One-Sketch-for-All: Non-linear Random Features from Compressed Linear Measurements

A  Proofs

A.1 Proof of Theorem 2

Theorem 2. For any fized v, let z ~ N(0,7?), define Dy = E[(sin(Q(z)) — sin(z))?], ¢ = Cov(sin(Q(z)) —

sin(z),sin(z)), and D. and (. analogously for cosine function. Further denote A, = E[cos(Q(z))] — e~ 7 and
D, = D.—A/2. Denote V} = % {1 — 6_2"272] and V} = % [1 + 6_2’)272} —e=P"7". Assume x,y are two normalized

samples with correlation p. Then at v, Kq(z,y) is lower and upper bounded respectively by

721 -p?)
2

K(x,y) — Dy — D, + 2e~ (Ci— + Ca),
72 -p?)

K(£7y)+DS+Dc+2€_ 2 (Cl++02+),

where C14 = (C1Cy + \/(1 -C?)(1 - C%))\/DSVS*, Coyr = [(0304 + \/(1 -C2)(1 - CZ))\/DCVC* + e‘gAc},
with
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2 % [e_v%;p)z +6_72<12+p>2} B 6_72<12+p2>
Cs = D.(LT1 —242 -2y’ Ca= 1 2 2
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Proof. First we look at the sine function. In this proof, we will use the notation (u,v) = (w'z, wly) ~

1 . . . . . .
N <(), 72 (p /1)>> to denote the projected data. @ is a general quantizer applied to the linear random projec-

tions. We have

E[sin(Q(u) sin(Q(v))] = E {( sin(Q(u)) — sin(u) + sin(u))
(sin(Q(v)) — sin(v) + sin(v))}

= E[(sin(Q(u)) — sin(u))(sin(Q(v)) — sin(v))]
+ 2E[(sin(Q(u)) — sin(u)) sin(v)] + E[sin(u) sin(v)]
2 Ty 4 2T, + Elsin(u) sin(v)]. (8)

By Young’s inequality, we have

—D,<T, <D,. 9)

To bound the second term, the following identities would be useful. For u ~ N(0,~2),

Elcos(u)] = e~

E[sin(au) sin(bu)] =

2% (a=b)? _w2(a+b)2:|
2 e 2
b

E[cos(au) cos(bu)] =

_a%a-n? 72(a+b)2:|
2 _|_ e 2
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Since we can write v = pu + /1 — p2Z with Z ~ N(0,2) independent, of u, we have
T, = E|(sin(Q(u))  sin(w) sin(pu + /1 - p2))|
= B[ (sin(Q(u)) — sin(u)) sin(pu) cos(y/1— 22)]
+ E[(sin(Q(u)) — sin(u)) cos(pu) sin(y/1 — 22)]
= e T (sin(Q(w) — sin(u) sin(pu)|. (10)

By assumption,

Cov[sin(Q(u)) — sin(uw), sin(u)] = (s,

Now we can compute

Var[sin(pu)] = % [1 - 6*29272} sy

The correlation coefficients are

e
Ds(l - 6_272)7
_22a-p? _220+p?
2 —e 2
VL= e 27)(1 — em277)

By Cauchy-Schwartz inequality, we know that Corr[sin(Q(u)) — sin(u), sin(pu)] is bounded between

Cy 2 Corr[sin(Q(u)) — sin(u), sin(u)] =

Co £ Corrlsin(pu),sin(u)] =

Cn 2 010y — /(1 - C)(1 - C3),

Cur 2 10y +\/(1 - CB)(1 — C3).

Therefore, we have that

Cnv/DsVF¥<E {(sm(Q(u)) — sin(u)) sin(pu)}
§ Cul V Dng*-

Combining with (8), (9) and (10) gives the expression for the sine part. For the cosine, we can use similar
approach. From now on, denote @ = Q.. In particular, we can have

E[cos(Q(u) cos(Q(v))] = T3 + 2Ty + E[cos(u) cos(v)],
where
T3 = E[(cos(Q(u)) — cos(u))(cos(Q(v)) — cos(v))];
Ty = E[(cos(Q(u)) — cos(u)) cos(v)].

Similarly, we have
7Dc < T3 < Dcv

and

_720-p?)
2

Ti=e E|(cos(Q(u)) — cos(u))cos(pu)].
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Similarly, we can obtain

Cov[cos(Q(u)) — cos(u), cos(u)] = g,
Var[cos(Q(u)) — cos(u)] = D,
Varlcos(u)] = % [1 te |~
Cov[cos(pu), cos(u)]
_ 1 y2(1—p)? 72(1;,0)2 7v2(12+02)

2 [ ] - ’
Var[cos(pu)] = = {1 t e ] —e 2 V.

The remaining part is similar, where we use Cauchy-Schwartz to bound the correlation of cos(Q(u)) — cos(u) and
cos(pu). We omit it for conciseness. The desired result is obtained by combining two parts and noticing that
E[sin(u) sin(v) + cos(u) cos(v)] = e~V (1-p) = K(u,v).

O

A.2 Proof of Theorem 3

Theorem 3. (Uniform Approxrimation Error) Assume the sample space S is the unit sphere (normalized
data). Let QRP-RFF estimators be defined as (6). Let T ~ N(0,~2) in Definition 2. Suppose a quantizer Q is
mean smooth w.r.t. sin and cos functions with Lipschitz constant L) and Lg,, respectively. Then for ¥V e > 0,

with probability at least 1 — 4e—k52/2567

|Ko(z,y) — Ko(z,y)| <€, forVa,y €S,

64 max{L¢,,L5
€

when k > 313¢ Jog( +1).

Proof. We denote the sample space (unit sphere) as S = S%~1. Let Sa be a A-net placed on S. We then can
express any ¢ € S as © = I + r,, for the center € Sa and ||r.|| < A.

Define

‘We have

|Kq(z,y) — Kqla,y)| = |K§(2,y) + K& (2, y) — K§(z,y) — K&(z,y)]
< |K22($,y)—Ké(I,y)‘-‘ruA(é(l‘,y)—Kgg(l‘,y)‘ (11)

As before, we mainly provide details on the sine part, and the reasoning applies to the cosine part similarly. For
any x,y € S, firstly we assume that the following two events hold:

k
1
Qy: sup — E sup |sin(Q(wl'z 4+ wl'r)) —sin(Q(w! ¥))| < LoyA + e,
zeSp Vo Irli€a

Q2:  sup |f(22(f,ﬂ) - K§(%,7)] < ea.
T,§ESA

For any x,y € S, we have the following bound by triangle inequality,
K8 (2,y) — Ko (x,9)| < |K3(x,y) — K§(F,y)| + |K§(F,y) — K (&, 7)]
ST+ T+ T+ Ty (12)
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We now bound these terms separately. We have

k
7= 2| S sn(Qil & + wl'ry)) sin(@ul § + wl'r,)) ~ sin(Qul ) sin(@(w!  + w!'r,))
i=1

k
- %‘ Z [sin(Q(w] & + w]'ry)) — sin(Q(w] #))] sin(Q(w] § + w] ry))
i=1
< LSQ’}/A + €1,

where the last line is due to event §2; and boundedness of sine function. Similarly,
L
T = 2| Yo sin(Q(!'#)) [sin(@(w! 5+ wr,)) —sin(@u! )] |
i=1
< LoyA e
The event 2y directly implies that
T3 S €g.
For Ty, by mean smoothness assumption we have
Ty = |E [sin(Q(w]'& + wl'r.) sin(Qul'§ + w!'r,)) - sin(Q(w] 7)) sin(Q(w] §)] |
= ‘]E[Sin(Q(wiTi +wl'r,)) sin(Q(wl g+ wl'ry)) — sin(Q(w] &) sin(Q(w] §))
+sin(Q(ulE + w'r)) sin(Q( §)) — sin(@(u  + wl'r.)) sin(@u! §))]|
sin(Q(w] 7 + w ry))[sin(Q(wi § + wiry)) —sin(Q(w] )]
~ [in(Q(u! @ + wl'r,)) - sin(Q(w! @) sin(Q(w 7))

< LHE [[[wf roll + [l ryll]
<2LGHvA.

<E

Summing up ingredients together in (12) we get that in event 7 and s, we have
\K§(2,y) — K& (2,y)| < 261 + €2 + 4L\ A.

To derive a high probability bound, we now investigate the two events. First, we have the complement
1 E
P {Qﬂ = P{ sup — Z sup |sin(Q(w]  + w)r)) —sin(Q(w] ¥))| > LHvA + €1
ieSa Vi Irli<a
Since the terms in the summation, sup,j<a |sin(Q(wl'd + wlr)) — sin(Q(w! %)), are i.i.d. random variables,
for any € Sa the expectation admits

E[ sup [sin(Qul@+w]r)) — sin(Qul#))|] < Ly,
Il <A

due to mean smoothness of Q. By Hoeffding’s inequality on bounded variables, we get Vi € Sa

k .
p[, Z sup |sin(Q(wl'z +wl'r)) —sin(Q(w!'%))| > LyA + el} < e 2WEl/Ak _ o= et
ki misa

Applying union bound over all & € S, we obtain

~ 2
P[Qﬂ < |SA|e—kef/2 < <Z + 1)d€—kef/2’
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where the last inequality is due to the bound on covering number of the unit sphere (Corollary 4.2.13 in Vershynin
(2018)). When k > ‘:—zd log(% + 1), we have P[] < e~kei/4. For Q,, applying Hoeffding’s inequality yields a
1

point-wise bound, where for Vz,y € SA,
PlIRy (@ 9) - K@ 9) > ] = P[] Zsm )sin(Q(3)) — Kg(@.9)| =
S 2€_k62/2.

Casting an union bound over (Z,7) € Sa x Sa yields

P[Qg] :P[ sup |K5(gs,g)—f<5(z,g)|262}

Z,yeSA
<9 |5A| efke§/2
- 2
2 2
“ 1 2d ke2/2.
<(Z+1)
Consequently, P[Q5] < e~*3/4 when k > 8d log(% + 1). Therefore, we obtain that when k > 4dlog(% +

1) max{e; 2, 26, %},

P[Qg U Qg} < emhe/A 4 emhe/d,

Now by letting €; = e2 = ¢/8, and choosing A = we have proved that when k > 513‘1 log(@ + 1), the

€
3Ly
error of sine part is bounded as

K8 (2,y) = Kb (a,y)| < ¢/2,

with probability at least 1 — 2e—ke®/256 Similarly analysis can be used to bound the cosine part. For conciseness
we omit the detailed proof. It is true that when k > 2—3‘1’ 1og(m%7 +1), with probability 1 — 26k /256 e have

w + 1), the kernel approxi-

Therefore, by (11) and union bound we know that when k > 3124 log(
mation error is uniformly bounded by

|KQ(ZL',y) - KQ(.T,y” S €,

for Va,y € S, with probability 1 — 4e=*¢"/256_ This completes the proof. O



