Tight Regret Bounds for Infinite-armed Linear Contextual Bandits

A Useful probability tools

A separable process E| {G4}sco with respect to a met-
ric space (O,d) is sub-Gaussian if for any A € R and
b, ¢ € O, E[erXe=Xs)] < A (@02 et also
diam(©) = sup, 4o d(¢, @) be the diameter of the
metric space (0, d). The following result is cited from
[van Handel, 2014, Theorem 5.29].

Lemma 10. There ezists a universal constant Cy < 0o
such that for all z > 0 and ¢g € O,
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where N(O;d,€) is the covering number of the metric
space (O, d) up to precision e.

B Omitted proofs in Section [7]

Proof of Lemmal[9 Let T be all time periods ¢ such
that §; = ¢, and define T = |7¢|. We have
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First by Lemma [8] we have

D (wg)? < In(det(Ar,)) < dIn(T¢/d), (28)
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where the last inequality is due to

det(Ar,) < tr(Aq, /d)* < (T¢ + 1)/d)". (29)

Let us now focus on the Right-Hand Side of Eq. ,
let

7=t T 2 Jar @wi e )

and let

T = {t €T wly < \/do/(Tn* T (1/5))}
=TT

!See Definition 5.22 in [van Handel, 2014] for a technical
definition of separable stochastic processes.

We have that
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Note that the wunivariate function f(r) =

\/’7’ In((TIn* T1n?*(1/6))7/(dé?) is concave for
T > dé*/(TIn*TIn?*(1/8)).  Applying Jensen’s
inequality to f(7) with 7 = (wfft)2 (te 7?'), we have
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< \/ch In(T¢/d) In(T In® T/(T:63)), (31)

where the second inequality is due to Lemma [§]
and Eq. , and the third inequality is due
to the monotonicity of the function g¢g(z) =

\/xd (T, /d) In((T In* T'n*(1/5))/(ds6?) - (dIn(T¢/d)/x))

for large enough x. Combining Eq. , and Eq. ,
we have
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\/dTC In(7;/d) In(T n® T/ (T:63))

+ T\ /(T TIn*(1/6)). (32)

By Algorithm |1} we know that w(’, = =d- agiwly >
21-¢ for all ¢t € T¢. Subsequently,
—(— 1 . Tt \2 | T \2
(2 TC < Z w{t P <Vd ?ela,r};(ag,t) Z(Wg,t)
teTe teTe
< Vd-log(TIn* TIn*(1/8)/(d6?)) - dlog T,
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where the last inequality holds by applying Lemma
Therefore,

Te < 4°-d*?log Tlog(T/6). (33)

We first divide the resolution levels ¢ € {0,1,---, (o}
into two different sets: Z; :={0,1,--- ,{*} and 25 :=
{¢* < ¢ < (o}, where ¢* is an integer to be defined
later. Clearly 2, and Z5 partition {0,---,¢{p}. Note
that Vd -3, cr. aftwel S 27¢T¢ because wy!, < 2'7¢
for all t € 7¢.

o
Vd Z Za?fth‘t S Z2‘C 4% - d3/? log T'log(T/6)

CEZ tET: ¢=0
< 25+ 32 10g T log(T'/6); (34)
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< dy/|22] Tlog(T) log (1og® T | Za] /6%) + 6dv/T/ 10g? T,
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where the inequality above Eq. is because of the

concavity of the function \/x In(T log® T| 25|/ (x3))

and Jensen’s inequality, and Eq. is due to
ZCE 2 1c <T and the monotonicity of the function

Ve In(T log® T| 2]/ (6%)).
Recall that /T/d/§ < 2% < 2,/T/d/5. Se-
lect ¢* = (o — [logo(In(T)In(T/6)/d)]; we have

that |Z5] = O(loglog(T/§) + log(1/6)) and 2¢° <
2V/T/(VdIn(T) In(T/5)).

Finally, we combine Eq. , Eq. , and Eq. ,
and have that

ngt < 6dVT + d+/Tlog T log(1/6) - loglog(T/5)
¢
< dy/TlogTlog(1/6) - loglog(T/6),

which is to be demonstrated. O




