A Proofs

A. 1 Proof of Theorem 2

Theorem 2. For any fixed γ, let $z \sim N\left(0, \gamma^{2}\right)$, define $D_{s}=\mathbb{E}\left[(\sin (Q(z))-\sin (z))^{2}\right]$, $\zeta_{s}=\operatorname{Cov}(\sin (Q(z))-$ $\sin (z), \sin (z))$, and D_{c} and ζ_{c} analogously for cosine function. Further denote $\triangle_{c}=\mathbb{E}[\cos (Q(z))]-e^{-\frac{\gamma^{2}}{2}}$ and $\tilde{D}_{c}=D_{c}-\triangle_{c}^{2}$. Denote $V_{s}^{*}=\frac{1}{2}\left[1-e^{-2 \rho^{2} \gamma^{2}}\right]$ and $V_{c}^{*}=\frac{1}{2}\left[1+e^{-2 \rho^{2} \gamma^{2}}\right]-e^{-\rho^{2} \gamma^{2}}$. Assume x,y are two normalized samples with correlation ρ. Then at $\gamma, K_{Q}(x, y)$ is lower and upper bounded respectively by

$$
\begin{aligned}
& K(x, y)-D_{s}-D_{c}+2 e^{-\frac{\gamma^{2}\left(1-\rho^{2}\right)}{2}}\left(C_{1-}+C_{2-}\right), \\
& K(x, y)+D_{s}+D_{c}+2 e^{-\frac{\gamma^{2}\left(1-\rho^{2}\right)}{2}}\left(C_{1+}+C_{2+}\right),
\end{aligned}
$$

where $C_{1 \pm}=\left(C_{1} C_{2} \pm \sqrt{\left(1-C_{1}^{2}\right)\left(1-C_{2}^{2}\right)}\right) \sqrt{D_{s} V_{s}^{*}}, C_{2 \pm}=\left[\left(C_{3} C_{4} \pm \sqrt{\left(1-C_{3}^{2}\right)\left(1-C_{4}^{2}\right)}\right) \sqrt{D_{c} V_{c}^{*}}+e^{-\frac{\gamma^{2}}{2}} \triangle_{c}\right]$, with

$$
\begin{aligned}
& C_{1}=\sqrt{\frac{2 \zeta_{s}}{D_{s}\left(1-e^{-2 \gamma^{2}}\right)}}, \quad C_{2}=\frac{e^{-\frac{\gamma^{2}(1-\rho)^{2}}{2}}-e^{-\frac{\gamma^{2}(1+\rho)^{2}}{2}}}{\sqrt{2\left(1-e^{\left.-2 \gamma^{2}\right) V_{s}^{*}}\right.}}, \\
& C_{3}=\sqrt{\frac{\zeta_{c}}{\tilde{D}_{c}\left(\frac{1}{2}\left[1+e^{-2 \gamma^{2}}\right]-e^{-\gamma^{2}}\right)}}, \quad C_{4}=\frac{\frac{1}{2}\left[e^{-\frac{\gamma^{2}(1-\rho)^{2}}{2}}+e^{-\frac{\gamma^{2}(1+\rho)^{2}}{2}}\right]-e^{-\frac{\gamma^{2}\left(1+\rho^{2}\right)}{2}}}{\sqrt{\left(\frac{1}{2}\left[1+e^{-2 \gamma^{2}}\right]-e^{-\gamma^{2}}\right) V_{c}^{*}}} .
\end{aligned}
$$

Proof. First we look at the sine function. In this proof, we will use the notation $(u, v)=\left(w^{T} x, w^{T} y\right) \sim$ $N\left(0, \gamma^{2}\left(\begin{array}{ll}1 & \rho \\ \rho & 1\end{array}\right)\right)$ to denote the projected data. Q is a general quantizer applied to the linear random projections. We have

$$
\begin{align*}
& \mathbb{E}[\sin (Q(u) \sin (Q(v))]=\mathbb{E}[(\sin (Q(u))-\sin (u)+\sin (u)) \\
& \quad(\sin (Q(v))-\sin (v)+\sin (v))] \\
& =\mathbb{E}[(\sin (Q(u))-\sin (u))(\sin (Q(v))-\sin (v))] \\
& \quad+2 \mathbb{E}[(\sin (Q(u))-\sin (u)) \sin (v)]+E[\sin (u) \sin (v)] \\
& \triangleq T_{1}+2 T_{2}+E[\sin (u) \sin (v)] \tag{8}
\end{align*}
$$

By Young's inequality, we have

$$
\begin{equation*}
-D_{s} \leq T_{1} \leq D_{s} \tag{9}
\end{equation*}
$$

To bound the second term, the following identities would be useful. For $u \sim N\left(0, \gamma^{2}\right)$,

$$
\begin{aligned}
\mathbb{E}[\cos (u)] & =e^{-\frac{\gamma^{2}}{2}} \\
\mathbb{E}[\sin (a u) \sin (b u)] & =\frac{1}{2}\left[e^{-\frac{\gamma^{2}(a-b)^{2}}{2}}-e^{-\frac{\gamma^{2}(a+b)^{2}}{2}}\right], \\
\mathbb{E}[\cos (a u) \cos (b u)] & =\frac{1}{2}\left[e^{-\frac{\gamma^{2}(a-b)^{2}}{2}}+e^{-\frac{\gamma^{2}(a+b)^{2}}{2}}\right] .
\end{aligned}
$$

Since we can write $v=\rho u+\sqrt{1-\rho^{2}} Z$ with $Z \sim N\left(0, \gamma^{2}\right)$ independent of u, we have

$$
\begin{align*}
T_{2}= & \mathbb{E}\left[(\sin (Q(u))-\sin (u)) \sin \left(\rho u+\sqrt{1-\rho^{2}} Z\right)\right] \\
= & \mathbb{E}\left[(\sin (Q(u))-\sin (u)) \sin (\rho u) \cos \left(\sqrt{1-\rho^{2}} Z\right)\right] \\
& +\mathbb{E}\left[(\sin (Q(u))-\sin (u)) \cos (\rho u) \sin \left(\sqrt{1-\rho^{2}} Z\right)\right] \\
= & e^{-\frac{\gamma^{2}\left(1-\rho^{2}\right)}{2}} \mathbb{E}[(\sin (Q(u))-\sin (u)) \sin (\rho u)] . \tag{10}
\end{align*}
$$

By assumption,

$$
\begin{aligned}
& \operatorname{Cov}[\sin (Q(u))-\sin (u), \sin (u)]=\zeta_{s} \\
& \operatorname{Var}[\sin (Q(u))-\sin (u)]=D_{s}
\end{aligned}
$$

Now we can compute

$$
\begin{aligned}
& \operatorname{Var}[\sin (u)]=\frac{1}{2}\left[1-e^{-2 \gamma^{2}}\right] \\
& \operatorname{Cov}[\sin (\rho u), \sin (u)]=\frac{1}{2}\left[e^{-\frac{\gamma^{2}(1-\rho)^{2}}{2}}-e^{-\frac{\gamma^{2}(1+\rho)^{2}}{2}}\right] \\
& \operatorname{Var}[\sin (\rho u)]=\frac{1}{2}\left[1-e^{-2 \rho^{2} \gamma^{2}}\right] \triangleq V_{s}^{*}
\end{aligned}
$$

The correlation coefficients are

$$
\begin{aligned}
& C_{1} \triangleq \operatorname{Corr}[\sin (Q(u))-\sin (u), \sin (u)]=\frac{\sqrt{2} \zeta_{s}}{\sqrt{D_{s}\left(1-e^{-2 \gamma^{2}}\right)}} \\
& C_{2} \triangleq \operatorname{Corr}[\sin (\rho u), \sin (u)]=\frac{e^{-\frac{\gamma^{2}(1-\rho)^{2}}{2}}-e^{-\frac{\gamma^{2}(1+\rho)^{2}}{2}}}{\sqrt{\left(1-e^{-2 \gamma^{2}}\right)\left(1-e^{\left.-2 \rho^{2} \gamma^{2}\right)}\right.}}
\end{aligned}
$$

By Cauchy-Schwartz inequality, we know that $\operatorname{Corr}[\sin (Q(u))-\sin (u), \sin (\rho u)]$ is bounded between

$$
\begin{aligned}
& C_{l 1} \triangleq C_{1} C_{2}-\sqrt{\left(1-C_{1}^{2}\right)\left(1-C_{2}^{2}\right)} \\
& C_{u 1} \triangleq C_{1} C_{2}+\sqrt{\left(1-C_{1}^{2}\right)\left(1-C_{2}^{2}\right)}
\end{aligned}
$$

Therefore, we have that

$$
\begin{gathered}
C_{l 1} \sqrt{D_{s} V_{s}^{*}} \leq E[(\sin (Q(u))-\sin (u)) \sin (\rho u)] \\
\leq C_{u 1} \sqrt{D_{s} V_{s}^{*}}
\end{gathered}
$$

Combining with (8), (9) and (10) gives the expression for the sine part. For the cosine, we can use similar approach. From now on, denote $Q=Q_{c, \gamma}$. In particular, we can have

$$
\mathbb{E}\left[\cos (Q(u) \cos (Q(v))]=T_{3}+2 T_{4}+E[\cos (u) \cos (v)]\right.
$$

where

$$
\begin{gathered}
T_{3}=\mathbb{E}[(\cos (Q(u))-\cos (u))(\cos (Q(v))-\cos (v))] \\
T_{4}=\mathbb{E}[(\cos (Q(u))-\cos (u)) \cos (v)]
\end{gathered}
$$

Similarly, we have

$$
-D_{c} \leq T_{3} \leq D_{c}
$$

and

$$
T_{4}=e^{-\frac{\gamma^{2}\left(1-\rho^{2}\right)}{2}} \mathbb{E}[(\cos (Q(u))-\cos (u)) \cos (\rho u)]
$$

Similarly, we can obtain

$$
\begin{aligned}
& \operatorname{Cov}[\cos (Q(u))-\cos (u), \cos (u)]=\zeta_{c} \\
& \operatorname{Var}[\cos (Q(u))-\cos (u)]=\tilde{D}_{c} \\
& \operatorname{Var}[\cos (u)]=\frac{1}{2}\left[1+e^{-2 \gamma^{2}}\right]-e^{-\gamma^{2}} \\
& \operatorname{Cov}[\cos (\rho u), \cos (u)] \\
& =\frac{1}{2}\left[e^{-\frac{\gamma^{2}(1-\rho)^{2}}{2}}+e^{-\frac{\gamma^{2}(1+\rho)^{2}}{2}}\right]-e^{-\frac{\gamma^{2}\left(1+\rho^{2}\right)}{2}} \\
& \operatorname{Var}[\cos (\rho u)]=\frac{1}{2}\left[1+e^{-2 \rho^{2} \gamma^{2}}\right]-e^{-\rho^{2} \gamma^{2}} \triangleq V_{c}^{*}
\end{aligned}
$$

The remaining part is similar, where we use Cauchy-Schwartz to bound the correlation of $\cos (Q(u))-\cos (u)$ and $\cos (\rho u)$. We omit it for conciseness. The desired result is obtained by combining two parts and noticing that $\mathbb{E}[\sin (u) \sin (v)+\cos (u) \cos (v)]=e^{-\gamma^{2}(1-\rho)}=K(u, v)$.

A. 2 Proof of Theorem 3

Theorem 3. (Uniform Approximation Error) Assume the sample space \mathcal{S} is the unit sphere (normalized data). Let QRP-RFF estimators be defined as (6). Let $\Gamma \sim N\left(0, \gamma^{2}\right)$ in Definition 2. Suppose a quantizer Q is mean smooth w.r.t. sin and cos functions with Lipschitz constant L_{Q}^{s} and L_{Q}^{c}, respectively. Then for $\forall \epsilon>0$, with probability at least $1-4 e^{-k \epsilon^{2} / 256}$,

$$
\left|\hat{K}_{Q}(x, y)-K_{Q}(x, y)\right| \leq \epsilon, \quad \text { for } \forall x, y \in \mathcal{S}
$$

when $k \geq \frac{512 d}{\epsilon^{2}} \log \left(\frac{64 \max \left\{L_{Q}^{s}, L_{Q}^{c}\right\} \gamma}{\epsilon}+1\right)$.
Proof. We denote the sample space (unit sphere) as $\mathcal{S}=\mathbb{S}^{d-1}$. Let $\tilde{\mathcal{S}}_{\triangle}$ be a \triangle-net placed on \mathcal{S}. We then can express any $x \in \mathcal{S}$ as $x=\tilde{x}+r_{x}$, for the center $\tilde{x} \in \tilde{\mathcal{S}}_{\triangle}$ and $\left\|r_{x}\right\| \leq \triangle$.
Define

$$
\begin{aligned}
& K_{Q}^{s}(x, y)=\mathbb{E}\left[\sin \left(Q\left(w^{T} x\right)\right) \sin \left(Q\left(w^{T} y\right)\right)\right] \\
& K_{Q}^{c}(x, y)=\mathbb{E}\left[\cos \left(Q\left(w^{T} x\right)\right) \cos \left(Q\left(w^{T} y\right)\right)\right]
\end{aligned}
$$

We have

$$
\begin{align*}
\left|\hat{K}_{Q}(x, y)-K_{Q}(x, y)\right| & =\left|\hat{K}_{Q}^{s}(x, y)+\hat{K}_{Q}^{c}(x, y)-K_{Q}^{s}(x, y)-K_{Q}^{c}(x, y)\right| \\
& \leq\left|\hat{K}_{Q}^{s}(x, y)-K_{Q}^{s}(x, y)\right|+\left|\hat{K}_{Q}^{c}(x, y)-K_{Q}^{c}(x, y)\right| \tag{11}
\end{align*}
$$

As before, we mainly provide details on the sine part, and the reasoning applies to the cosine part similarly. For any $x, y \in \mathcal{S}$, firstly we assume that the following two events hold:

$$
\begin{array}{ll}
\Omega_{1}: & \sup _{\tilde{x} \in \tilde{\mathcal{S}}_{\triangle}} \frac{1}{k} \sum_{i=1}^{k} \sup _{\|r\| \leq \triangle}\left|\sin \left(Q\left(w_{i}^{T} \tilde{x}+w_{i}^{T} r\right)\right)-\sin \left(Q\left(w_{i}^{T} \tilde{x}\right)\right)\right| \leq L_{Q}^{s} \gamma \Delta+\epsilon_{1}, \\
\Omega_{2}: & \sup _{\tilde{x}, \tilde{y} \in \tilde{\mathcal{S}}_{\triangle}}\left|\hat{K}_{Q}^{s}(\tilde{x}, \tilde{y})-K_{Q}^{s}(\tilde{x}, \tilde{y})\right| \leq \epsilon_{2}
\end{array}
$$

For any $x, y \in \mathcal{S}$, we have the following bound by triangle inequality,

$$
\begin{align*}
&\left|\hat{K}_{Q}^{s}(x, y)-K_{Q}^{s}(x, y)\right| \leq\left|\hat{K}_{Q}^{s}(x, y)-\hat{K}_{Q}^{s}(\tilde{x}, y)\right|+\left|\hat{K}_{Q}^{s}(\tilde{x}, y)-\hat{K}_{Q}^{s}(\tilde{x}, \tilde{y})\right| \\
& \quad+\left|\hat{K}_{Q}^{s}(\tilde{x}, \tilde{y})-K_{Q}^{s}(\tilde{x}, \tilde{y})\right|+\left|K_{Q}^{s}(x, y)-K_{Q}^{s}(\tilde{x}, \tilde{y})\right| \\
& \triangleq T_{1}+ T_{2}+T_{3}+T_{4} \tag{12}
\end{align*}
$$

We now bound these terms separately. We have

$$
\begin{aligned}
T_{1} & =\frac{1}{k}\left|\sum_{i=1}^{k} \sin \left(Q\left(w_{i}^{T} \tilde{x}+w_{i}^{T} r_{x}\right)\right) \sin \left(Q\left(w_{i}^{T} \tilde{y}+w_{i}^{T} r_{y}\right)\right)-\sin \left(Q\left(w_{i}^{T} \tilde{x}\right)\right) \sin \left(Q\left(w_{i}^{T} \tilde{y}+w_{i}^{T} r_{y}\right)\right)\right| \\
& =\frac{1}{k}\left|\sum_{i=1}^{k}\left[\sin \left(Q\left(w_{i}^{T} \tilde{x}+w_{i}^{T} r_{x}\right)\right)-\sin \left(Q\left(w_{i}^{T} \tilde{x}\right)\right)\right] \sin \left(Q\left(w_{i}^{T} \tilde{y}+w_{i}^{T} r_{y}\right)\right)\right| \\
& \leq L_{Q}^{s} \gamma \triangle+\epsilon_{1},
\end{aligned}
$$

where the last line is due to event Ω_{1} and boundedness of sine function. Similarly,

$$
\begin{aligned}
T_{2} & =\frac{1}{k}\left|\sum_{i=1}^{k} \sin \left(Q\left(w_{i}^{T} \tilde{x}\right)\right)\left[\sin \left(Q\left(w_{i}^{T} \tilde{y}+w_{i}^{T} r_{y}\right)\right)-\sin \left(Q\left(w_{i}^{T} \tilde{y}\right)\right)\right]\right| \\
& \leq L_{Q}^{s} \gamma \triangle+\epsilon_{1}
\end{aligned}
$$

The event Ω_{2} directly implies that

$$
T_{3} \leq \epsilon_{2}
$$

For T_{4}, by mean smoothness assumption we have

$$
\begin{aligned}
T_{4}= & \left|\mathbb{E}\left[\sin \left(Q\left(w_{i}^{T} \tilde{x}+w_{i}^{T} r_{x}\right)\right) \sin \left(Q\left(w_{i}^{T} \tilde{y}+w_{i}^{T} r_{y}\right)\right)-\sin \left(Q\left(w_{i}^{T} \tilde{x}\right)\right) \sin \left(Q\left(w_{i}^{T} \tilde{y}\right)\right)\right]\right| \\
= & \mid \mathbb{E}\left[\sin \left(Q\left(w_{i}^{T} \tilde{x}+w_{i}^{T} r_{x}\right)\right) \sin \left(Q\left(w_{i}^{T} \tilde{y}+w_{i}^{T} r_{y}\right)\right)-\sin \left(Q\left(w_{i}^{T} \tilde{x}\right)\right) \sin \left(Q\left(w_{i}^{T} \tilde{y}\right)\right)\right. \\
& \left.\quad+\sin \left(Q\left(w_{i}^{T} \tilde{x}+w_{i}^{T} r_{x}\right)\right) \sin \left(Q\left(w_{i}^{T} \tilde{y}\right)\right)-\sin \left(Q\left(w_{i}^{T} \tilde{x}+w_{i}^{T} r_{x}\right)\right) \sin \left(Q\left(w_{i}^{T} \tilde{y}\right)\right)\right] \mid \\
\leq & \mathbb{E} \mid \sin \left(Q\left(w_{i}^{T} \tilde{x}+w_{i}^{T} r_{x}\right)\right)\left[\sin \left(Q\left(w_{i}^{T} \tilde{y}+w_{i}^{T} r_{y}\right)\right)-\sin \left(Q\left(w_{i}^{T} \tilde{y}\right)\right)\right] \\
& \quad-\left[\sin \left(Q\left(w_{i}^{T} \tilde{x}+w_{i}^{T} r_{x}\right)\right)-\sin \left(Q\left(w_{i}^{T} \tilde{x}\right)\right)\right] \sin \left(Q\left(w_{i}^{T} \tilde{y}\right)\right) \mid \\
\leq & L_{Q}^{s} \mathbb{E}\left[\left\|w_{i}^{T} r_{x}\right\|+\left\|w_{i}^{T} r_{y}\right\|\right] \\
\leq & 2 L_{Q}^{s} \gamma \triangle
\end{aligned}
$$

Summing up ingredients together in (12) we get that in event Ω_{1} and Ω_{2}, we have

$$
\left|\hat{K}_{Q}^{s}(x, y)-K_{Q}^{s}(x, y)\right| \leq 2 \epsilon_{1}+\epsilon_{2}+4 L_{Q}^{s} \gamma \triangle
$$

To derive a high probability bound, we now investigate the two events. First, we have the complement

$$
P\left[\Omega_{1}^{c}\right]=P\left[\sup _{\tilde{x} \in \tilde{\mathcal{S}}_{\Delta}} \frac{1}{k} \sum_{i=1}^{k} \sup _{\|r\| \leq \triangle}\left|\sin \left(Q\left(w_{i}^{T} \tilde{x}+w_{i}^{T} r\right)\right)-\sin \left(Q\left(w_{i}^{T} \tilde{x}\right)\right)\right| \geq L_{Q}^{s} \gamma \triangle+\epsilon_{1}\right]
$$

Since the terms in the summation, $\sup _{\|r\| \leq \triangle}\left|\sin \left(Q\left(w_{i}^{T} \tilde{x}+w_{i}^{T} r\right)\right)-\sin \left(Q\left(w_{i}^{T} \tilde{x}\right)\right)\right|$, are i.i.d. random variables, for any $\tilde{x} \in \tilde{\mathcal{S}}_{\triangle}$ the expectation admits

$$
\mathbb{E}\left[\sup _{\|r\| \leq \Delta}\left|\sin \left(Q\left(w_{i}^{T} \tilde{x}+w_{i}^{T} r\right)\right)-\sin \left(Q\left(w_{i}^{T} \tilde{x}\right)\right)\right|\right] \leq L_{Q}^{s} \gamma \triangle,
$$

due to mean smoothness of Q. By Hoeffding's inequality on bounded variables, we get $\forall \tilde{x} \in \tilde{\mathcal{S}}_{\triangle}$

$$
P\left[\frac{1}{k} \sum_{i=1}^{k} \sup _{\|r\| \leq \triangle}\left|\sin \left(Q\left(w_{i}^{T} \tilde{x}+w_{i}^{T} r\right)\right)-\sin \left(Q\left(w_{i}^{T} \tilde{x}\right)\right)\right| \geq L_{Q}^{s} \gamma \triangle+\epsilon_{1}\right] \leq e^{-2 k^{2} \epsilon_{1}^{2} / 4 k}=e^{-\frac{k \epsilon_{1}^{2}}{2}}
$$

Applying union bound over all $\tilde{x} \in \tilde{\mathcal{S}}_{\triangle}$, we obtain

$$
P\left[\Omega_{1}^{c}\right] \leq\left|\tilde{\mathcal{S}}_{\Delta}\right| e^{-k \epsilon_{1}^{2} / 2} \leq\left(\frac{2}{\triangle}+1\right)^{d} e^{-k \epsilon_{1}^{2} / 2}
$$

where the last inequality is due to the bound on covering number of the unit sphere (Corollary 4.2.13 in Vershynin (2018)). When $k \geq \frac{4 d}{\epsilon_{1}^{2}} \log \left(\frac{2}{\Delta}+1\right)$, we have $P\left[\Omega_{1}^{c}\right] \leq e^{-k \epsilon_{1}^{2} / 4}$. For Ω_{2}, applying Hoeffding's inequality yields a point-wise bound, where for $\forall \tilde{x}, \tilde{y} \in \tilde{\mathcal{S}}_{\triangle}$,

$$
\begin{aligned}
P\left[\left|\hat{K}_{Q}^{s}(\tilde{x}, \tilde{y})-K_{Q}^{s}(\tilde{x}, \tilde{y})\right| \geq \epsilon_{2}\right] & =P\left[\frac{1}{k}\left|\sum_{i=1}^{k} \sin (Q(\tilde{x})) \sin (Q(\tilde{y}))-K_{Q}^{s}(\tilde{x}, \tilde{y})\right| \geq \epsilon_{2}\right] \\
& \leq 2 e^{-k \epsilon_{2}^{2} / 2}
\end{aligned}
$$

Casting an union bound over $(\tilde{x}, \tilde{y}) \in \tilde{\mathcal{S}}_{\triangle} \times \tilde{\mathcal{S}}_{\triangle}$ yields

$$
\begin{aligned}
P\left[\Omega_{2}^{c}\right] & =P\left[\sup _{\tilde{x}, \tilde{y} \in \tilde{\mathcal{S}}_{\triangle}}\left|\hat{K}_{Q}^{s}(\tilde{x}, \tilde{y})-K_{Q}^{s}(\tilde{x}, \tilde{y})\right| \geq \epsilon_{2}\right] \\
& \leq 2\binom{\left|\tilde{\mathcal{S}}_{\triangle}\right|}{2} e^{-k \epsilon_{2}^{2} / 2} \\
& \leq\left(\frac{2}{\triangle}+1\right)^{2 d} e^{-k \epsilon_{2}^{2} / 2}
\end{aligned}
$$

Consequently, $P\left[\Omega_{2}^{c}\right] \leq e^{-k \epsilon_{2}^{2} / 4}$ when $k \geq \frac{8 d}{\epsilon_{1}^{2}} \log \left(\frac{2}{\triangle}+1\right)$. Therefore, we obtain that when $k \geq 4 d \log \left(\frac{2}{\triangle}+\right.$ 1) $\max \left\{\epsilon_{1}^{-2}, 2 \epsilon_{2}^{-2}\right\}$,

$$
P\left[\Omega_{1}^{c} \cup \Omega_{2}^{c}\right] \leq e^{-k \epsilon_{1}^{2} / 4}+e^{-k \epsilon_{2}^{2} / 4}
$$

Now by letting $\epsilon_{1}=\epsilon_{2}=\epsilon / 8$, and choosing $\triangle=\frac{\epsilon}{32 L_{Q}^{s} \gamma}$, we have proved that when $k \geq \frac{512 d}{\epsilon^{2}} \log \left(\frac{64 L_{Q}^{s} \gamma}{\epsilon}+1\right)$, the error of sine part is bounded as

$$
\left|\hat{K}_{Q}^{s}(x, y)-K_{Q}^{s}(x, y)\right| \leq \epsilon / 2
$$

with probability at least $1-2 e^{-k \epsilon^{2} / 256}$. Similarly analysis can be used to bound the cosine part. For conciseness we omit the detailed proof. It is true that when $k \geq \frac{512 d}{\epsilon^{2}} \log \left(\frac{64 L_{Q}^{c} \gamma}{\epsilon}+1\right)$, with probability $1-2 e^{-k \epsilon^{2} / 256}$ we have

$$
\left|\hat{K}_{Q}^{c}(x, y)-K_{Q}^{c}(x, y)\right| \leq \epsilon / 2
$$

Therefore, by (11) and union bound we know that when $k \geq \frac{512 d}{\epsilon^{2}} \log \left(\frac{64 \max \left\{L_{Q}^{s}, L_{Q}^{c}\right\} \gamma}{\epsilon}+1\right)$, the kernel approximation error is uniformly bounded by

$$
\left|\hat{K}_{Q}(x, y)-K_{Q}(x, y)\right| \leq \epsilon
$$

for $\forall x, y \in \mathcal{S}$, with probability $1-4 e^{-k \epsilon^{2} / 256}$. This completes the proof.

