
Tight Regret Bounds for Infinite-armed Linear Contextual Bandits

A Useful probability tools

A separable process 1 {Gφ}φ∈Θ with respect to a met-
ric space (Θ, d) is sub-Gaussian if for any λ ∈ R and

φ, φ′ ∈ Θ, E[eλ(Xφ−Xφ′ )] ≤ eλ
2d2(φ,φ′)/2. Let also

diam(Θ) = supφ,φ′∈Θ d(φ, φ′) be the diameter of the
metric space (Θ, d). The following result is cited from
[van Handel, 2014, Theorem 5.29].

Lemma 10. There exists a universal constant C0 <∞
such that for all z > 0 and φ0 ∈ Θ,

Pr

[
sup
φ∈Θ

Gφ −Gφ0
≥ C0

∫ ∞
0

√
lnN(Θ; d, ε)dε+ z

]
≤ C0e

−z2/(C0·diam(Θ)),

where N(Θ; d, ε) is the covering number of the metric
space (Θ, d) up to precision ε.

B Omitted proofs in Section 7

Proof of Lemma 9. Let Tζ be all time periods t such
that ζt = ζ, and define Tζ = |Tζ |. We have

∑
t

$xt
ζt,t

.
√
d ·
∑
ζ

∑
t∈Tζ

αxtζ,tω
xt
ζ,t. (27)

First by Lemma 8, we have

∑
t∈Tζ

(ωxtζ,t)
2 ≤ ln(det(ΛTζ )) . d ln(Tζ/d), (28)

where the last inequality is due to

det(ΛTζ ) ≤ tr(ΛTζ/d)d ≤ ((Tζ + 1)/d)d. (29)

Let us now focus on the Right-Hand Side of Eq. (27),
let

T +
ζ :=

{
t ∈ Tζ : ωxtζ,t ≥

√
dδ2/(T ln4 T ln2(1/δ))

}
and let

T −ζ :=

{
t ∈ Tζ : ωxtζ,t <

√
dδ2/(T ln4 T ln2(1/δ))

}
= Tζ \ T +

ζ .

1See Definition 5.22 in [van Handel, 2014] for a technical
definition of separable stochastic processes.

We have that∑
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+ Tζ

√
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Note that the univariate function f(τ) =√
τ ln((T ln4 T ln2(1/δ))τ/(dδ2) is concave for

τ ≥ dδ2/(T ln4 T ln2(1/δ)). Applying Jensen’s
inequality to f(τ) with τ = (ωxtζ,t)

2 (t ∈ T +
ζ ), we have∑
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dTζ ln(Tζ/d) ln(T ln5 T/(Tζδ3)), (31)

where the second inequality is due to Lemma 8
and Eq. (28), and the third inequality is due
to the monotonicity of the function g(x) =√
xd ln(Tζ/d) ln((T ln4 T ln2(1/δ))/(dδ2) · (d ln(Tζ/d)/x))

for large enough x. Combining Eq. (30), and Eq. (31),
we have∑
t∈Tζ

αxtζ,tω
xt
ζ,t .

√
dTζ ln(Tζ/d) ln(T ln5 T/(Tζδ3))

+ Tζδ

√
d/(T ln4 T ln2(1/δ)). (32)

By Algorithm 1, we know that $xt
ζ,t =

√
d · αxtζ,tω

xt
ζ,t ≥

21−ζ for all t ∈ Tζ . Subsequently,
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∑
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where the last inequality holds by applying Lemma 8.
Therefore,

Tζ . 4ζ · d3/2 log T log(T/δ). (33)

We first divide the resolution levels ζ ∈ {0, 1, · · · , ζ0}
into two different sets: Z1 := {0, 1, · · · , ζ∗} and Z2 :=
{ζ∗ < ζ ≤ ζ0}, where ζ∗ is an integer to be defined
later. Clearly Z1 and Z2 partition {0, · · · , ζ0}. Note
that

√
d ·
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t∈Tζ α

xt
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ζ,t . 2−ζTζ because $xt
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for all t ∈ Tζ .
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(35)

where the inequality above Eq. (35) is because of the

concavity of the function
√
x ln(T log5 T |Z2|/(xδ3))

and Jensen’s inequality, and Eq. (35) is due to∑
ζ∈Z2

Tζ ≤ T and the monotonicity of the function√
x ln(T log5 T |Z2|/(xδ3)).

Recall that
√
T/d/δ ≤ 2ζ0 ≤ 2

√
T/d/δ. Se-

lect ζ∗ = ζ0 − blog2(ln(T ) ln(T/δ)/δ)c; we have
that |Z2| = O(log log(T/δ) + log(1/δ)) and 2ζ

∗ ≤
2
√
T/(
√
d ln(T ) ln(T/δ)).

Finally, we combine Eq. (27), Eq. (34), and Eq. (35),
and have that∑
t

$xt
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. δd
√
T + d

√
T log T log(1/δ) · log log(T/δ)

. d
√
T log T log(1/δ) · log log(T/δ),

which is to be demonstrated.


