One-Sketch-for-All: Non-linear Random Features from Compressed Linear Measurements

Xiaoyun Li
Department of Statistics
Rutgers University
110 Frelinghuysen Rd. Piscataway, NJ 08854
xiaoyun.li@rutgers.edu

Ping Li
Cognitive Computing Lab
Baidu Research
10900 NE 8th St. Bellevue, WA 98004
liping11@baidu.com

Abstract

RFF (random Fourier features) is a popular technique for approximating the commonly used Gaussian kernel. Due to the crucial tuning parameter γ in the Gaussian kernel, the design of effective quantization schemes for RFF appears to be challenging. Intuitively one would expect that a different quantizer is needed for a different γ value (and we need to store a different set of quantized data for each γ). Interestingly, the recent work (Li and Li, 2021) showed that only one Lloyd-Max (LM) quantizer is needed by showing that the marginal distribution of RFF is free of the tuning parameter γ. On the other hand, Li and Li (2021) still required to store a different set of quantized data for each γ value.

In this paper, we adopt the “one-sketch-for-all” paradigm for quantizing RFFs. Basically, we only store one set of quantized linear sketches after applying random projections on the original data. From the same set of quantized data, we construct RFFs to approximate Gaussian kernels for any tuning parameter γ. Compared with Li and Li (2021), our proposed “one-sketch-for-all” scheme would inevitably lose some accuracy as one should expect. Nevertheless, our proposed method still performs noticeably better than other quantization algorithms such as stochastic rounding. We provide statistical analysis on properties of the proposed quantization method, and conduct experiments to empirically illustrate its effectiveness.

1 Introduction

Non-linear kernels are proven more powerful than linear kernel in various machine learning tasks. Given two (normalized) data vectors $x, y \in S^{d-1}$ with $\rho = \cos(x, y)$, i.e., the “cosine similarity” between x and y, in this paper we consider the following well-known RBF (Gaussian) kernel defined as

$$K(x, y) = e^{-\frac{\gamma^2 \|x - y\|^2}{2}} = e^{-\gamma^2(1-\rho)}, \tag{1}$$

where γ is a tuning parameter. Here, we assume that the data space belongs to the unit sphere for the ease of presentation. Given a dataset composing n samples, standard kernel methods require computing the $n \times n$ kernel matrix consisting of the kernel values between all pairs of samples. In large-scale applications (large n), however, the memory and computational cost would explode (Bottou et al., 2007). To resolve this bottleneck, the scheme of random Fourier features (RFF) (Rahimi and Recht, 2007) provides an effective way to linearize the non-linear kernel by approximation. It is an application of Bochner’s Theorem (Rudin, 1990), which says that a shift-invariant kernel is positive definite (which is true for RBF kernel) if and only if it is the inverse Fourier transform of a non-negative measure Ψ. It then holds that

$$K(x, y) = (F^{-1}\Psi)(x - y) = \int e^{iw^T(x-y)}d\Psi(w) = \mathbb{E}_{w \sim \Psi}\cos(w^T(x - y)),$$

where F denotes the Fourier transform operator. There are actual two popular formulations of RFF, and in this paper we consider the following form

$$F(x) = [\sin(w^Tx) \quad \cos(w^Tx)]^T \tag{2}$$

where $w \sim N(0, \gamma^2I_d)$. This formulation is known to have smaller kernel estimation variance (Sutherland and Schneider, 2015) than the other formulation,\footnote{As shown in Li (2017), the variance of this RFF formulation can be substantially reduced by a normalization step.}
In our proposed scheme, the quantization is applied to both formulations of RFF. Note that, this formulation $F(x) = \sqrt{2}\cos(w^T x + \tau)$ with $\tau \sim \text{unif}(0, 2\pi)$. Of course, our proposed approach can be applied to both formulations of RFF. We note that, this formulation $F(x) = \sqrt{2}\cos(w^T x + \tau)$ was considered in Li and Li (2021) due to its convenience for LM quantizer design.

With the formulation in Eq. (2), the inner product admits $E[F(x)^T F(y)] = e^{-\gamma^2 (1 - \rho^2)} = K(x, y)$. Hence, by using k independent w_i to generate i.i.d. random features F_i, $i = 1, ..., k$, we obtain an unbiased kernel estimator as

$$
\hat{K}(x, y) = \frac{1}{k} \sum_{i=1}^{k} F_i(x)^T F_i(y) \approx K(x, y), \quad (3)
$$

where we treat each RFF as a 2-dimensional vector. Imposing linear kernel on the RFFs would be equivalent to learning with the RBF kernel on the original data. This builds the foundation of approximate non-linear learning with RFF, which has numerous applications (Raginsky and Lazebnik, 2009; Yang et al., 2012; Affandi et al., 2013; Hernández-Lobato et al., 2014; Dai et al., 2014; Yen et al., 2014; Hsieh et al., 2014; Shah and Grahnamani, 2015; Chwialkowski et al., 2015; Richard et al., 2015; Sutherland and Schneider, 2015; Li, 2017; Avron et al., 2017; Sun et al., 2018; Tompkin and Ramos, 2018; Li et al., 2020).

In practice, storing full-precision RFF (non-linear sketches) sometimes is not feasible due to memory constraints. In this case, further condensing the RFFs becomes important, by quantizing the full-precision RFFs ($F(x)$ in Eq. (2)) into low-bit (integer) representations by $Q(F(x))$, where Q is a general quantizing function. For example, Li and Li (2021) studied distortion optimal quantizer design for RFFs, and showed its superior performance in approximate non-linear kernel learning. Particularly, Li and Li (2021) showed that in many cases, using about 4 bits suffices to match the performance of full-precision RFF, suggesting a substantial reduction of the memory/storage cost.

In Eq. (2), constructing RFFs can be viewed as a two-stage procedure: (i) random projection (RP): $w^T x$; (ii) applying non-linearity (sine and cosine functions). Using the quantization scheme developed in Li and Li (2021), one would have to store a set of quantized RFFs for each different tuning parameter γ. When the best tuning parameter is already known (e.g., from prior experience), then the methods in Li and Li (2021) should be adopted. In practice, however, the best tuning parameter might be unknown especially in the early stage of exploration. This means practitioners might have to store multiple (or many) sets of quantized RFFs. This motivates us to develop alternative schemes to avoid the burden of storage.

In our proposed scheme, the quantization is applied before the non-linearity. That said, we first derive the quantized RP as $Q(w^T x)$ in step (i), which is then used to construct non-linear RFF in step (ii). We call it the “QRP-RFF” scheme. The title of our paper, inspired by Gilbert et al. (2007); Li et al. (2008), characterizes the key advantage of the proposed QRP-RFF approach. That is, it achieves “one-sketch-for-all” because we only need one set of highly compressed linear measurements (i.e., quantized RPs), for both linear and non-linear learning. In this paper, we provide the theoretical analysis on the QRP-RFF kernel estimator and the approximation error.

1.1 Practical significance

The method of random projections (RP) has become the standard tool in machine learning, data mining, and many other applications (Johnson and Lindenstrauss, 1984; Dasgupta, 2000; Bingham and Manilla, 2001; Buhler, 2001; Achlioptas, 2003; Fern and Brodley, 2003; Datar et al., 2004; Candès et al., 2006; Donoho, 2006; Li et al., 2006; Freund et al., 2007; Li, 2007). As mentioned before, our QRP-RFF framework allows one to only store the quantized random projections (QRPs) in the database, without requiring access to the full-precision RPs (FP-RPs). Note that, the “intermediate product”, namely the QRP, is itself a useful tool in machine learning, with a wide range of applications in theory, linear learning, similarity search, compressed sensing, etc. (Goemans and Williamson, 1995; Charikar, 2002; Zymnis et al., 2010; Boufounos and Baraniuk, 2008; Datar et al., 2004; Plan and Vershynin, 2013; Gopi et al., 2013; Li et al., 2014; Li and Slawski, 2017; Li and Li, 2019b, a).

Consider the following practical scenario, where a server has collected RPs of massive data samples and...
stored the quantized RPs (QRPs) in the database to save storage. In this procedure, we have lost access to the full-precision RPs (otherwise, quantization becomes meaningless). In order to achieve better learning performance, a data scientist wants to apply non-linear kernel learning. Typically, this can be done in a standard way by learning with RFFs generated by full-precision RPs (FP-RPs). Yet, they have been discarded after quantization, and re-collecting the data might be inconvenient or even impossible (e.g., due to data loss or privacy). Our QRP-RFF method exactly provides a solution in this case, by directly extracting non-linear sketches from QRPs. Therefore, QRP-RFF can be viewed as the first application of QRP to non-linear learning, arising from very practical settings.

2 Backgrounds: Compression for Linear Sketches

We denote the data matrix as $X \in \mathbb{R}^{n \times d}$, where we assume all the samples are normalized to the unit sphere to avoid keeping track of the norms in our analysis. Note that, instance normalization is a common preprocessing step for many learning algorithms. Recall that ρ is the correlation between sample x and y.

Random projection (RP), i.e., the linear sketch, is defined by $X_W = XW$, where $W \in \mathbb{R}^{d \times k}$ is a random matrix with i.i.d. from certain probability distribution (e.g., Rademacher, Gaussian, Cauchy). To derive the RFF for RBF kernel as in Eq. (2), we focus on the Gaussian random projection, i.e., the entries of W are i.i.d. $N(0, \gamma^2)$. X_W is called the full-precision random projection (FP-RP). For two samples $x, y \in \mathbb{R}^{d-1}$, it can be shown that when $\gamma = 1$, we have $E[(w^T x)(w^T y)] = \rho$ where w is a column of W. In other words, the inner product (or cosine) between

Quantized RP. The QRP-RFF approach relies on the quantized random projections (QRPs). An m-level fixed quantizer is a map $Q : \mathcal{X} \rightarrow \mathcal{C}$ with \mathcal{X} the signal domain and \mathcal{C} the codebook containing the reconstruction levels (or the codes) $\mu_1, ..., \mu_m$. Precisely,

$$Q(x) = \mu_i, \quad \text{if } t_{i-1} < x \leq t_i,$$

with $t_0 < t_1 < ... < t_m$ the borders of quantizer Q. We assume $m = 2^b$ where $b \geq 1$ is the number of bit representation. As the projected signal $w^T x \sim N(0, \gamma^2)$ is supported on the real line, we consider quantizers symmetric about 0 and set two ends $t_0 = -\infty$ and $t_m = +\infty$. Next, we introduce the quantizer for QRP that will be discussed in this paper.

The **Lloyd-Max (LM) quantization** (Lloyd, 1982) is an important scheme constructed via purposeful design. For QRP, the LM quantization has been proved favorable for several learning tasks (Li and Slawski, 2017; Li and Li, 2019a). When the underlying signal z comes from a probability distribution $g(z)$, the LM quantizer minimizes the distortion defined as

$$D_Q = E[(z - Q(z))^2] = \int (z - Q(z))^2 g(z) dz, \quad (4)$$

which is the expected squared loss between the true signal and the quantized signal. For QRPs, we use Lloyd’s algorithm for quantizer construction, which is summarized in Algorithm 1 with g set as $N(0, \gamma^2)$, the marginal distribution of the projected data $w^T x$.

Algorithm 1: Lloyd-Max (LM) quantization

```python
Input: Signal distribution $g \sim N(0, \gamma^2)$, bit $b$
Output: LM quantizer $[t_0, ..., t_{2^b}]$, $[\mu_1, ..., \mu_{2^b}]$

While true
  For $i = 1$ to $2^b$
    Update $\mu_i$ by $\mu_i = \frac{\int_{t_{i-1}}^{t_i} x g(x) dx}{\int_{t_{i-1}}^{t_i} g(x) dx}$
  End For
  For $i = 1$ to $2^b - 1$
    Update $t_i$ by $t_i = \frac{\mu_{i-1} + \mu_i}{2}$
  End For
Until Convergence
```

As introduced in Section 1, to strive for more storage efficiency, we define quantized random projection (QRP) as $X_Q = Q(X_W)$, where Q is a quantizing function defined above. In this paper, we will study the problem of using QRP to construct non-linear random features, which will be introduced in Section 3.

Stochastic Rounding. Before moving forward, we briefly introduce a compression method that will be mainly compared with our QRP-RFF in this paper. Stochastic rounding (StocQ) scheme applies standard probabilistic quantization to FP-RFF after it has been generated. A b-bit StocQ quantizer splits the support of trigonometric functions in RFF (i.e., $[-1, 1]$) into $2^b - 1$ equal bins with size $\Delta = \frac{2}{2^b - 1}$, and quantize z to either of its two neighboring borders by

$$P(Q(z) = t^*) = \frac{z - t_*}{\Delta}, \quad P(Q(z) = t_*) = \frac{t^* - z}{\Delta},$$

where $[t_*, t^*]$ is the bin containing z. By this construction, the output $Q(z)$ is unbiased of z. However, the unbiasedness pays a cost of larger variance brought by the sampling process, especially with low bits. With moderate number of bits (e.g., $b = 4$ to 8), StocQ can achieve good learning performance,
In step 2, we require the use of “linear” quantizers that are practical to implement. We call the proposed model QRF-RFF, as depicted in Figure 2. It consists of two items. Hence, throughout this paper, k QRF-RFFs will be compared to 2k StocQ-RFFs.

3 QRP-RFF Scheme

As shown in Eq. (2), RFF is built upon RP with one extra step of casting non-linearity. Given the popularity and wide application of QRP, one natural question arises: can we extract RFF from QRP for fast non-linear kernel learning? Recalling Figure 1, since one typically would like to discard the full-precision RPs to spare unnecessary storage once they have been quantized and stored in the database, this is a more practical setting worth studying. We call the proposed method QRP-RFF, as depicted in Figure 2. It consists of three steps:

1. Apply random projection \(X_W = XW_\gamma \).
2. Quantize the projected data \(X_Q = Q(X_W) \) which will be stored in database. We can discard \(X_W \) afterwards and use compressed \(X_Q \) for various subsequent linear learning tasks.
3. Extract QRP-RFFs from the quantized \(X_Q \), which can then be feed into linear machines for fast approximate non-linear kernel learning.

In step 2, we require the use of “linear” quantizers that satisfy the following property.

Definition 1. In the context of Gaussian QRP, let \(Q \) be the quantizer w.r.t. \(N(0,1) \). The quantization scheme is called linear if for any \(\gamma > 0 \), \(\gamma Q \) is the corresponding quantizer for \(N(0,\gamma^2) \).

In particular, it is easy to check that the LM quantizer falls into this category. The linearity of quantizer allows us to derive QRP for any \(\gamma \), from the QRP with \(\gamma = 1 \). This has a crucial impact on the parameter tuning of QRP-RFF. We can simply store one set of compressed linear sketch (e.g., QRPs with \(\gamma = 1 \)) in memory to tune QRP-RFF with any \(\gamma \) by scaling—This is the essential reason that QRP-RFF does not require FP-RP and achieves “one-sketch-for-all”. On the contrary, if linearity does not hold, we will have to use the original FP-RP to re-construct quantized sketches for distinct \(\gamma \), violating our problem setting.

Following step 3, we formally define the QRP-RFF as

\[
F_Q(x) = [\sin(Q(w^T x)) \cos(Q(w^T x))]^T, \tag{5}
\]

where \(w \sim N(0,\gamma^2) \) and \(Q \) is a linear quantizer (Definition 1). Analogously, by \(k \) i.i.d. projections, we defined the QRP-RFF kernel estimator by

\[
\hat{K}_Q(x, y) = \frac{1}{k} \sum_{i=1}^{k} F_Q,i(x)^T F_Q,i(y), \tag{6}
\]

where \(F_Q,i(x) \) is the \(i \)-th QRP-RFF of \(x \) associated with projection \(w_i \). We re-emphasize the significance of our QRP-RFF scheme: by directly retrieving non-linear random features from QRP, QRP-RFF does not need FP-RP or many sets of quantized RFFs (for different \(\gamma \) values). Instead, only one set of compressed QRP is needed for both linear and non-linear learning.

4 Analysis

In this section, we discuss properties of QRP-RFF kernel estimators and provide the theoretical analysis.

4.1 Equivalence in kernel learning when \(b = 1 \)

In practice, 1-bit compression, e.g. 1-bit random projection, is an important special case of quantization because it achieves highest compression ratio. For linear RP, one can easily point out that all 1-bit quantization methods are equivalent, when the task is to estimate the cosine \(\rho \). Every 1-bit quantizer can be written as \(Q(w^T x) = \gamma c_Q \cdot sign(w^T x) \) with some quantizer-specific constant \(c_Q \). That is, different 1-bit quantizers only differ by a constant scaling factor, which can be easily fixed by re-scaling when estimating \(\rho \) by the inner product \(Q(w^T x)Q(w^T y) \). However, it is obvious that for QRP-RFF, linear scaling of the kernel
estimate no longer holds due to the high non-linearity of sine and cosine functions. Nevertheless, we have a weaker statement of equivalence.

Claim 1. For QRP-RFF, all 1-bit fixed linear quantizers are equivalent in non-linear kernel learning models, provided that \(\gamma \) is tuned properly.

When \(b = 1 \), Eq. (5) can be written in the general form

\[
F_Q(x) = [\sin(\gamma c_Q \cdot \text{sign}(w^T x)) \cos(\gamma c_Q \cdot \text{sign}(w^T x))]^T
\]

with some quantizer-specific \(c_Q \). Then, the QRP-RFFs generated by \(Q_1 \) with \(\gamma_1 \) can be produced by \(Q_2 \) with \(\gamma_2 = \frac{\omega}{\gamma} \gamma_1 \). In words, the difference in \(c_Q \) can be eliminated in practice by tuning \(\gamma \) adequately. As a result, in principle, the learning performance of all 1-bit quantizers for QRP-RFF are expected to be the same with fine tuning.

4.2 Information loss of QRP-RFF

From now on, we will denote \(K_Q(x,y) = \mathbb{E}[\bar{K}_Q(x,y)] \), or \(K_Q \) in short. This is sometimes referred as "expected kernel" in kernel approximation literature. One inevitable issue of extracting RFF directly from fixed quantized random projections, is the information loss in the transaction from linear projections to highly non-linear sine and cosine functions, especially for large \(\gamma \) and small bits \(b \). The reason is that, when \(\gamma \) is large, the difference \(|Q(z) - z| \) might be so large that \(\sin(Q(z)) \) and the FP-RFF \(\sin(z) \) (and cosine) are very different, where \(z = w^T x \sim N(0, \gamma^2) \) is the RP. When \(b \) is small, the deviation is even larger.

\[
\text{Figure 3: Information loss of QRP-RFF: Mean of 1-bit QRP-RFF estimate from LM quantized QRP, at } \rho = -1. \text{ The red curve is the true kernel, and the blue curve is the 1-bit QRP-RFF mean.}
\]

We will use the estimation at a single point as an example. When \(b = 1 \), we can compute the LM quantizer as \(Q(z) = \text{sign}(z) \times 0.7979 \gamma \). Thus we can explicitly compute \(K_Q \) at \(\rho = -1 \) as \(-\sin(0.7979 \gamma)^2 + \cos(0.7979 \gamma)^2 \). This is a periodic function in \(\gamma \) that deviates significantly from the true kernel value at \(\rho = -1 \), as depicted in Figure 3. We see that the mean (at \(\rho = -1 \)) is only reasonable with \(\gamma \leq 1 \). With larger \(\gamma \), the estimation becomes wild. Similar instability holds for other \(\rho \). Unfortunately, this unstable behavior is caused by the nature of the problem, i.e., the information loss of coding with discrete \(Q \) in the "linear" QRP to "non-linear" RFF transaction. Nevertheless, as will be shown in Section 4.3, when \(b \geq 3 \), the information loss becomes acceptable as the mean estimation of QRP-RFF approaches the true RBF kernel.

4.3 Mean and variance

Theorem 1. Let \(Q \) be a \(b \)-bit fixed quantizer with borders \(-\infty = t_0 < t_1 < \ldots < t_{2b} = +\infty \) and reconstruction levels \(\mu_1 < \ldots < \mu_{2b} \). Suppose \(u,v \sim N\left(0, \gamma^2 \begin{pmatrix} 1 & \rho \\ \rho & 1 \end{pmatrix}\right) \), and let \(p_{ij} = P(u \in [t_{i-1},t_i], v \in [t_{j-1},t_j]) \) for \(1 \leq i,j \leq 2^b \). Denote \(s_i = \sin(\mu_i) \) and \(c_i = \cos(\mu_i) \). For normalized data vectors \(x \) and \(y \),

\[
K_Q := \mathbb{E}[\bar{K}_Q(x,y)] = \sum_{i=1}^{2^b} \sum_{j=1}^{2^b} (s_i s_j + c_i c_j) p_{ij},
\]

\[
\text{Var} [\bar{K}_Q(x,y)] = \frac{1}{K^2} \left\{ \sum_{i=1}^{2^b} \sum_{j=1}^{2^b} (s_i s_j + c_i c_j)^2 p_{ij} - K_Q^2 \right\}.
\]

With the potentially severe instability of low-bit QRP-RFF estimate in mind, in Figure 4 we plot \(K_Q \) with different \(b \) and \(\gamma \), when the RQP is quantized by LM quantizers. We observe the mild estimation when \(b = 1, 2 \) at some \(\gamma \) value. As expected, as \(b \) increases, \(K_Q \) converges to the true kernel \(K \).

\[
\text{Figure 4: Solid curves: the mean of QRP-RFF estimate (Theorem 1). Dash curves: the true RBF kernel. We see some large deviations when } b = 1, 2.
\]
Remark 1. It is important to understand that, K_Q deviating from the exact RBF kernel does not imply bad generalization performance of QRP-RFF. On the one hand, the performance of randomized algorithms also largely relies on the variance (e.g., the large variance of low-bit StocQ results in poor learning capacity, though it is unbiased). On the other hand, in some sense we can regard the QRP-RFF estimators as converging to some other kernel, and comparing the learning capacity of two non-linear kernels is non-trivial and in general data-dependent.

Due to the information loss, the intrinsic instability of QRP-RFF estimator makes it difficult to obtain elegant theoretical results on the expected kernel K_Q (e.g., recalling Figure 3). Nonetheless, we still provide analytical bounds on K_Q measuring its concentration around the RBF kernel. The following is a general result holding for any quantizer Q.

Theorem 2. For any fixed γ, let $z \sim N(0, \gamma^2)$, define $D_s = \mathbb{E}[(\sin(Q(z)) - \sin(z))^2]$, $\zeta_s = \text{Cov}(\sin(Q(z)) - \sin(z), \sin(z))$, and D_c and ζ_c analogously for cosine function. Further denote $\Delta_c = \mathbb{E}[(\cos(Q(z)))] - e^{-\frac{\gamma^2}{2}}$ and $\tilde{D}_c = D_c - \Delta_c^2$. Denote $V^*_c = \frac{1}{2} \left[1 - e^{-2\rho^2\gamma^2} \right]$ and $V^*_c = \frac{1}{2} \left[1 + e^{-2\rho^2\gamma^2} \right] - e^{-\rho^2\gamma^2}$. Assume x, y are two normalized samples with correlation ρ. Then at γ, $K_Q(x, y)$ is lower and upper bounded respectively by

$$K(x, y) - D_s - D_c + 2e^{-\frac{\gamma^2}{2}(1+\rho^2)}(C_{1-} + C_{2-}),$$

$$K(x, y) + D_s + D_c + 2e^{-\frac{\gamma^2}{2}(1+\rho^2)}(C_{1+} + C_{2+}),$$

where $C_{1\pm} = (C_1C_2 \pm \sqrt{(1-C_1^2)(1-C_2^2)})\sqrt{D_s V^*_s}$, $C_{2\pm} = [C_1C_4 \pm \sqrt{(1-C_1^2)(1-C_4^2)})\sqrt{D_s V^*_s} + e^{-\frac{\gamma^2}{2} \Delta_c}], \text{ with}$

$$C_1 = \sqrt{\frac{2\zeta_s}{D_s(1-e^{-2\rho^2\gamma^2})}}, \quad C_2 = e^{-\frac{\gamma^2(1+\rho^2)}{2}} - e^{-\frac{\gamma^2(1+\rho^2)}{2}}/\sqrt{2(1-e^{-2\rho^2\gamma^2})V^*_s},$$

$$C_3 = \sqrt{\frac{\zeta_c}{D_c \left[1 + e^{-2\rho^2\gamma^2} \right] - e^{-\rho^2\gamma^2}}},$$

$$C_4 = \frac{\frac{1}{2} \left[e^{-\frac{\gamma^2(1+\rho^2)}{2}} + e^{-\frac{\gamma^2(1+\rho^2)}{2}} \right] - e^{-\frac{\gamma^2(1+\rho^2)}{2}}}{\sqrt{\frac{1}{2} \left[1 + e^{-2\gamma^2} \right] - e^{-\gamma^2}} V^*_c}.$$

Theorem 2 gives a universal bound on the QRP-RFF mean for any γ at any ρ, which states that K_Q “concentrates” around K with error no more than $O(D_s + D_c + \sqrt{D_s} + \sqrt{D_c})$. Thus, smaller non-linear distortions lead to stronger concentration, as smaller D_s and D_c imply better approximation of QRP-RFF to RFF. As $b \to \infty$, the distortions go to 0 and K_Q converges to K.

Variance. Another important factor that affects the learning performance with randomized algorithms is the variance of the estimation. In Figure 5, we plot variances of full-precision RFF, QRP-RFF with LM quantization and StocQ estimators at representative γ levels. We see that at low bit constraint $b = 1, 2$, the stochastic StocQ has much larger variance than QRP-RFF estimators. Consequently, StocQ may perform worse than QRP-RFF in low-bit training. We omit the figures for more bits, since the variance of QRF-RFF converges to that of FP-RFF as expected.

Figure 5: Variance of a random feature of FP-RFF, StocQ and QRP-RFF (Theorem 1, to be scaled by k). The variance of StocQ follows from Li and Li (2021).

4.4 Approximation error

In practice, it is favorable to produce and store as few RFFs as possible to achieve small approximation error to the true RBF kernel. Similarly, we are also interested in the sufficient number of QRP-RFFs to approximate K_Q within some pre-defined error. In this context, it is important to understand the sample complexity of QRP-RFF, measured by the uniform approximation error $\sup_{x, y \in X} |K_Q(x, y) - K_Q(x, y)|$. For full-precision RFF (Rahimi and Recht, 2007; Suther-
\(k \) is required to be at least \(O(\frac{e^2}{\epsilon} \log \frac{1}{\epsilon}) \) to guarantee \(\epsilon \)-approximation w.h.p.. To proceed, we first introduce the following definition.

Definition 2. (Smooth Quantizer) We say a quantizer \(Q(\cdot) \) is mean Lipschitz smooth w.r.t. distribution \(\Gamma \) and function \(f \) with constant \(L_f^Q \), if for \(\forall \delta > 0 \), the following holds,

\[
\mathbb{E}_{t \sim \Gamma} \left[\sup_{|r| \leq \delta} |f(Q(t + r)) - f(Q(t))| \right] \leq L_f^Q \delta. \tag{7}
\]

Basically, quantizer \(Q \) is mean smooth if the average maximal deviation of a function \(f \) applied to the quantized random measurements from \(\Gamma \) is bounded in a Lipschitz way. This is a an “averaged” version of Lipschitz continuity, which also works for discrete functions. Definition 2 is a generalisation of (Schellekens and Jacques, 2020) which was restricted to periodic simulations. Theorem 3 is a generalisation of (Schellekens and Jacques, 2020) which was restricted to periodic functions. In our problem where \(f \) is sine or cosine, \(f \circ Q \), when composited as one function, is no longer periodic. By extending the characterization to a more general setting, the uniform approximation error of QRP-RFF is given as below (with general quantizers).

Theorem 3. (Uniform Approximation Error) Assume the sample space \(S \) is the unit sphere (normalized data). Let QRP-RFF estimators be defined as (6). Let \(\Gamma \sim N(0, \gamma^2) \) in Definition 2. Suppose a quantizer \(Q \) is mean smooth w.r.t. sin and cosine functions with Lipschitz constant \(L_f^Q \) and \(L_f^Q \), respectively. Then for \(\forall \epsilon > 0 \), with probability at least \(1 - 4e^{-k^2/256} \),

\[
|K_f(x, y) - K_f(x, y)| \leq \epsilon, \quad \text{for } \forall x, y \in S,
\]

when \(k \geq \frac{512d}{\epsilon^2} \log \left(\frac{64 \max(L_f^Q, L_f^Q)^{\gamma}}{\epsilon} + 1 \right) \).

Theorem 3 says that to achieve \(\epsilon \)-error, the sample complexity of QRP-RFF is the same as that of full-precision RFF, within constant factor. We now show that for our problem where \(f \) is the sin or cos function and \(\Gamma \sim N(0, \gamma^2) \), every bounded quantizer with finite bits is mean smooth. Hence, the error bound in Theorem 3 holds for LM quantizer.

Proposition 1. When \(f \) is sin or cos function and \(\Gamma \sim N(0, \gamma^2) \) in Definition 2, every finite-bit bounded quantizer is mean Lipschitz smooth with \(L_f^Q = \frac{4(2^b - 1)}{\gamma \sqrt{2\pi}} \).

Proof. We present the analysis of sine function. Assume the quantizer has \(b \) bits. Thus it contains \(2^b - 1 \) finite borders, denoted as \(t^*_1, \ldots, t^*_{2^b - 1} \). For a fixed point \(t \), the value \(\sup_{|r| \leq \delta} |\sin(Q(t + r)) - \sin(Q(t))| \) equals to 0 if \(t^*_i + \delta \leq t \leq t^*_{i+1} - \delta \) for some \(i \). Otherwise, \(\sup_{|r| \leq \delta} |\sin(Q(t + r)) - \sin(Q(t))| \) would be bounded by 2. Therefore, integrating over the domain of \(\Gamma \) gives

\[
\mathbb{E}_{t \sim N(0, \gamma^2)} \left[\sup_{|r| \leq \delta} |f(Q(t + r)) - f(Q(t))| \right] \leq 2P\left[t \in \bigcup_{i=1}^{2^b-1} [t^*_i - \delta, t^*_{i+1} + \delta] \right] \leq 4(2^b - 1) \delta.
\]

The last line is due to the fact that for \(t \sim N(0, \gamma^2) \), the property of normal density implies \(P[|t^* - \delta | \leq t \leq |t^* + \delta |] \leq 2 \delta \cdot \frac{1}{\gamma \sqrt{2\pi}} \) for any \(t^* \). Therefore, the mean smoothness constant \(L_f^Q \) is at most \(\frac{4(2^b - 1)}{\gamma \sqrt{2\pi}} \). Similar proof holds for cosine function.

5 Experiments

In this section, we test the learning performance of QRP-RFF scheme in kernel classification problems. The main purpose is to show that (i) QRP-RFF performs better than StocQ with low bits; and (ii) when \(b \) is as large as 4, the performance of QRP-RFF is similar to the full-precision RFF.

Setting. We compare three randomized approximations: 1) the full-precision RFF; 2) QRP-RFF with underlying LM quantization; and 3) stochastic quantization (StocQ)\(^3\). For approaches involving quantization, after the FP-RFFs are generated, we process them with corresponding quantization strategy, then feed them into a linear SVM solver. We tune the parameters \(C \) for SVM and \(\gamma \) for RBF kernel over a wide range of values. We use public datasets from UCI machine learning repository (Dua and Graff, 2017). For all datasets, the samples are normalized to have unit norm. On each dataset, we randomly split the samples into 60% for training and 40% for testing. For each method, the best test accuracy among \(C \) and \(\gamma \) are reported, averaged over 10 independent repetitions.

Results. In Figure 6, we report the classification test accuracy against the number of RFFs used, with \(b = 1, 2, 4 \). We observe the following:

- **Low-bit training.** For \(b = 1 \), on all datasets, we observe significant higher accuracy of QRP-RFF over StocQ. On ISOLET, QRP-RFF with \(b = 1 \) almost achieves the same accuracy as full-precision RFF. For \(b = 2 \), QRP-RFF also compares favorably with StocQ, when the number of random sketches is moderate (i.e., more than \(2^{10} \)). The poor performance of StocQ can be partially explained by its large variance with low bits (see Figure 5 and Li and Li (2021)).

\(^3\)We implemented StocQ to both aforementioned formulations of RFFs, and found very similar performance.
• More bits. As we use more bits, the test accuracy of both quantization methods gets improved. For QRP-RFF, on all datasets, \(b = 4 \) is sufficient to approach the performance of FP-RFF, with moderate number of random features.

Memory saving. The benefit of QRP-RFF in terms of storage saving becomes obvious given Figure 6. Since 4-bit QRP-RFF almost has same test accuracy as using FP-RFF, the storage can typically be reduced by at least \(32/4 = 8x \) or \(16x \), when FP-RFFs are represented by 32 bits or 64 bits, respectively.

6 Discussions and Conclusions

In this paper, we consider the problem of constructing random Fourier features (RFF) from quantized random projections (QRP). Our proposed QRP-RFF scheme is “one-sketch-for-all” in the sense that we only need to store one set of compressed linear sketches for both linear and non-linear learning (and for any \(\gamma \) parameter for the Gaussian kernel), which is convenient in practical scenarios where one would commonly discard full-precision RPs after deriving the QRP from the original data and RPs. We provide general bounds on the mean and uniform approximation errors of the proposed kernel estimator and compare Lloyd-Max quantization with a stochastic rounding method. In the experiments, QRP-RFF outperforms stochastic rounding, in terms of the kernel SVM accuracy in the low-bit training scenario, which is important in practice, and approximates the performance of full-precision RFF with 4-bit quantization. Compared with Li and Li (2021), which directly optimized the quantized outputs on top of the RFFs, the proposed method would unavoidably lose certain accuracy. Nevertheless, QRP-RFF provides a feasible alternative in certain application scenarios in which practitioners could not afford to store multiple sets of RFFs for different tuning parameters (\(\gamma \)) of the Gaussian kernel. Finally, we should mention one additional price which the proposed scheme has to pay, that is, we will need to compute sine and cosine functions on the fly. The computations can be to an extent avoided by tabulations (i.e., one look-up table for each \(\gamma \) value).

In conclusion, for applications where we know the best tuning parameter \(\gamma \), we should use the quantization scheme in Li and Li (2021). If the best \(\gamma \) is unknown (e.g., in an early stage of exploration), our proposed method provides a feasible alternative.

Acknowledgement

The authors sincerely thank the anonymous reviewers and area chairs of AISTATS 2021, for their constructive and encouraging comments.
References

Ping Li. Very sparse stable random projections for dimension reduction in \(l_\alpha \) (\(0 < \alpha \leq 2 \)) norm. In Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD), pages 440–449, San Jose, CA, 2007.

Ian En-Hsu Yen, Ting-Wei Lin, Shou-De Lin, Pradeep Ravikumar, and Inderjit S. Dhillon. Sparse random feature algorithm as coordinate descent in hilbert
