regret, r(ŷt, yt) =
(hxt, ✓?i � ŷt)2. We define the cumulative (pseudo)-
regret of the algorithm A up to time horizon T as

RT,s(A) ⌘
TX

t=s+1

(hxt, ✓?i � ŷt)
2. (3)

Our theoretical goal is to explore the relationship be-
tween constant memory limit s and the cumulative re-
gret RT,s(A). We proposed two algorithms FIFD-OLS
and FIFD-Adaptive Ridge and studied their cumula-
tive regret, respectively. In particular, we discusses
the effect of constant memory limit s, dimension d,
subguassian parameter �, and confidence level 1� � on
the obtained cumulative regret RT,s(A) for these two
algorithms. For example, what’s the effect of constant
memory s on the order of the regret RT,s(A) if other
parameters keep constant. In other words, how many
data do we need to keep in order to achieve the satis-
fied performance under the FIFD scheme. Besides, is
there any amazing or unexpected phenomenon both in
the experiment and theory occurred when the agent
used the ordinary least square method under the FIFD
scheme and how to improve it?

Remark. The FIFD scheme can also be generalized
to the standard online learning paradigm when we add
two and delete one data or add more and delete one
data. These settings will automatically transfer to the
standard online learning model when T becomes large.
We presented the simulation result to illustrate it.

3 FIFD OLS

In this section, we present the FIFD - ordinary least
square regression (FIFD-OLS) algorithm under “First
In First Delete” scheme and the corresponding confi-
dence ellipsoid for the FIFD-OLS estimator and regret
analysis. Besides, the rank swinging phenomenon will
be discussed in section 3.4.

3.1 FIFD-OLS Algorithm

The FIFD-OLS algorithm uses the least square es-
timator based on the constant data memory from
time window [t � s, t � 1], defined as ✓̂[t�s,t�1] =

��1
[t�s,t�1]

⇥P
t�1
i=t�s

yixi

⇤
. Then an incremental update

formula for ✓̂ from time window [t�s, t�1] to [t�s+1, t]
is showed as follows.

OLS incremental update: At time step t, the es-
timator ✓̂[t�s+1,t] is updated by previous estimator
✓̂[t�s,t�1] and new data zt,

✓̂[t�s+1,t] =f(��1
[t�s,t�1], xt�s, xt)

· g(✓̂[t�s,t�1],�[t�s,t�1], zt�s, zt),
(4)

where f(��1
[t�s,t�1], xt�s, xt) is defined as

�(��1
[t�s,t�1])�(x>

t�s
�(��1

[t�s,t�1])� 1)�1

⇥
�(��1

[t�s,t�1])xt�sx
>
t�s

�(��1
[t�s,t�1])

⇤

(5)
with �(��1

[t�s,t�1]) ⌘ ��1
[t�s,t�1] �

(x>
t
��1

[t�s,t�1]xt + 1)�1
⇥
��1

[t�s,t�1]xtx>
t
��1

[t�s,t�1]

⇤

and g(✓̂[t�s,t�1],�[t�s,t�1], zt�s, zt) is defined as
�[t�s,t�1]✓̂[t�s,t�1] + ytxt � yt�sxt�s. The detailed
online incremental update is in Appendix F.

The algorithm has two steps. First, f -step is to update
the inverse of gram matrix from ��1

[t�s,t�1] to ��1
[t�s+1,t]

and the Woodbury formula Woodbury (1950) is applied
to reduce the time complexity to O(s2d) compared with
directly computing the inverse of gram matrix; Sec-
ondly, g-step is a simple algebra and uses the definition
of adding and forgetting data to update the least square
estimator. The detailed update procedure of FIFD-OLS
is displayed in Algorithm 1.

3.2 Confidence Ellipsoid for FIFD-OLS

Our first contribution is to obtain a confidence ellipsoid
for the OLS method based on the sample set collected
under the FIFD scheme, showed in Lemma 1.
Lemma 1. (FIFD-OLS Confidence Ellipsoid) For any
� > 0, if the event �min(�[t�s,t�1]/s) > �2

[t�s,t�1] > 0
holds, with probability at least 1� �, for all t � s+ 1,
✓? lies in the set

C[t�s,t�1] =

⇢
✓ 2 Rd :

���✓̂[t�s,t�1] � ✓
���
�[t�s,t�1]

 �q[t�s,t�1]

p
(2d/s) log(2d/�)

� (6)

where q[t�s,t�1] =
��x[t�s,t�1]

��
1 /�2

[t�s,t�1] is the adap-
tive constant and we denote �[t�s,t�1] as the RHS
bound.
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Algorithm 1: FIFD-OLS
Given parameters: s, T , �
for t 2 {s+ 1, ..., T} do

Observe xt

�[t�s,t�1] = xT
[t�s,t�1]x[t�s,t�1]

if t = s+1 then
✓̂[1,s] = ��1

[1,s]x
T
[1,s]y[1,s]

else
✓̂[t�s,t�1] = f(��1

[t�s�1,t�2], xt�s�1, xt) ·

g(✓̂[t�s�1,t�2],�[t�s�1,t�2],
zt�s�1, zt�1)

end
Predict ŷt = h✓̂[t�s,t�1], xti and observe yt
Compute loss rt = |ŷt � h✓?, xti|

Delete data zt�s = (xt�s, yt�s)
end

Proof. The key step to get the confidence ellipsoid is to
use the martingale noise technique presented in Bastani
and Bayati (2020) to obtain an adaptive bound. The
detailed proof can be obtained in Appendix A. Besides,
the confidence ellipsoid in (6) requires the information
of minimum eigenvalue of gram matrix �[t�s,t�1] and
infinity norm of our observations with constant data
memory s. Thus, it is an adaptive confidence ellipsoid
following the change of data.

3.3 FIFD OLS Regret

The following theorem provides the regret upper bounds
for the FIFD-OLS algorithm.
Theorem 1. (Regret Upper Bound of The FIFD-OLS
Algorithm). Assume that for all t 2 [s+ 1, T � s] and
Xt is i.i.d random variables with distribution PX . With
probability at least 1 � � 2 [0, 1], for all T > s, s � d,
we have an upper bound on the cumulative regret at
time T :

RT,s(AOLS)

 2�⇣
p
(d/s) log(2d/�)(T � s) (d log(sL2/d) + (T � s)),

(7)
where the adaptive constant ⇣ = max

s+1tT

q[t�s,t�1].

Proof. We provide a roadmap for the proof of The-
orem 1. The proof is motivated by (Abbasi-Yadkori
et al., 2011; Bastani and Bayati, 2020). We first prove
Lemma 1 to obtain a confidence ellipsoid holding for
the FIFD-OLS estimator. Then we use the confidence
ellipsoid, to sum up the regret over time in Lemma 2
and find a key term called FRT (defined below equation
9), which affects the derivation of regret upper bound a
lot. The detailed proof of this theorem can be found in
the appendix C.

Remarks. We develop the FIFD-OLS algorithm and
prove an upper bound of the cumulative regret in or-
der of O(�⇣[(d/s)(log 2d/�)]

1
2T ). The agent using this

algorithm cannot improve the performance of this al-
gorithm because it has a constant memory limit s to
update the estimated parameters. What’s more, the
adaptive constant q[t�s,t�1] is unstable caused by the
forgetting process. The main factor causing the oscil-
lation of gram matrix �[t�s,t�1] is that the minimum
eigenvalue is close to zero. In other words, the gram
matrix is full rank at some time. Therefore, the adap-
tive constant q[t�s,t�1] will go to infinity at such time
points. So the generalization’s ability of FIFD-OLS is
poor.

Following the derivation of the regret upper bound of
FIFD-OLS in Theorem 1, we find an interesting phe-
nomenon, which we called Rank Swinging Phenomenon
(defined below Definition 1). This phenomenon will un-
stabilize the FIFD-OLS algorithm and introduce some
extreme bad events, which results in a larger value of
the regret upper bound of the FIFD-OLS algorithm.

3.4 Rank Swinging Phenomenon

Below we give the definition of the Rank Swinging
Phenomenon.
Definition 1. (Rank Swinging Phenomenon) At time
t, when we delete data xt�s and add data xt, the
gram matrix switching from �[t�s,t�1] to �[t�s+1,t] will
cause its rank increasing or decreasing by 1 or 0 if
Rank(�[t�s,t�1])  d,

Rank(�[t�s+1,t]) =

8
><

>:

Rank(�[t�s,t�1]) + 1,Case 2
Rank(�[t�s,t�1]),Case 3
Rank(�[t�s,t�1])� 1,Case 4

(8)
where four examples are illustrated in Appendix D. The
real example can be found in Figure 2.

The rank swinging phenomenon results in unstable
regret, which is measured by the term called ‘Forgetting
Regret Term’ (FRT) caused by deletion at time t.
Definition 2. (Forgetting Regret Term)

FRT[t�s,t�1] =

kxt�sk
2
��1

[t�s,t�1]
(kxtk

2
��1

[t�s,t�1]
sin2(✓,��1

[t�s,t�1]) + 1),

(9)
where FRT[t�s,t�1] 2 [0, 2].

Let’s use sin2(✓,��1
[t�s,t�1]) denote the dissimilarity be-

tween xt�s and xt under ��1
[t�s,t�1] as follows,

sin2(✓,��1
[t�s,t�1]) = sin2

��1
[t�s,t�1]

✓

= 1� cos2(✓,��1
[t�s,t�1])
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Figure 2: Rank switching phenomenon with memory
limit s = 20, 60, 100, 150, 500 and d = 100 from left
to right. Xt ⇠ Unif(e1, e2, ...e100). The rank of gram
matrix can decrease due to deletion operation.

cos(✓,��1
[t�s,t�1]) =

hxt, xt�si��1
[t�s,t�1]

kxtk��1
[t�s,t�1]

kxt�sk��1
[t�s,t�1]

Remark. If FRT[t�s,t�1] = 0, then it won’t introduce
extra regret to avoid it being online learnable which
means the deleting data can be fully represented by
the rest of data and the deletion operation won’t sab-
otage the representation power of the algorithm. If
FRT[t�s,t�1] 6= 0, it will introduce extra regret during
this online forgetting process, which means that the
deletion data can’t be fully represented by the rest of
the data and the deletion operation will sabotage the
representation power of the algorithm.

FRT is determined by two terms the ‘deleted
term’ kxt�sk

2
��1

[t�s,t�1]
and the ‘dissimilarity term’

kxtk
2
��1

[t�s,t�1]
sin2(✓,��1

[t�s,t�1]). If this deleted term

kxt�sk
2
��1

[t�s,t�1]
is zero, then FRT won’t introduce any

extra regret, no matter how large the weight term
kxtk

2
��1

[t�s,t�1]
sin2(✓,��1

[t�s,t�1]) is. The larger the dis-
similarity term, the more regret it will introduce if
the deleted term is not zero since the new data intro-
duces new direction in the representation space. If
FRT[t�s,t�1] = 0, 8s < t  T , we will achieve order
O(

p
T ) cumulative regret, which is online learnable as

expected. However, this hardly happens. Therefore,
the cumulative regret under the FIFD scheme is usually
O(T ), which is proved in Theorem 1 and Theorem 2.

In the following Lemma 2, we show the importance
of FRT in getting the upper bound of Theorem 1
and Theorem 2. Here for the sake of simplicity, if
Rank(�[t�s,t�1]) < d, we will not discriminate the
notation of generalized inverse ��

[t�s,t�1] and inverse
��1

[t�s,t�1], and uniformly use ��1
[t�s,t�1] to represent the

inverse of �[t�s,t�1].
Lemma 2. The cumulative regret of FIFD-OLS is
partially determined by FRT at each time step, and the
cumulative representation term is

TX

t=s+1

kxtk
2
��1

[t�s,t�1]
 2⌘OLS +

TX

t=s+1

FRT[t�s,t�1]

(10)
where ⌘OLS = log(det(�[T�s,T ])) is a constant based on
data time window [T � s, T ].

Proof. Let’s first denote rt as the instantaneous regret
at time t and decompose the instantaneous regret, rt =
h✓̂[t�s,t�1], xti�h✓?, xti 

p
�[t�s,t�1](�) kxtk��1

[t�s,t�1]
,

where the inequality is from Lemma 1. Thus, with
probability at least 1� �, for all T > s,

RT,s(AOLS) 

vuut(T � s)
TX

t=s+1

r2
t



vuut(T � s) max
s+1tT

�[t�s,t�1](�)
TX

t=s+1

kxtk
2
��1

[t�s,t�1]
.

4 FIFD-Adaptive Ridge

To remedy the rank switching phenomenon, we take
advantage of the ridge regression method to avoid this
happening in the online forgetting process. In this
section, we present the FIFD - adaptive ridge regres-
sion (FIFD-Adaptive Ridge) algorithm under “First
In First Delete” scheme and the corresponding confi-
dence ellipsoid for the FIFD-Adaptive Ridge estimator
and regret analysis.

4.1 FIFD-Adaptive Ridge Algorithm

The FIFD-Adaptive Ridge algorithm use the ridge
estimator ✓̂�,[t�s,t�1] to predict the response. The defi-
nition of it for time window [t� s, t� 1] is showed as
follows.

Adaptive Ridge update:

✓̂�,[t�s,t�1] = ��1
�,[t�s,t�1]

⇥ t�1X

i=t�s

yixi

⇤
.

Then we display the adaptive choice of hyperparameter
� for time window [t� s, t� 1].
Lemma 3. (Adaptive Ridge Parameter �[t�s,t�1]) If
the event �min(��,[t�s,t�1]/s) > �2

�,[t�s,t�1] holds, with
probability 1� �, for any

�(�) > �
��x[a,b]

��
1

p
(2d/s) log(2d/�)/�2

�,[a,b],



Online Forgetting Process for Linear Regression Models

we have a control of L2 estimation error that
Pr

h���✓̂�,[t�s,t�1] � ✓?
���
2
 �(�)

i
� 1 � �, and to sat-

isfy this condition, we select the adaptive �[t�s,t�1] as
follows for the limited time window [t� s, t� 1],

�[t�s,t�1]  �
��x[t�1,t�s]

��
1

p
2s log(2d/�)/ k✓?k1 .

(11)
The detailed derivation can be found in Appendix E.

The detailed update procedure of FIFD-Adaptive

Ridge is displayed in Algorithm 2.

Algorithm 2: FIFD-Adaptive Ridge

Given parameters: s, T , �
for t 2 {s+ 1, ..., T} do

Observe xt��x[t�1,t�s]

��
1 = max

1is,1jd

x(i,j)

�̂[t�s,t�1] = SD(y[t�s,t�1])
�[t�s,t�1] =
p
2s�̂[t�s,t�1]

��x[t�s,t�1]

��
1

p
log 2d/�

��,[t�s,t�1] =
xT
[t�s,t�1]x[t�s,t�1] + �[t�s,t�1]I

✓̂[t�s,t�1] = ��1
�,[t�s,t�1]x

T
[t�s,t�1]y[t�s,t�1]

Predict ŷt = h✓̂[t�s,t�1], xti and observe yt
Compute loss rt = |ŷt � h✓?, xti|

Delete data zt�s = (xt�s, yt�s)
end

4.2 Confidence Ellipsoid for FIFD-Adaptive
Ridge

Before we moving to the confidence ellipsoid of the
adaptive ridge estimator, we define some notions about
the true parameter ✓?, where Pmin(✓?) represents the
weakest positive signal and Nmax(✓?) serves as the
weakest negative signal. To make the adaptive ridge
confidence ellipsoid more simplified, without loss of
generality, we assume the following assumption.

Assumption 1. (Weakest Positive to Strongest Signal
Ratio) We assume positive coordinate of ✓? dominates
the bad events happening,

WPSSR =
Pmin(✓?)

k✓?k1



�
p
C3 +

q
C3 + s2 log 2d

�
log 12|P(✓?)|

�

s log 2d
�

,

(12)

where C3 = log 6d
�
log 2d

�
. The WPSSR is monotone

increasing in s and P(✓?), and is monotone decreasing
in d. In most cases, the LHS is greater than one,
such as s = 100, d = 110, � = 0.05, |P(✓?)| = 30, then
WPS Ratio needs to be less than 1.02, which is satisfied
this assumption.

If Assumption 1 holds, a high probability confidence
ellipsoid can be obtained for FIFD-Adaptive ridge.

Lemma 4. (FIFD-Adaptive Ridge Confidence Ellip-
soid) For any � 2 [0, 1], with probability at least 1� �,
for all t � s + 1, with Assumption 1 and the event
�min(��,[t�s,t�1]/s) > �2

�,[t�s,t�1] > 0 holds, then ✓?
lies in the set

C�,[t�s,t�1] =

⇢
✓ 2 Rd :

���✓̂�,[t�s,t�1] � ✓
���
��,[t�s,t�1]

 �⌫q�,[t�s,t�1]

p
d/2s

�
,

(13)
where q�,[t�s,t�1] =

��x[t�1,t�s]

��
1 /�2

�,[t�s,t�1],

 =
q
log2(6|P(✓?)|/�)/ log(2d/�), and ⌫ =

k✓?k1 /Pmin(✓?).

Proof. Key steps. The same technique used in Lemma
1 is applied here to obtain an adaptive confidence ellip-
soid for ridge estimator. Here we assume Assumption
1 to make the confidence ellipsoid (4) more simplified.
The detailed proof can be obtained in the Appendix B.

Remark. The order of constant memory limit s in the
confidence ellipsoid for FIFD-OLS and FIFD-Adaptive
ridge’s confidence ellipsoids are O(

p
s). The adap-

tive ridge confidence ellipsoid requires the information
of minimum eigenvalue of gram matrix ��,[t�s,t�1]

with hyperparameter � and infinity norm of data��x[t�1,t�s]

��
1, which is similar as FIFD-OLS confi-

dence ellipsoid required. The benefits of introduction
of � avoids the singularity of gram matrix �, which will
stabilize the algorithm FIFD-Adaptive ridge and make
the confidence ellipsoid narrow in most times. Besides,
it is an adaptive confidence ellipsoid.

4.3 FIFD Adaptive Ridge Regret

In the following theorem, we provide the regret upper
bound for the FIFD-Adaptive Ridge method.

Theorem 2. (Regret Upper Bound of the FIFD-
Adaptive Ridge algorithm) With Assumption 1 and
with probability at least 1 � �, the cumulative regret
satisfies:

RT,s(ARidge)  �⌫⇣�

q
(d/s)(T � s)[⌘Ridge + (T � s)]

(14)

where ⇣� = max
s+1tT

kx[t�1,t�s]k1
�2
�,[t�s,t�1]

is the maximum adap-

tive constant, ⌘Ridge = d log(sL2/d + �[T�s,T�1]) �
logC2(�) is a constant related to the last data memory,
C2(�) =

Q
T

t=s+1(1+
s

�2
�,[t�s+1,t]

���,[t�s+1,t]
��,[t�s+1,t])

is a constant close to 1, and ��,[t�s+1,t] = �[t�s+1,t] �

�[t�s,t�1] represents the change of � over time steps.
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Proof. The key step is to use the same technical lemma
used in the OLS setting to show a confidence ellipsoid
holds for the adaptive ridge estimator. Lemma 2 is
used to compute FRT and then sums up FTRs to get
the cumulative regret upper bound. The detailed proof
of this theorem can be found in Appendix E.

Remarks. (Relationship between regret upper bound
and parameters) We develop the FIFD-Adaptive Ridge
algorithm and then provide a regret upper bound in
order O(�⇣�L[d/s]

1
2T ). This order represents the re-

lationship between the regret, noise �, dimension d,
constant memory limit s, signal level ⌫, and confidence
level 1� �. Since the agent always keeps the constant
memory limit s data to update the estimated param-
eters, thus the agent can’t improve the performance
of the algorithm. Therefore, the regret is O(T ) with
respect to the decision number. Besides, we find that
using the ridge estimator can offset the rank swinging
phenomenon since Ridge’s gram matrix is always full
rank.

5 Simulation Experiments

We compare the FIFD-Adaptive Ridge method where
� is chosen under Lemma 3 with the baselines with pre-
tuned �. For all experiments unless otherwise specified,
we choose T = 3000, � = 0.05, d = 100, L = 1 for all
simulation settings. All results are averaged over 100
runs.

Simulation settings. The setting for constant mem-
ory limit s is 20, 40, 60, 80 and subgaussian parame-
ter � is 1, 2, 3. Context {xt}t2[T ] is generated from
N(0d, Id⇥d), and then we normalize it. The response
{yt}t2[T ] is generated by yt = hx, ✓?i + ✏t, where
✓? ⇠ N(0d, Id⇥d) and then normalize it with k✓?k2 = 1.
We set ✏t

i.i.d
⇠ �-subguassian. The adaptive ridge’s

noise � in the simulation is estimated by �̂[t�s,t�1] =
sd(y[t�s,t�1]), t 2 [s+ 1, T ].

Hyperparameter settings for competing meth-
ods. The hyperparameter � we select for � = 1 setting
is {1, 10, 100}. Since by the relationship of hyperparam-
eter � and noise level �, we know they are in linear order.
Thus, for the � = 2 setting, we set � = {2, 20, 200}
and for the � = 3 setting, we set � = {3, 30, 300}. The
adaptive ridge hyperparameter is automatically calcu-
lated according to Lemma 3 and we assume k✓?k1 = 1
since k✓?k2 = 1.

Results. In figure 3, we present the simulation re-
sult of relationship between the cumulative regret
RT,s(ARidge), noise level �, hyperparameter �, and
constant memory limit s. We find all of the cumulative
regret are linear in time horizon T just with different
constant levels.

Figure 3: Comparison of cumulative regret between of
the Adaptive Ridge method and Fixed Ridge method.
The error bars represent the standard error of the
mean regret over 100 runs. The blue line represents
the Adaptive Ridge. The green line represents the
Fixed Ridge method with � = {1, 2, 3} for each row.
The red line represents the Fixed-Ridge method with
� = {10, 20, 30} for each row. The red line represents
the Fixed-Ridge method with � = {100, 200, 300} for
each row.

From three rows, as the memory limit s increases,
we find that the cumulative regret of the adaptive
ridge (blue line) decreases. Since we know that as
the sample size increases, the regret will decrease in
theory. For each column, when we fix the memory
limit s, as the noise level � increases, the regret of
FIFD-Adaptive Ridge and Fixed Ridge increase with
different hyperparameters.

Overall, we find that the FIFD-Adaptive Ridge method
is more robust to the change of noise level � when
we view figure 3 by row. Fixed Ridge methods with
different hyperparameters such as green line and red
line are sensitive to the change of noise � and memory
limit s because Fixed Ridge doesn’t have any prior
to adaptive the data. Although it performs well in
the top left, it doesn’t work well in other settings.
The yellow line has relative comparable performance
compared with the Adaptive Ridge method since its
hyperparameter � is determined by the knowledge from
Adaptive Ridge. The FIFD-Adaptive Ridge is always
the best (2nd row and 3rd row) or close to the best
(1st row) choice of � among all of these settings, which
means that the Adaptive Ridge method is robust to
the large noise.

Besides, the Adaptive Ridge method can save compu-
tational cost compared with the fixed Ridge method,
which needs cross-validation to select the optimal �.
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Figure 4: Here ✏t ⇠ tdf with degree of freedom df =
{5, 10, 15}. This setting investigate the robustness of
the proposed online regularization scheme. These lines’
colors are the same as they represent in figure 3.

In addition, more results about the choice of hyperpa-
rameter � and L2 estimation error of the estimator can
be found in Appendix G.

Heavy Tail Noise Distribution. Moreover, we also
test the robustness of these methods concerning dif-
ferent noise. Here we assume ✏t ⇠ tdf , 8t 2 [T ]. The
degree of freedom df is set to be 5, 10, 15. As we
know when df is greater than 30, it behaves like the
normal distribution. When df is small, t-distribution
has much heavier tails. Thus, in figure 4, we find that
when df increases, the cumulative regret is decreasing
since the error is more like the normal distribution,
which can be well captured by our algorithm. However,
fixed Ridge methods are not robust to the change of
noise distribution, especially green line and red line.

Results for (+k,�1) addition-deletion operation.
Here we test the pattern when we add more than one
data point at each time step, such as k = 2, 3, 4, and
delete one data, denoted as (+k,�1) addition-deletion
pattern. In figure 5, the 1st, 2nd, 3rd column are cases
that delete one data after receiving 2, 3, 4 data, respec-
tively. Each row has different noise level � = 1, 2, 3.
From the figure, we notice that the cumulative regret
in each subplot has an increasing sublinear pattern.
For the first row, the noise level is the smallest, which
shows the sublinear pattern quickly. For other rows, all
subplots show increasing sublinear patterns sooner or
later, which satisfied our anticipation that when adding
k > 1 data points and delete one data point at each
time step, it finally will convert the normal online learn
regime. However, the noise level will affect the time it
moves to the sublinear pattern.

Figure 5: Switching from Ridge to OLS & (+k,�1):
Comparison of cumulative regret between of the Switch-
ing Adaptive Ridge method when s � 2d and Fixed
Ridge method. The error bars represent the standard
error of the mean regret over 100 runs. The cyan line
represents the Switching Adaptive Ridge. Other lines’
colors are the same as they presented in Figure 3.

Switching from Ridge to OLS. Besides, we also
consider when the agent accumulates many data such
as n > 2d, where n represents the number of data the
agent has at some time point t, and then transfer the
algorithm from the Adaptive ridge method to the OLS
method. This method called Switching Adaptive Ridge
represented as the cyan line in figure 5. We see that
when the noise level is relatively small, it performs well.
However, when � is large, it works worse than the green
line (fixed Ridge with prior knowledge about �) and
the blue line (Adaptive Ridge).

6 Discussion and Conclusion

In this paper, we have proposed two online forgetting
algorithms under the FIFD scheme and provide the
theoretical regret upper bound. To our knowledge, this
is the first, theoretically well-proved work in the online
forgetting process under the FIFD scheme.

Besides, we find the existence of rank swinging phe-
nomenon in the online least square regression and tackle
it using the online adaptive ridge regression. In the
future, we hope we can provide the lower bound for
these two algorithms and design other online forgetting
algorithms under the FIFD scheme.
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