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A Proofs

A.1 Proof of Theorem 2

Theorem 2. For any fixed γ, let z ∼ N(0, γ2), define Ds = E[(sin(Q(z)) − sin(z))2], ζs = Cov
(

sin(Q(z)) −
sin(z), sin(z)

)
, and Dc and ζc analogously for cosine function. Further denote 4c = E[cos(Q(z))] − e−

γ2

2 and

D̃c = Dc−42
c. Denote V ∗s = 1

2

[
1− e−2ρ2γ2

]
and V ∗c = 1

2

[
1 + e−2ρ2γ2

]
−e−ρ2γ2

. Assume x, y are two normalized

samples with correlation ρ. Then at γ, KQ(x, y) is lower and upper bounded respectively by

K(x, y)−Ds −Dc + 2e−
γ2(1−ρ2)

2

(
C1− + C2−

)
,

K(x, y) +Ds +Dc + 2e−
γ2(1−ρ2)

2

(
C1+ + C2+

)
,

where C1± = (C1C2 ±
√

(1− C2
1 )(1− C2

2 ))
√
DsV ∗s , C2± =

[
(C3C4 ±

√
(1− C2

3 )(1− C2
4 ))
√
DcV ∗c + e−

γ2

2 4c
]
,

with

C1 =

√
2ζs

Ds(1− e−2γ2)
, C2 =

e−
γ2(1−ρ)2

2 − e−
γ2(1+ρ)2

2√
2(1− e−2γ2)V ∗s

,

C3 =

√
ζc

D̃c(
1
2

[
1 + e−2γ2

]
− e−γ2)

, C4 =

1
2

[
e−

γ2(1−ρ)2
2 + e−

γ2(1+ρ)2

2

]
− e−

γ2(1+ρ2)
2√

( 1
2

[
1 + e−2γ2

]
− e−γ2)V ∗c

.

Proof. First we look at the sine function. In this proof, we will use the notation (u, v) = (wTx,wT y) ∼

N

(
0, γ2

(
1 ρ
ρ 1

))
to denote the projected data. Q is a general quantizer applied to the linear random projec-

tions. We have

E[sin(Q(u) sin(Q(v))] = E
[(

sin(Q(u))− sin(u) + sin(u)
)

(
sin(Q(v))− sin(v) + sin(v)

)]
= E[(sin(Q(u))− sin(u))(sin(Q(v))− sin(v))]

+ 2E[(sin(Q(u))− sin(u)) sin(v)] + E[sin(u) sin(v)]

, T1 + 2T2 + E[sin(u) sin(v)]. (8)

By Young’s inequality, we have

−Ds ≤ T1 ≤ Ds. (9)

To bound the second term, the following identities would be useful. For u ∼ N(0, γ2),

E[cos(u)] = e−
γ2

2 ,

E[sin(au) sin(bu)] =
1

2

[
e−

γ2(a−b)2
2 − e−

γ2(a+b)2

2

]
,

E[cos(au) cos(bu)] =
1

2

[
e−

γ2(a−b)2
2 + e−

γ2(a+b)2

2

]
.
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Since we can write v = ρu+
√

1− ρ2Z with Z ∼ N(0, γ2) independent of u, we have

T2 = E
[
(sin(Q(u))− sin(u)) sin(ρu+

√
1− ρ2Z)

]
= E

[
(sin(Q(u))− sin(u)) sin(ρu) cos(

√
1− ρ2Z)

]
+ E

[
(sin(Q(u))− sin(u)) cos(ρu) sin(

√
1− ρ2Z)

]
= e−

γ2(1−ρ2)
2 E

[
(sin(Q(u))− sin(u)) sin(ρu)

]
. (10)

By assumption,

Cov[sin(Q(u))− sin(u), sin(u)] = ζs,

V ar[sin(Q(u))− sin(u)] = Ds,

Now we can compute

V ar[sin(u)] =
1

2

[
1− e−2γ2

]
,

Cov[sin(ρu), sin(u)] =
1

2

[
e−

γ2(1−ρ)2
2 − e−

γ2(1+ρ)2

2

]
,

V ar[sin(ρu)] =
1

2

[
1− e−2ρ2γ2

]
, V ∗s .

The correlation coefficients are

C1 , Corr[sin(Q(u))− sin(u), sin(u)] =

√
2ζs√

Ds(1− e−2γ2)
,

C2 , Corr[sin(ρu), sin(u)] =
e−

γ2(1−ρ)2
2 − e−

γ2(1+ρ)2

2√
(1− e−2γ2)(1− e−2ρ2γ2)

.

By Cauchy-Schwartz inequality, we know that Corr[sin(Q(u))− sin(u), sin(ρu)] is bounded between

Cl1 , C1C2 −
√

(1− C2
1 )(1− C2

2 ),

Cu1 , C1C2 +
√

(1− C2
1 )(1− C2

2 ).

Therefore, we have that

Cl1
√
DsV ∗s ≤ E

[
(sin(Q(u))− sin(u)) sin(ρu)

]
≤ Cu1

√
DsV ∗s .

Combining with (8), (9) and (10) gives the expression for the sine part. For the cosine, we can use similar
approach. From now on, denote Q = Qc,γ . In particular, we can have

E[cos(Q(u) cos(Q(v))] = T3 + 2T4 + E[cos(u) cos(v)],

where
T3 = E[(cos(Q(u))− cos(u))(cos(Q(v))− cos(v))],

T4 = E[(cos(Q(u))− cos(u)) cos(v)].

Similarly, we have
−Dc ≤ T3 ≤ Dc,

and

T4 = e−
γ2(1−ρ2)

2 E
[
(cos(Q(u))− cos(u)) cos(ρu)

]
.
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Similarly, we can obtain

Cov[cos(Q(u))− cos(u), cos(u)] = ζc,

V ar[cos(Q(u))− cos(u)] = D̃c,

V ar[cos(u)] =
1

2

[
1 + e−2γ2

]
− e−γ

2

,

Cov[cos(ρu), cos(u)]

=
1

2

[
e−

γ2(1−ρ)2
2 + e−

γ2(1+ρ)2

2

]
− e−

γ2(1+ρ2)
2 ,

V ar[cos(ρu)] =
1

2

[
1 + e−2ρ2γ2

]
− e−ρ

2γ2

, V ∗c .

The remaining part is similar, where we use Cauchy-Schwartz to bound the correlation of cos(Q(u))−cos(u) and
cos(ρu). We omit it for conciseness. The desired result is obtained by combining two parts and noticing that

E[sin(u) sin(v) + cos(u) cos(v)] = e−γ
2(1−ρ) = K(u, v).

A.2 Proof of Theorem 3

Theorem 3. (Uniform Approximation Error) Assume the sample space S is the unit sphere (normalized
data). Let QRP-RFF estimators be defined as (6). Let Γ ∼ N(0, γ2) in Definition 2. Suppose a quantizer Q is
mean smooth w.r.t. sin and cos functions with Lipschitz constant LsQ and LcQ, respectively. Then for ∀ ε > 0,

with probability at least 1− 4e−kε
2/256,

|K̂Q(x, y)−KQ(x, y)| ≤ ε, for ∀x, y ∈ S,

when k ≥ 512d
ε2 log(

64 max{LsQ,L
c
Q}γ

ε + 1).

Proof. We denote the sample space (unit sphere) as S = Sd−1. Let S̃4 be a 4-net placed on S. We then can

express any x ∈ S as x = x̃+ rx, for the center x̃ ∈ S̃4 and ‖rx‖ ≤ 4.

Define

Ks
Q(x, y) = E[sin(Q(wTx)) sin(Q(wT y))],

Kc
Q(x, y) = E[cos(Q(wTx)) cos(Q(wT y))].

We have

|K̂Q(x, y)−KQ(x, y)| = |K̂s
Q(x, y) + K̂c

Q(x, y)−Ks
Q(x, y)−Kc

Q(x, y)|

≤ |K̂s
Q(x, y)−Ks

Q(x, y)|+ |K̂c
Q(x, y)−Kc

Q(x, y)|. (11)

As before, we mainly provide details on the sine part, and the reasoning applies to the cosine part similarly. For
any x, y ∈ S, firstly we assume that the following two events hold:

Ω1 : sup
x̃∈S̃4

1

k

k∑
i=1

sup
‖r‖≤4

| sin(Q(wTi x̃+ wTi r))− sin(Q(wTi x̃))| ≤ LsQγ4+ ε1,

Ω2 : sup
x̃,ỹ∈S̃4

|K̂s
Q(x̃, ỹ)−Ks

Q(x̃, ỹ)| ≤ ε2.

For any x, y ∈ S, we have the following bound by triangle inequality,

|K̂s
Q(x, y)−Ks

Q(x, y)| ≤ |K̂s
Q(x, y)− K̂s

Q(x̃, y)|+ |K̂s
Q(x̃, y)− K̂s

Q(x̃, ỹ)|

+ |K̂s
Q(x̃, ỹ)−Ks

Q(x̃, ỹ)|+ |Ks
Q(x, y)−Ks

Q(x̃, ỹ)|
, T1 + T2 + T3 + T4. (12)
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We now bound these terms separately. We have

T1 =
1

k

∣∣∣ k∑
i=1

sin(Q(wTi x̃+ wTi rx)) sin(Q(wTi ỹ + wTi ry))− sin(Q(wTi x̃)) sin(Q(wTi ỹ + wTi ry))
∣∣∣

=
1

k

∣∣∣ k∑
i=1

[
sin(Q(wTi x̃+ wTi rx))− sin(Q(wTi x̃))

]
sin(Q(wTi ỹ + wTi ry))

∣∣∣
≤ LsQγ4+ ε1,

where the last line is due to event Ω1 and boundedness of sine function. Similarly,

T2 =
1

k

∣∣∣ k∑
i=1

sin(Q(wTi x̃))
[
sin(Q(wTi ỹ + wTi ry))− sin(Q(wTi ỹ))

] ∣∣∣
≤ LsQγ4+ ε1.

The event Ω2 directly implies that

T3 ≤ ε2.

For T4, by mean smoothness assumption we have

T4 =
∣∣∣E [sin(Q(wTi x̃+ wTi rx)) sin(Q(wTi ỹ + wTi ry))− sin(Q(wTi x̃)) sin(Q(wTi ỹ))

] ∣∣∣
=
∣∣∣E[ sin(Q(wTi x̃+ wTi rx)) sin(Q(wTi ỹ + wTi ry))− sin(Q(wTi x̃)) sin(Q(wTi ỹ))

+ sin(Q(wTi x̃+ wTi rx)) sin(Q(wTi ỹ))− sin(Q(wTi x̃+ wTi rx)) sin(Q(wTi ỹ))
]∣∣∣

≤ E
∣∣∣ sin(Q(wTi x̃+ wTi rx))[sin(Q(wTi ỹ + wTi ry))− sin(Q(wTi ỹ))]

− [sin(Q(wTi x̃+ wTi rx))− sin(Q(wTi x̃))] sin(Q(wTi ỹ))
∣∣∣

≤ LsQE
[
‖wTi rx‖+ ‖wTi ry‖

]
≤ 2LsQγ4.

Summing up ingredients together in (12) we get that in event Ω1 and Ω2, we have

|K̂s
Q(x, y)−Ks

Q(x, y)| ≤ 2ε1 + ε2 + 4LsQγ4.

To derive a high probability bound, we now investigate the two events. First, we have the complement

P
[
Ωc1

]
= P

[
sup
x̃∈S̃4

1

k

k∑
i=1

sup
‖r‖≤4

| sin(Q(wTi x̃+ wTi r))− sin(Q(wTi x̃))| ≥ LsQγ4+ ε1

]
.

Since the terms in the summation, sup‖r‖≤4 | sin(Q(wTi x̃ + wTi r)) − sin(Q(wTi x̃))|, are i.i.d. random variables,

for any x̃ ∈ S̃4 the expectation admits

E
[

sup
‖r‖≤4

| sin(Q(wTi x̃+ wTi r))− sin(Q(wTi x̃))|
]
≤ LsQγ4,

due to mean smoothness of Q. By Hoeffding’s inequality on bounded variables, we get ∀x̃ ∈ S̃4

P
[1

k

k∑
i=1

sup
‖r‖≤4

| sin(Q(wTi x̃+ wTi r))− sin(Q(wTi x̃))| ≥ LsQγ4+ ε1

]
≤ e−2k2ε21/4k = e−

kε21
2 .

Applying union bound over all x̃ ∈ S̃4, we obtain

P
[
Ωc1

]
≤ |S̃4|e−kε

2
1/2 ≤ (

2

4
+ 1)de−kε

2
1/2,
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where the last inequality is due to the bound on covering number of the unit sphere (Corollary 4.2.13 in Vershynin

(2018)). When k ≥ 4d
ε21

log( 2
4 + 1), we have P [Ωc1] ≤ e−kε

2
1/4. For Ω2, applying Hoeffding’s inequality yields a

point-wise bound, where for ∀x̃, ỹ ∈ S̃4,

P
[
|K̂s

Q(x̃, ỹ)−Ks
Q(x̃, ỹ)| ≥ ε2

]
= P

[1

k
|
k∑
i=1

sin(Q(x̃)) sin(Q(ỹ))−Ks
Q(x̃, ỹ)| ≥ ε2

]
≤ 2e−kε

2
2/2.

Casting an union bound over (x̃, ỹ) ∈ S̃4 × S̃4 yields

P
[
Ωc2

]
= P

[
sup

x̃,ỹ∈S̃4
|K̂s

Q(x̃, ỹ)−Ks
Q(x̃, ỹ)| ≥ ε2

]
≤ 2

(
|S̃4|

2

)
e−kε

2
2/2

≤ (
2

4
+ 1)2de−kε

2
2/2.

Consequently, P [Ωc2] ≤ e−kε
2
2/4 when k ≥ 8d

ε21
log( 2

4 + 1). Therefore, we obtain that when k ≥ 4d log( 2
4 +

1) max{ε−2
1 , 2ε−2

2 },

P
[
Ωc1 ∪ Ωc2

]
≤ e−kε

2
1/4 + e−kε

2
2/4.

Now by letting ε1 = ε2 = ε/8, and choosing 4 = ε
32LsQγ

, we have proved that when k ≥ 512d
ε2 log(

64LsQγ

ε + 1), the

error of sine part is bounded as

|K̂s
Q(x, y)−Ks

Q(x, y)| ≤ ε/2,

with probability at least 1−2e−kε
2/256. Similarly analysis can be used to bound the cosine part. For conciseness

we omit the detailed proof. It is true that when k ≥ 512d
ε2 log(

64LcQγ

ε + 1), with probability 1− 2e−kε
2/256 we have

|K̂c
Q(x, y)−Kc

Q(x, y)| ≤ ε/2.

Therefore, by (11) and union bound we know that when k ≥ 512d
ε2 log(

64 max{LsQ,L
c
Q}γ

ε + 1), the kernel approxi-
mation error is uniformly bounded by

|K̂Q(x, y)−KQ(x, y)| ≤ ε,

for ∀x, y ∈ S, with probability 1− 4e−kε
2/256. This completes the proof.


