
Rate-improved Inexact Augmented Lagrangian Method for Constrained Nonconvex Optimization

A PROOFS

In this section, we provide detailed proofs of our theorems.

A.1 Proof of Theorem 1

Let Φk(x) := Φ(x) + ρ‖x− xk‖2 and Φ∗k = minx Φk(x) for each k ≥ 0. Note we have dist(0, ∂Φk(xk+1)) ≤ δ = ε
4 ,

and also Φk is ρ-strongly convex. Hence Φk(xk+1)−Φ∗k ≤ δ2

2ρ , and Φ(xk+1) + ρ‖xk+1− xk‖2−Φ(xk) ≤ δ2

2ρ . Thus,

Φ(xT )− Φ(x0) + ρ

T−1∑
k=0

‖xk+1 − xk‖2 ≤ Tδ2

2ρ

T min
0≤k≤T−1

‖xk+1 − xk‖2 ≤ 1

ρ

(
Tδ2

2ρ
+ [Φ(x0)− Φ(xT )]

)
2ρ min

0≤k≤T−1
‖xk+1 − xk‖ ≤ 2

√
δ2

2
+
ρ[Φ(x0)− Φ∗]

T
. (25)

Since T ≥ 32ρ
ε2 [Φ(x0)− Φ∗] and δ = ε

4 , we have

ρ

T
[Φ(x0)− Φ∗] ≤ ε2

32
, (26)

and thus (25) implies
2ρ min

0≤k≤T−1
‖xk+1 − xk‖ ≤ ε

2
. (27)

Therefore, Algorithm 2 must stop within T iterations, from its stopping condition, and when it stops, the output
xS satisfies 2ρ‖xS − xS−1‖ ≤ ε

2 .

Now recall dist(0, ∂Φk(xk+1)) ≤ δ = ε
4 , i.e.,

dist(0, ∂Φ(xk+1) + 2ρ(xk+1 − xk)) ≤ ε

2
,∀k ≥ 0. (28)

The above inequality together with 2ρ‖xS − xS−1‖ ≤ ε
2 gives

dist(0, ∂Φ(xS)) ≤ ε,

which implies that xS is an ε-stationary point to (8).

Finally, we apply Lemma 1 to obtain the overal complexity and complete the proof.

A.2 Proof of Claim 1

Let X∗ be the optimal solution set of

min
x∈X

f(x) :=
1

2
‖Ax− b‖2. (29)

Then for any x̄ ∈ X∗, Ax̄− b = 0 by our assumption. From (Wang and Lin, 2014, Theorem 18), it follows that
there is a constant κ > 0 such that

‖x− ProjX∗(x)‖ ≤ κ
∥∥x− ProjX

(
x−∇f(x)

)∥∥ , ∀x ∈ X, (30)

where ProjX denotes the Euclidean projection onto X.

For any fixed x ∈ X, denote u = ∇f(x) and v = ProjX(x − u). Then from the definition of the Euclidean
projection, it follows that 〈v − x + u,v − x′〉 ≤ 0, ∀x′ ∈ X. Letting x′ = x, we have ‖v − x‖2 ≤ 〈u,x− v〉. On
the other hand, for any z ∈ NX(x), we have from the definition of the normal cone that 〈z,x− x′〉 ≥ 0, ∀x′ ∈ X.
Hence, letting x′ = v gives 〈z,x− v〉 ≥ 0. Therefore, we have

‖v − x‖2 ≤ 〈u,x− v〉+ 〈z,x− v〉 ≤ ‖x− v‖ · ‖u + z‖,
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which implies ‖v − x‖ ≤ ‖u + z‖. By the definition of u and v and noticing that z is an arbitrary vector in
NX(x), we obtain ∥∥x− ProjX

(
x−∇f(x)

)∥∥ ≤ dist (0,∇f(x) +NX(x)) .

The above inequality together with (30) gives

‖x− ProjX∗(x)‖ ≤ κ · dist (0,∇f(x) +NX(x)) , ∀x ∈ X. (31)

Now by the fact AProjX∗(x) = b, we have ‖Ax− b‖ ≤ ‖A‖ · ‖x− ProjX∗(x)‖. Therefore, from (31) and also
noting ∇f(x) = A>(Ax− b), we obtain (16) with v = 1

κ‖A‖ .

A.3 Proof of Claim 2

Without loss of generality, we assume r = 1 and AA> = I, i.e., the row vectors of A are orthonormal. Notice that

NX(x) =

{
{0}, if ‖x‖ < 1,

{λx : λ ≥ 0}, if ‖x‖ = 1.
(32)

Hence, if ‖x‖ < 1, (16) holds with v = 1 because AA> = I. In the following, we focus on the case of ‖x‖ = 1.

When ‖x‖ = 1, we have from (32) that

dist
(
0,A>(Ax− b) +NX(x)

)
= min

λ≥0
‖A>(Ax− b) + λx‖. (33)

If the minimizer of the right hand side of (33) is achieved at λ = 0, then (16) holds with v = 1. Otherwise, the
minimizer is λ = −x>A>(Ax− b) ≥ 0. With this λ, we have[

dist
(
0,A>(Ax− b) +NX(x)

)]2
= ‖A>(Ax− b)− x>A>(Ax− b)x‖2

= (Ax− b)>A(I− xx>)A>(Ax− b).

Let

v∗ = min
x

{
λmin

(
A(I− xx>)A>

)
,

s.t. x>A>(Ax− b) ≤ 0, ‖x‖ = 1
}
, (34)

where λmin(·) denotes the minimum eigenvalue of a matrix. Then v∗ must be a finite nonnegative number. We
show v∗ > 0. Otherwise suppose v∗ = 0, i.e., there is a x such that x>A>(Ax− b) ≤ 0 and ‖x‖ = 1, and also
A(I− xx>)A> is singular. Hence, there exists a y 6= 0 such that

A(I− xx>)A>y = 0. (35)

By scaling, we can assume ‖y‖ = 1. Let z = A>y. Then ‖z‖ = 1, and from (35), we have z>(I − xx>)z =
1− (z>x)2 = 0. This equation implies z = x or z = −x, because both x and z are unit vectors. Without loss of
generality, we can assume z = x. Now recall b = Ax̂ with ‖x̂‖ < 1 and notice

x>A>(Ax− b) = z>A>(Az− b)

= z>A>(y −Ax̂) = 1− z>A>Ax̂ > 0,

where the inequality follows from ‖A‖ = 1, ‖z‖ = 1, and ‖x̂‖ < 1. Hence, we have a contradiction to
x>A>(Ax− b) ≤ 0. Therefore, v∗ > 0.

Putting the above discussion together, we have that (16) holds with v = min{1, v∗}, where v∗ is defined in (34).
This completes the proof.
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A.4 Proof of Theorem 2

First, note that Lβk(·,yk) is L̂k-smooth and ρ̂k-weakly convex, with L̂k and ρ̂k defined in (11). Then by the
x update in Algorithm 3, the stopping conditions of Algorithms 1 and 2, and following the same proof of ε
stationarity as in Theorem 1, we have

dist(0, ∂xLβk(xk+1,yk)) ≤ ε,∀k ≥ 0. (36)

Next we give a uniform upper bound of the dual variable. By (12), (13), y0 = 0, and also the setting of γk, we
have that ∀k ≥ 0,

‖yk‖ ≤
k−1∑
t=0

wt‖c(xt+1)‖ ≤
∞∑
t=0

wt‖c(xt+1)‖

≤ c̄w0‖c(x1)‖(log 2)2 = ymax, (37)

where we have defined c̄ =
∑∞
t=0

1
(t+1)2[log(t+2)]2 and ymax = c̄w0‖c(x1)‖(log 2)2.

Combining the above bound with the regularity assumption (15), we have the following feasibility bound: for all
k ≥ 1,

‖c(xk)‖ ≤ 1

vβk−1
dist

(
0, ∂h(xk) + βk−1Jc(x

k)>c(xk)
)

=
1

vβk−1
dist

(
0, ∂xLβk−1

(xk,yk−1)−∇g(xk)

− Jc(xk)>yk−1
)

≤ 1

vβk−1

(
dist

(
0, ∂xLβk−1

(xk,yk−1)
)

+ ‖∇g(xk)‖

+ ‖Jc(xk)‖‖yk−1‖
)

≤ 1

vβk−1
(ε+B0 +Bcymax), (38)

where the third inequality follows from (36), (10a), (10c), and (37).

Now we define

K = dlogσ Cεe+ 1, with Cε =
ε+B0 +Bcymax

vβ0ε
. (39)

Then by (38) and the setting of βk in Algorithm 3, we have ‖c(xK)‖ ≤ ε. Also recalling (36), we have

dist(0, ∂f0(xk+1) + Jc(x
k+1) (yk + βkc(xk+1))) ≤ ε.

Therefore, xK is an ε-KKT point of (1) with the corresponding multiplier yK−1 + βK−1c(xK), according to
Definition 1.

In the rest of the proof, we bound the maximum number of iPPM iterations needed to stop Algorithm 2, and the
number of APG iterations per iPPM iteration needed to stop Algorithm 1, for each iALM outer iteration.

Denote xtk as the t-th iPPM iterate within the k-th outer iteration of iALM. Then at xtk, we use APG to minimize
F tk(·) := Lβk(·,yk) + ρ̂k‖ · −xtk‖2, which is L̃k := (L̂k + 2ρ̂k)-smooth and ρ̂k-strongly convex. Hence, by Lemma 1,
at most TAPG

k (that is independent of t) APG iterations are required to find an ε
4 stationary point of F tk(·), where

TAPG
k =


√
L̃k
ρ̂k

log
1024L̃2

k(L̃k + ρ̂k)D2

ε2ρ̂k

+ 1,∀k ≥ 0. (40)
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In addition, recalling the definition of Lβ in (2), observe that for all k ≥ 1,

Lβk(xk,yk) ≤B0 +
ε+B0 +Bcymax

vβ0(
ymax +

σ(ε+B0 +Bcymax)

2v

)
σ1−k (41)

≤B0 + c̃, ∀k ≥ 1,

where B0 is given in (10a) and
c̃ := ε+B0+Bcymax

vβ0

(
ymax + σ(ε+B0+Bcymax)

2v

)
. Furthermore,

Lβ0
(x0,y0) ≤ B0 +

β0
2
‖c(x0)‖2,

and ∀k ≥ 0,∀x ∈ dom(h),

Lβk(x,yk) ≥ f0(x) + 〈yk, c(x)〉 ≥ −B0 − ymaxB̄c, (42)

where B̄c is given in (10c).

Combining all three inequalities above with Theorem 1 and ρ̂k-weak convexity of Lβk(·,yk), we conclude at most
TPPM
k iPPM iterations are needed to guarantee that xk+1 is an ε stationary point of Lβk(·,yk), with

TPPM
k =

⌈
32(ρ0 + ymaxL̄+ βkρc)(2B0 + ymaxB̄c + c̃)

ε2

⌉
, ∀k ≥ 1 (43)

TPPM
0 =

⌈
32ρ0
ε2

(2B0 + ymaxB̄c +
β0
2
‖c(x0)‖2)

⌉
. (44)

Consequently, we have shown that at most T total APG iterations are needed to find an ε-KKT point of (1),
where

T =

K−1∑
k=0

TPPM
k TAPG

k , (45)

with K given in (39), TAPG
k given in (40), and TPPM

k given in (43).

The result in (45) immediately gives us the following complexity results.

By (39), we have K = Õ(1) and βK = O(ε−1). Hence from (11), we have ρ̂k = O(βk), L̂k = O(βk),∀k ≥ 0. Then
by (40), TAPG

k = Õ(1),∀k ≥ 0, and by (43), we have TPPM
k = O(ε−3),∀k ≥ 0. Therefore, in (45), T = Õ(ε−3) for

a general nonlinear c(·).

For the special case when c(x) = Ax− b, ‖c(x)‖2 is convex, so we have ρc = 0. Thus by (11), ρ̂k = O(1),∀k ≥ 0.
Hence in (43), TPPM

k = O(ε−2),∀k ≥ 0, and in (40), TAPG
k = Õ(ε−

1
2 ),∀k ≥ 0. Therefore, by (45), T = Õ(ε−

5
2 )

for an affine c(·). This completes the proof.

A.5 Proof of Theorem 3

First, by (12), (17) and y0 = 0, we have

‖yk‖ ≤
k−1∑
t=0

wt‖c(xt+1)‖ =

k−1∑
t=0

M(t+ 1)q := yk

= O(kq+1),∀k ≥ 0. (46)

Following the first part of the proof of Theorem 2, we can easily show that at most K = O(log ε−1) outer iALM
iterations are needed to guarantee xK to be an ε-KKT point of (1). Hence, βk = O(ε−1),∀ 0 ≤ k ≤ K.
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Combining the above bound on K with (46), we have

‖yk‖ ≤ yK :=

K−1∑
t=0

M(K + 1)q = O(Kq+1)

= O
(
(log ε−1)q+1

)
, ∀1 ≤ k ≤ K.

Hence from (11), we have ρ̂k = O(βk) = O(ε−1), L̂k = O(βk) = O(ε−1), ∀ 0 ≤ k ≤ K.

Notice that (41) and (42) still hold with ymax replaced by yk. Hence, ∀k ≤ K, ∀x ∈ dom(h),

Lβk(xk,yk)− Lβk(x,yk) = O

(
yk

(
1 +

yk
βk

))
.

The above equation together with Theorem 1 gives that for any k ≤ K, at most TPPM
k iPPM iterations are needed

to terminate Algorithm 2 at the k-th outer iALM iteration, where

TPPM
k =

⌈
32ρ̂k
ε2
(
Lβk(xk,yk)−min

x
Lβk(x,yk)

)⌉

= O

 ρ̂kyk
(

1 + yk
βk

)
ε2

 .

Also, by Lemma 1, at most TAPG
k APG iterations are needed to terminate Algorithm 1, where

TAPG
k = O

√ L̂k
ρ̂k

log ε−1

 ,∀k ≥ 0.

Therefore, for all k ≤ K,

TPPM
k TAPG

k = O


√
L̂kρ̂k log ε−1

ε2
yk

(
1 +

yk
βk

)
= O

(
yk log ε−1

ε2
(βk + yk)

)
= O

(
kq+1 log ε−1

ε2
(σk + kq+1)

)
= O

(
Kq+1 log ε−1

ε2
(σK +Kq+1)

)
= O

(
(log ε−1)q+2

ε2

(
1

ε
+ (log ε−1)q+1

))
= O

(
(log ε−1)q+2

ε3

)
,

where the second equation is from L̂k = O(βk) and ρ̂k = O(βk) for a general nonlinear c(·), and the fifth one is
obtained by K = O(log ε−1).

Consequently, for a general nonlinear c(·), at most T APG iterations in total are needed to find the ε-KKT point
xK , where

T =

K−1∑
k=0

TPPM
k TAPG

k = O
(
Kε−3(log ε−1)q+2

)
= Õ

(
ε−3
)
.

In the special case when c(x) = Ax− b, the term ‖c(x)‖2 = ‖Ax− b‖2 is convex, so we have ρc = 0. Hence, by
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(11), ρ̂k = O(1),∀k ≥ 0. Then following the same arguments as above, we obtain that for any k ≤ K,

TPPM
k TAPG

k = O


√
L̂kρ̂k

ε2
(log ε−1)q+2


= O

(
ε−

5
2 (log ε−1)q+2

)
.

Therefore, at most T total APG iterations are needed to find the ε-KKT point xK , where

T =

K−1∑
k=0

TPPM
k TAPG

k = Õ
(
ε−

5
2

)
,

which completes the proof.

B ADDITIONAL TABLES

We provide more detailed experimental results on the LCQP and EV problems to demonstrate the empirical
performance of the proposed iALM from another perspective. We compare our method with the iALM in (Sahin
et al., 2019) on LCQP and EV, and the HiAPeM in (Li and Xu, 2020) on LCQP.

For each method, we report the primal residual, dual residual, running time (in seconds), and the number of
gradient evaluation, shortened as pres, dres, time, and #Grad, respectively. The results for all trials are shown
in Tables 4 and 5 for the LCQP problem, and in Tables 6 and 7 for the EV problem. From the results, we
conclude that for both of the LCQP and EV problems, to reach the same-accurate KKT point of each tested
instance, the proposed improved iALM needs significantly fewer gradient evaluations and takes far less time than
all other compared methods.

Table 4: Results by the proposed improved iALM, the iALM by Sahin et al. (2019), and the HiAPeM by Li and
Xu (2020) on solving a 1-weakly convex LCQP (22) of size m = 10 and n = 200.

trial pres dres time #Grad pres dres time #Grad pres dres time #Grad pres dres time #Grad
proposed improved iALM iALM by Sahin et al. (2019) HiAPeM with N0 = 10, N1 = 2 HiAPeM with N0 = 1, N1 = 106

1 2.29e-4 8.31e-4 2.09 47468 7.06e-4 1.00e-3 15.56 1569788 3.77e-5 9.64e-4 2.61 150653 2.28e-4 7.25e-4 3.93 323020
2 1.94e-4 9.24e-4 1.00 26107 1.94e-4 1.00e-3 6.68 713807 4.02e-4 6.45e-4 2.51 154519 3.72e-4 4.83e-4 6.23 531680
3 2.23e-4 3.29e-4 1.35 33392 1.40e-4 1.00e-3 5.37 636043 7.16e-5 6.37e-4 2.06 135379 3.41e-4 9.35e-4 5.54 458308
4 6.58e-4 7.18e-4 2.21 41325 6.58e-4 1.00e-3 9.39 1048446 1.33e-4 8.29e-4 1.53 82087 3.49e-4 7.10e-4 4.67 389567
5 2.22e-4 5.43e-4 1.04 29252 1.80e-4 1.00e-3 9.56 1100625 1.46e-4 4.60e-4 3.11 216479 2.95e-4 9.21e-4 8.97 735546
6 1.75e-4 5.04e-4 1.25 34488 8.96e-4 1.00e-3 11.03 1339160 9.82e-5 7.36e-4 0.64 31099 3.35e-4 7.94e-4 3.32 272395
7 4.03e-4 5.04e-4 1.10 28636 1.98e-4 1.00e-3 7.97 927075 3.00e-4 7.38e-4 3.00 199126 3.89e-4 8.39e-4 6.69 544974
8 5.83e-4 4.58e-4 1.70 39719 8.62e-4 1.00e-3 8.77 982164 3.93e-4 7.13e-4 2.85 189818 4.62e-4 9.09e-4 4.18 338027
9 5.98e-4 3.70e-4 1.66 37379 5.98e-4 1.00e-3 5.23 560382 1.45e-4 9.63e-4 4.34 286666 2.80e-4 9.45e-4 9.78 751636
10 8.11e-4 3.07e-4 1.05 25170 8.23e-4 1.00e-3 30.75 3474626 2.45e-4 8.45e-4 4.49 278127 4.65e-4 9.30e-4 7.47 594326
avg. 4.10e-4 5.49e-4 1.44 34294 5.26e-4 1.00e-3 11.03 1235210 1.97e-4 7.53e-4 2.71 172395 3.52e-4 8.20e-4 6.08 493948

In Table 8 below, we also compare our proposed iALM with the iPPP method in (Lin et al., 2019) on one
representative instance of the LCQP problem in Section 4.1. For iPPP, we tune βk = β0 · k with β0 = 10.
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Table 5: Results by the proposed improved iALM, the iALM by Sahin et al. (2019), and the HiAPeM by Li and
Xu (2020) on solving a 1-weakly convex LCQP (22) of size m = 100 and n = 1000.

trial pres dres time #Grad pres dres time #Grad pres dres time #Grad pres dres time #Grad
proposed improved iALM iALM by Sahin et al. (2019) HiAPeM with N0 = 10, N1 = 2 HiAPeM with N0 = 1, N1 = 106

1 4.36e-4 8.65e-4 109.90 220937 5.80e-4 8.1e-3 2281.8 13098032 1.05e-4 9.96e-4 550.18 2823733 5.35e-4 8.24e-4 897.68 5228014
2 4.07e-4 7.47e-4 144.23 280500 5.90e-4 1.1e-3 1682.5 10207308 1.67e-4 9.04e-4 597.60 2879969 5.51e-4 8.05e-4 740.28 4540532
3 5.99e-4 9.70e-4 99.37 228324 8.73e-4 1.00e-3 1281.3 8587300 8.22e-4 6.92e-4 474.76 2697241 5.67e-4 9.97e-4 1314.3 6986241
4 4.59e-4 8.53e-4 179.91 311724 4.05e-4 2.1e-3 1548.6 8474538 4.10e-5 8.20e-4 747.18 3804152 5.16e-4 8.62e-4 741.43 4281876
5 6.69e-4 9.57e-4 162.06 367321 3.96e-4 1.33e-2 1802.0 12464010 1.17e-4 9.82e-4 603.44 3008964 5.16e-4 9.11e-4 667.01 3830799
6 6.85e-4 8.84e-4 104.30 200256 1.49e-4 1.6e-3 2010.8 13071595 5.16e-4 9.11e-4 667.01 3830799 5.79e-4 9.82e-4 1396.0 8174370
7 6.10e-4 9.30e-4 124.50 244074 4.56e-4 1.4e-3 1843.8 11843900 4.78e-4 7.73e-4 712.36 3658514 5.53e-4 9.25e-4 615.96 3609496
8 8.47e-4 7.40e-4 122.57 261206 4.81e-4 2.3e-3 1520.6 10298480 7.69e-4 6.36e-4 402.49 2036351 5.47e-4 9.78e-4 520.07 2681970
9 5.16e-4 8.91e-4 165.14 316827 2.08e-4 1.3e-3 2334.9 14446205 5.08e-4 4.83e-4 561.30 3268825 5.43e-4 8.26e-4 1059.6 6958198
10 3.46e-4 9.72e-4 142.67 352781 3.13e-4 1.5e-3 1519.9 9370342 8.36e-5 9.60e-4 542.09 2807758 5.54e-4 8.98e-4 1963.1 11091867
avg. 5.57e-4 8.81e-4 135.47 278395 4.45e-4 3.37e-3 1782.6 11186171 3.61e-4 8.16e-4 585.84 3081631 5.46e-4 9.01e-4 991.54 5738336

Table 6: Results by the proposed improved iALM and the iALM by Sahin et al. (2019) on solving a generalized
eigenvalue problem (23) of size n = 200.

trial pres dres time #Obj #Grad pres dres time #Grad
proposed improved iALM iALM by Sahin et al. (2019)

1 1.39e-4 9.98e-4 1.09 46140 38245 1.39e-4 1.00e-3 2.84 233367
2 5.69e-4 9.87e-4 0.48 31456 25592 5.69e-4 1.00e-3 1.32 144750
3 2.57e-4 9.92e-4 0.60 32933 26112 2.57e-4 1.00e-3 2.21 150136
4 1.45e-4 9.98e-4 0.59 29408 25203 1.45e-4 1.00e-3 2.24 153485
5 1.52e-4 1.00e-3 0.93 37477 27434 1.51e-4 1.00e-3 1.63 153596
6 2.34e-4 9.71e-4 0.29 17765 14353 2.34e-4 1.00e-3 0.59 60643
7 9.06e-4 9.98e-4 0.42 26032 20886 9.06e-4 1.00e-3 1.05 109958
8 6.57e-4 9.97e-4 0.42 24184 19974 6.57e-4 1.00e-3 1.53 104508
9 2.44e-4 9.95e-4 0.45 27125 22390 2.44e-4 1.00e-3 1.20 126874
10 2.16e-4 9.98e-4 0.49 31238 26527 2.16e-4 1.00e-3 1.55 160941
avg. 3.52e-4 9.03e-4 0.58 30376 24672 3.52e-4 1.00e-3 1.62 139823

Table 7: Results by the proposed improved iALM and the iALM by Sahin et al. (2019) on solving a generalized
eigenvalue problem (23) of size n = 1000.

trial pres dres time #Obj #Grad pres dres time #Grad
proposed improved iALM iALM by Sahin et al. (2019)

1 6.87e-4 9.78e-4 60.77 56805 42626 6.86e-4 2.5e-3 5671.9 9329514
2 1.39e-4 9.85e-4 63.29 80454 60765 1.38e-4 4.3e-3 8128.5 13295555
3 5.94e-4 9.92e-4 60.87 70884 49616 5.94e-4 1.00e-3 5070.0 8585272
4 4.20e-4 9.97e-4 51.08 73494 51707 4.20e-4 1.00e-3 6045.3 10008459
5 6.27e-4 9.99e-4 65.20 72763 52095 6.27e-4 1.6e-3 6733.4 10820619
6 2.92e-4 9.82e-4 36.16 41402 32164 2.90e-4 3.1e-3 3936.9 6588034
7 3.35e-4 9.95e-4 87.89 104069 74808 3.35e-4 2.1e-3 9183.8 15689148
8 4.47e-4 9.91e-4 51.12 60555 45578 4.46e-4 2.6e-3 5300.0 9039022
9 4.02e-4 9.91e-4 44.23 51399 39064 4.01e-4 2.6e-3 4771.7 8466906
10 9.32e-4 9.95e-4 79.42 98130 69322 9.32e-4 1.6e-3 8846.8 14688990
avg. 4.88e-4 9.91e-4 60.00 70996 51775 4.87e-4 2.24e-3 5975.1 10651152

Table 8: Results by the proposed improved iALM and the iPPP by Lin et al. (2019) on solving an LCQP problem
(23) of size m = 100 and n = 1000.

method pres dres time #Grad
proposed iALM 4.08e-4 7.47e-4 293.2 280500

iPPP in (Lin et al., 2019) 9.98e-4 9.98e-4 930.7 1644496



Zichong Li1, Pin-Yu Chen∗,2, Sijia Liu∗,3, Songtao Lu∗,2, Yangyang Xu∗,1

C BETTER SUBROUTINE BY INEXACT PROXIMAL POINT METHOD

We mentioned at the end of Section 2 that our iPPM is more stable and more efficient on solving nonconvex
subproblems in the form of (7) than the subroutine by Sahin et al. (2019). An intuitive explanation is as follows.
The iPPM tackles the nonconvex problem by solving a sequence of perturbed strongly convex problems, which
can be solved by Nesterov’s accelerated first-order method. In contrast, the subroutine of the iALM by Sahin
et al. (2019) applies Nesterov’s acceleration technique directly while performing proximal gradient update to
solve the nonconvex problem. We believe such a combination of acceleration with nonconvexity attributes to the
instability or inefficiency of the iALM by Sahin et al. (2019).

In this section, we provide numerical results to support the claim above. In Figure 2 below, we plot representative
trajectories of the violation of stationarity for the first subproblem in all of our experiments (namely, LCQP, EV
and clustering problems) using our iPPM and the subsolver by Sahin et al. (2019) started from the same initial
points, where the violation of stationarity is measured as dist

(
0, ∂F (x)

)
. From the figure, we can clearly observe

that our iPPM method is more efficient than the subsolver by Sahin et al. (2019).

instance of LCQP (22) subproblem instance of EV (23) subproblem clustering (24) subproblem with Iris data
size m = 20 and n = 100 size n = 200 size (n, s, r) = (150, 100, 6)
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Figure 2: Comparison of iPPM and the subsolver of an existing iALM in (Sahin et al., 2019) on solving the first
subproblem of LCQP, EV, and clustering problems. Each plot shows the violation of stationarity.


