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Abstract

RFF (random Fourier features) is a popular
technique for approximating the commonly
used Gaussian kernel. Due to the crucial tun-
ing parameter γ in the Gaussian kernel, the
design of effective quantization schemes for
RFF appears to be challenging. Intuitively
one would expect that a different quantizer is
needed for a different γ value (and we need to
store a different set of quantized data for each
γ). Interestingly, the recent work (Li and
Li, 2021) showed that only one Lloyd-Max
(LM) quantizer is needed by showing that
the marginal distribution of RFF is free of
the tuning parameter γ. On the other hand,
Li and Li (2021) still required to store a dif-
ferent set of quantized data for each γ value.

In this paper, we adopt the “one-sketch-for-
all” paradigm for quantizing RFFs. Basi-
cally, we only store one set of quantized lin-
ear sketches after applying random projec-
tions on the original data. From the same
set of quantized data, we construct RFFs to
approximate Gaussian kernels for any tun-
ing parameter γ. Compared with Li and
Li (2021), our proposed “one-sketch-for-all”
scheme would inevitably lose some accuracy
as one should expect. Nevertheless, our pro-
posed method still performs noticeably better
than other quantization algorithms such as
stochastic rounding. We provide statistical
analysis on properties of the proposed quan-
tization method, and conduct experiments to
empirically illustrate its effectiveness.
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1 Introduction

Non-linear kernels are proven more powerful than lin-
ear kernel in various machine learning tasks. Given
two (normalized) data vectors x, y ∈ Sd−1 with ρ =
cos(x, y), i.e., the “cosine similarity” between x and
y, in this paper we consider the following well-known
RBF (Gaussian) kernel defined as

K(x, y) = e−
γ2‖x−y‖2

2 = e−γ
2(1−ρ), (1)

where γ is a tuning parameter. Here, we assume that
the data space belongs to the unit sphere for the ease
of presentation. Given a dataset composing n sam-
ples, standard kernel methods require computing the
n × n kernel matrix consisting of the kernel values
between all pairs of samples. In large-scale applica-
tions (large n), however, the memory and computa-
tional cost would explode (Bottou et al., 2007). To
resolve this bottleneck, the scheme of random Fourier
features (RFF) (Rahimi and Recht, 2007) provides an
effective way to linearize the non-linear kernel by ap-
proximation. It is an application of Bochner’s Theo-
rem (Rudin, 1990), which says that a shift-invariant
kernel is positive definite (which is true for RBF ker-
nel) if and only if it is the inverse Fourier transform of
a non-negative measure Ψ. It then holds that

K(x, y) = (F−1Ψ)(x− y) =

∫
eiv

T (x−y)dΨ(w)

= Ew∼Ψ[cos(wT (x− y))],

where F denotes the Fourier transform operator.
There are actual two popular formulations of RFF,
and in this paper we consider the following form

F (x) = [sin(wTx) cos(wTx)]T (2)

where w ∼ N(0, γ2Id). This formulation is known
to have smaller kernel estimation variance (Suther-
land and Schneider, 2015) than the other formulation,1

1As shown in Li (2017), the variance of this RFF formu-
lation can be substantially reduced by a normalization step.
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i.e., F (x) =
√

2 cos(wTx + τ) with τ ∼ unif(0, 2π).
Of course, our proposed approach can be applied to
both formulations of RFF. Note that, this formulation
F (x) =

√
2 cos(wTx + τ) was considered in Li and Li

(2021) due to its convenience for LM quantizer design.

With the formulation in Eq. (2), the inner product

admits E[F (x)TF (y)] = e−γ
2(1−ρ) = K(x, y). Hence,

by using k independent wi to generate i.i.d. random
features Fi, i = 1, ..., k, we obtain an unbiased kernel
estimator as

K̂(x, y) =
1

k

k∑
i=1

Fi(x)TFi(y) ≈ K(x, y), (3)

where we treat each RFF as a 2-dimensional vector.
Imposing linear kernel on the RFFs would be equiv-
alent to learning with the RBF kernel on the original
data. This builds the foundation of approximate non-
linear learning with RFF, which has numerous applica-
tions (Raginsky and Lazebnik, 2009; Yang et al., 2012;
Affandi et al., 2013; Hernández-Lobato et al., 2014; Dai
et al., 2014; Yen et al., 2014; Hsieh et al., 2014; Shah
and Ghahramani, 2015; Chwialkowski et al., 2015;
Richard et al., 2015; Sutherland and Schneider, 2015;
Li, 2017; Avron et al., 2017; Sun et al., 2018; Tompkins
and Ramos, 2018; Li et al., 2020).

In practice, storing full-precision RFF (non-linear
sketches) sometimes is not feasible due to memory con-
straints. In this case, further condensing the RFFs
becomes important, by quantizing the full-precision
RFFs (F (x) in Eq. (2)) into low-bit (integer) represen-
tations by Q(F (x)), where Q is a general quantizing
function. For example, Li and Li (2021) studied distor-
tion optimal quantizer design for RFFs, and showed its
superior performance in approximate non-linear kernel
learning. Particularly, Li and Li (2021) showed that
in many cases, using about 4 bits suffices to match the
performance of full-precision RFF, suggesting a sub-
stantial reduction of the memory/storage cost.

In Eq. (2), constructing RFFs can be viewed as a two-
stage procedure: (i) random projection (RP): wTx;
(ii) applying non-linearity (sine and cosine functions).
Using the quantization scheme developed in Li and
Li (2021), one would have to store a set of quantized
RFFs for each different tuning parameter γ. When
the best tuning parameter is already known (e.g., from
prior experience), then the methods in Li and Li (2021)
should be adopted. In practice, however, the best
tuning parameter might be unknown especially in the
early stage of exploration. This means practitioners
might have to store multiple (or many) sets of quan-
tized RFFs. This motives us to develop alternative
schemes to avoid the burden of storage.

In our proposed scheme, the quantization is applied

before the non-linearity. That said, we first derive
the quantized RP as Q(wTx) in step (i), which is then
used to construct non-linear RFF in step (ii). We call
it the “QRP-RFF” scheme. The title of our paper,
inspired by Gilbert et al. (2007); Li et al. (2008), char-
acterizes the key advantage of the proposed QRP-RFF
approach. That is, it achieves “one-sketch-for-all” be-
cause we only need one set of highly compressed linear
measurements (i.e., quantized RPs), for both linear
and non-linear learning. In this paper, we provide the
theoretical analysis on the QRP-RFF kernel estimator
and the approximation error.

1.1 Practical significance

The method of random projections (RP) has become
the standard tool in machine learning, data mining,
and many other applications (Johnson and Linden-
strauss, 1984; Dasgupta, 2000; Bingham and Man-
nila, 2001; Buhler, 2001; Achlioptas, 2003; Fern and
Brodley, 2003; Datar et al., 2004; Candès et al., 2006;
Donoho, 2006; Li et al., 2006; Freund et al., 2007; Li,
2007). As mentioned before, our QRP-RFF framework
allows one to only store the quantized random projec-
tions (QRPs) in the database, without requiring access
to the full-precision RPs (FP-RPs). Note that, the “in-
termediate product”, namely the QRP, is itself a use-
ful tool in machine learning, with a wide range of ap-
plications in theory, linear learning, similarity search,
compressed sensing, etc. (Goemans and Williamson,
1995; Charikar, 2002; Zymnis et al., 2010; Boufounos
and Baraniuk, 2008; Datar et al., 2004; Plan and Ver-
shynin, 2013; Gopi et al., 2013; Li et al., 2014; Li and
Slawski, 2017; Li and Li, 2019b,a).

Consider the following practical scenario, where a
server has collected RPs of massive data samples and

𝒙𝟏

𝒙𝟐

𝒙𝒏

𝑸(𝑾𝑻𝒙𝟏)

𝑸(𝑾𝑻𝒙𝟐)

NN search:
Given a query ෤𝑥, find its nearest 
neighbor 𝑥𝑖 in the database

Linear learning:
Train a linear model with 𝑄(𝑋𝑊)
Classify a test sample ෤𝑥

Compressed sensing:
Given 𝑊 and 𝑄 𝑊𝑇𝑥𝑖
Recover 𝑥𝑖

Non-linear learning:
Train linear model on QRP-RFF
generated by 𝑄(𝑋𝑊)Database

Quantize RP

Figure 1: Applications of QRP in large-scale systems.
Here, the full-precision RPs are never stored in mem-
ory. QRP can be used for linear learning and com-
pressed sensing. The box in red is the new application
studied in this paper—constructing non-linear random
features for non-linear learning.
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stored the quantized RPs (QRPs) in the database to
save storage. In this procedure, we have lost access
to the full-precision RPs (otherwise, quantization be-
comes meaningless). In order to achieve better learn-
ing performance, a data scientist wants to apply non-
linear kernel learning. Typically, this can be done in
a standard way by learning with RFFs generated by
full-precision RPs (FP-RPs). Yet, they have been dis-
carded after quantization, and re-collecting the data
might be inconvenient or even impossible (e.g., due to
data loss or privacy). Our QRP-RFF method exactly
provides a solution in this case, by directly extracting
non-linear sketches from QRPs. Therefore, QRP-RFF
can be viewed as the first application of QRP to non-
linear learning, arising from very practical settings.

2 Backgrounds: Compression for
Linear Sketches

We denote the data matrix as X ∈ Rn×d, where we as-
sume all the samples are normalized to the unit sphere
to avoid keeping track of the norms in our analysis.
Note that, instance normalization is a common pre-
processing step for many learning algorithms. Recall
that ρ is the correlation between sample x and y.

Random projection (RP), i.e., the linear sketch, is de-
fined by XW = XW , where W ∈ Rd×k is a random
matrix with i.i.d. from certain probability distribu-
tion (e.g., Rademacher, Gaussian, Cauchy). To de-
rive the RFF for RBF kernel as in Eq. (2), we fo-
cus on the Gaussian random projection, i.e., the en-
tries of W are i.i.d. N(0, γ2). XW is called the full-
precision random projection (FP-RP). For two sam-
ples x, y ∈ Sd−1, it can be shown that when γ = 1, we
have E[(wTx)(wT y)] = ρ where w is a column of W .
In other words, the inner product (or cosine) between
data samples is preserved in expectation by random
projection.

Quantized RP. The QRP-RFF approach relies on
the quantized random projections (QRPs). An m-level
fixed quantizer is a map Q : X 7→ C with X the signal
domain and C the codebook containing the reconstruc-
tion levels (or the codes) µ1, ..., µm. Precisely,

Q(x) = µi, if ti−1 < x ≤ ti,

with t0 < t1 < ... < tm the borders of quantizer Q. We
assume m = 2b where b ≥ 1 is the number of bit rep-
resentation. As the projected signal wTx ∼ N(0, γ2)
is supported on the real line, we consider quantizers
symmetric about 0 and set two ends t0 = −∞ and
tm = +∞. Next, we introduce the quantizer for QRP
that will be discussed in this paper.

The Lloyd-Max (LM) quantization (Lloyd, 1982) is an

important scheme constructed via purposeful design.
For QRP, the LM quantization has been proved favor-
able for several learning tasks (Li and Slawski, 2017; Li
and Li, 2019a). When the underlying signal z comes
from a probability distribution g(z), the LM quantizer
minimizes the distortion defined as

DQ = E[(z −Q(z))2] =

∫
(z −Q(z))2g(z)dz, (4)

which is the expected squared loss between the true
signal and the quantized signal. For QRPs, we use
Lloyd’s algorithm for quantizer construction, which is
summarized in Algorithm 1 with g set as N(0, γ2), the
marginal distribution of the projected data wTx.

Algorithm 1: Lloyd-Max (LM) quantization

1 Input: Signal distribution g ∼ N(0, γ2), bit b
2 Output: LM quantizer [t0, ..., t2b ], [µ1, ..., µ2b ]

3 While true

4 For i = 1 to 2b

5 Update µi by µi =

∫ ti
ti−1

xg(x)dx∫ ti
ti−1

g(x)dx

6 End For

7 For i = 1 to 2b − 1

8 Update ti by ti = µi−1+µi
2

9 End For
10 Until Convergence

As introduced in Section 1, to strive for more stor-
age efficiency, we define quantized random projection
(QRP) as XQ = Q(XW ), where Q is a quantizing func-
tion defined above. In this paper, we will study the
problem of using QRP to construct non-linear random
features, which will be introduced in Section 3.

Stochastic Rounding. Before moving forward, we
briefly introduce a compression method that will be
mainly compared with our QRP-RFF in this paper.
Stochastic rounding (StocQ) scheme applies standard
probabilistic quantization to FP-RFF after it has been
generated. A b-bit StocQ quantizer splits the support
of trigonometric functions in RFF (i.e., [−1, 1]) into
2b − 1 equal bins with size 4 = 2

2b−1
, and quantize z

to either of its two neighboring borders by

P (Q(z) = t∗) =
z − t∗
4

, P (Q(z) = t∗) =
t∗ − z
4

,

where [t∗, t
∗] is the bin containing z. By this con-

struction, the output Q(z) is unbiased of z. How-
ever, the unbiasedness pays a cost of larger variance
brought by the sampling process, especially with low
bits. With moderate number of bits (e.g., b = 4
to 8), StocQ can achieve good learning performance,
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with reduced storage cost compared to full-precision
RFF. Note that, following (Zhang et al., 2019; Li and
Li, 2021), we apply StocQ to the RFF formulation
F (x) =

√
2 cos(wTx+ τ), with τ ∼ unif(0, 2π). Prac-

tically, we found no significant difference in learning
performance between this form and Eq. (2). In this
case, each StocQ feature has one element while Eq. (2)
contains two items. Hence, throughout this paper, k
QRF-RFFs will be compared to 2k StocQ-RFFs.

3 QRP-RFF Scheme

As shown in Eq. (2), RFF is built upon RP with one
extra step of casting non-linearity. Given the popu-
larity and wide application of QRP, one natural ques-
tion arises: can we extract RFF from QRP for fast
non-linear kernel learning? Recalling Figure 1, since
one typically would like to discard the full-precision
RPs to spare unnecessary storage once they have been
quantized and stored in the database, this is a more
practical setting worth studying. We call the proposed
method QRP-RFF, as depicted in Figure 2. It consists
of three steps:

1. Apply random projection XW = XWγ .

2. Quantize the projected data XQ = Q(XW ) which
will be stored in database. We can discard XW af-
terwards and use compressed XQ for various sub-
sequent linear learning tasks.

3. Extract QRP-RFFs from the quantized XQ,
which can then be fed into linear machines for
fast approximate non-linear kernel learning.

In step 2, we require the use of “linear” quantizers that
satisfy the following property.

𝒙 𝒘𝟏 𝒘𝟐 𝒘𝒌

𝒘𝟏
𝑻𝒙

RP

𝒔𝒊𝒏(𝑸(𝒘𝟏
𝑻𝒙))

𝑸(𝒘𝟏
𝑻𝒙)

QRP QRP-RFF

𝒘𝒌
𝑻𝒙

𝑸(𝒘𝒌
𝑻𝒙)

𝒄𝒐𝒔(𝑸(𝒘𝟏
𝑻𝒙))

𝒔𝒊𝒏(𝑸(𝒘𝟐
𝑻𝒙))

𝒄𝒐𝒔(𝑸(𝒘𝟐
𝑻𝒙))

𝒔𝒊𝒏(𝑸(𝒘𝒌
𝑻𝒙))

𝒄𝒐𝒔(𝑸(𝒘𝒌
𝑻𝒙))

Figure 2: Illustration of QRP-RFF framework. QRP-
RFF is constructed directly from QRP. Full-precision
RPs can be discarded after QRPs are generated.

Definition 1. In the context of Gaussian QRP, let
Q be the quantizer w.r.t. N(0, 1). The quantization
scheme is called linear if for any γ > 0, γQ is the
corresponding quantizer for N(0, γ2).

In particular, it is easy to check that the LM quantizer
falls into this category. The linearity of quantizer al-
lows us to derive QRP for any γ, from the QRP with
γ = 1. This has a crucial impact on the parameter
tuning of QRP-RFF. We can simply store one set of
compressed linear sketch (e.g., QRPs with γ = 1) in
memory to tune QRP-RFF with any γ by scaling—
This is the essential reason that QRP-RFF does not
require FP-RP and achieves “one-sketch-for-all”. On
the contrary, if linearity does not hold, we will have
to use the original FP-RP to re-construct quantized
sketches for distinct γ, violating our problem setting.

Following step 3, we formally define the QRP-RFF as

FQ(x) = [sin(Q(wTx)) cos(Q(wTx))]T , (5)

where w ∼ N(0, γ2) and Q is a linear quantizer (Def-
inition 1). Analogously, by k i.i.d. projections, we
defined the QRP-RFF kernel estimator by

K̂Q(x, y) =
1

k

k∑
i=1

FQ,i(x)TFQ,i(y), (6)

where FQ,i(x) is the i-th QRP-RFF of x associated
with projection wi. We re-emphasize the significance
of our QRP-RFF scheme: by directly retrieving non-
linear random features from QRP, QRP-RFF does not
need FP-RP or many sets of quantized RFFs (for dif-
ferent γ values). Instead, only one set of compressed
QRP is needed for both linear and non-linear learning.

4 Analysis

In this section, we discuss properties of QRP-RFF ker-
nel estimators and provide the theoretical analysis.

4.1 Equivalence in kernel learning when b = 1

In practice, 1-bit compression, e.g. 1-bit random pro-
jection, is an important special case of quantization be-
cause it achieves highest compression ratio. For linear
RP, one can easily point out that all 1-bit quantization
methods are equivalent, when the task is to estimate
the cosine ρ. Every 1-bit quantizer can be written
as Q(wTx) = γcQ · sign(wTx) with some quantizer-
specific constant cQ. That is, different 1-bit quantiz-
ers only differ by a constant scaling factor, which can
be easily fixed by re-scaling when estimating ρ by the
inner product Q(wTx)Q(wT y). However, it is obvi-
ous that for QRP-RFF, linear scaling of the kernel
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estimate no longer holds due to the high non-linearity
of sine and cosine functions. Nevertheless, we have a
weaker statement of equivalence.

Claim 1. For QRP-RFF, all 1-bit fixed linear quantiz-
ers are equivalent in non-linear kernel learning models,
provided that γ is tuned properly.

When b = 1, Eq. (5) can be written in the general form
FQ(x) = [sin(γcQ ·sign(wTx)) cos(γcQ ·sign(wTx))]T

with some quantizer-specific cQ. Then, the QRP-
RFFs generated by Q1 with γ1 can be produced by
Q2 with γ2 = c1

c2
γ1. In words, the difference in cQ can

be eliminated in practice by tuning γ adequately. As
a result, in principle, the learning performance of all
1-bit quantizers for QRP-RFF are expected to be the
same with fine tuning.

4.2 Information loss of QRP-RFF

From now on, we will denote KQ(x, y) = E[K̂Q(x, y)],
or KQ in short. This is sometimes referred as “ex-
pected kernel” in kernel approximation literature. One
inevitable issue of extracting RFF directly from fixed
quantized random projections, is the information loss
in the transaction from linear projections to highly
non-linear sine and cosine functions, especially for
large γ and small bits b. The reason is that, when
γ is large, the difference |Q(z) − z| might be so large
that sin(Q(z)) and the FP-RFF sin(z) (and cosine) are
very different, where z = wTx ∼ N(0, γ2) is the RP.
When b is small, the deviation is even larger.

0 5 10 15 20
-1

-0.5

0

0.5

1

E
[K

Q
(-

1
)]

Figure 3: Information loss of QRP-RFF: Mean of 1-
bit QRP-RFF estimate from LM quantized QRP, at
ρ = −1. The red curve is the true kernel, and the blue
curve is the 1-bit QRP-RFF mean.

We will use the estimation at a single point as an exam-
ple. When b = 1, we can compute the LM quantizer as
Q(z) = sign(z)×0.7979γ. Thus we can explicitly com-
pute KQ at ρ = −1 as − sin(0.7979γ)2+cos(0.7979γ)2.
This is a periodic function in γ that deviates signifi-
cantly from the true kernel value at ρ = −1, as de-
picted in Figure 3. We see that the mean (at ρ = −1) is

only reasonable with γ ≤ 1. With larger γ, the estima-
tion becomes wild. Similar instability holds for other
ρ. Unfortunately, this unstable behavior is caused
by the nature of the problem, i.e., the information
loss of coding with discrete Q in the “linear” QRP
to “non-linear” RFF transaction. Nevertheless, as will
be shown in Section 4.3, when b ≥ 3, the informa-
tion loss becomes acceptable as the mean estimation
of QRP-RFF approaches the true RBF kernel.

4.3 Mean and variance

Theorem 1. Let Q be a b-bit fixed quantizer with
borders −∞ = t0 < t1 < ... < t2b = +∞ and re-
construction levels µ1 < ... < µ2b . Suppose u, v ∼

N

(
0, γ2

(
1 ρ
ρ 1

))
, and let pij = P

(
u ∈ [ti−1, ti], v ∈

[tj−1, tj ]
)

for 1 ≤ i, j ≤ 2b. Denote si = sin(µi) and
ci = cos(µi). For normalized data vectors x and y,

KQ := E[K̂Q(x, y)] =

2b∑
i=1

2b∑
j=1

(sisj + cicj) pij ,

V ar[K̂Q(x, y)] =
1

k


2b∑
i=1

2b∑
j=1

(sisj + cicj)
2pij −K2

Q

 .

With the potentially severe instability of low-bit QRP-
RFF estimate in mind, in Figure 4 we plot KQ with
different b and γ, when the QRP is quantized by LM
quantizers. We observe the mild estimation when b =
1, 2 at some γ value. As expected, as b increases, KQ

converges to the true kernel K.
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Figure 4: Solid curves: the mean of QRP-RFF esti-
mate (Theorem 1). Dash curves: the true RBF kernel.
We see some large deviations when b = 1, 2.
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Remark 1. It is important to understand that, KQ

deviating from the exact RBF kernel does not imply
bad generalization performance of QRP-RFF. On the
one hand, the performance of randomized algorithms
also largely relies on the variance (e.g., the large vari-
ance of low-bit StocQ results in poor learning capacity,
though it is unbiased). On the other hand, in some
sense we can regard the QRP-RFF estimators as con-
verging to some other kernel, and comparing the learn-
ing capacity of two non-linear kernels is non-trivial
and in general data-dependent.

Due to the information loss, the intrinsic instability
of QRP-RFF estimator makes it difficult to obtain el-
egant theoretical results on the expected kernel KQ

(e.g., recalling Figure 3). Nonetheless, we still provide
analytical bounds on KQ measuring its concentration
around the RBF kernel. The following is a general
result holding for any quantizer Q.

Theorem 2. For any fixed γ, let z ∼ N(0, γ2), define
Ds = E[(sin(Q(z))− sin(z))2], ζs = Cov

(
sin(Q(z))−

sin(z), sin(z)
)
, and Dc and ζc analogously for cosine

function. Further denote 4c = E[cos(Q(z))] − e−
γ2

2

and D̃c = Dc − 42
c. Denote V ∗s = 1

2

[
1− e−2ρ2γ2

]
and V ∗c = 1

2

[
1 + e−2ρ2γ2

]
− e−ρ2γ2

. Assume x, y are

two normalized samples with correlation ρ. Then at γ,
KQ(x, y) is lower and upper bounded respectively by

K(x, y)−Ds −Dc + 2e−
γ2(1−ρ2)

2

(
C1− + C2−

)
,

K(x, y) +Ds +Dc + 2e−
γ2(1−ρ2)

2

(
C1+ + C2+

)
,

where C1± = (C1C2 ±
√

(1− C2
1 )(1− C2

2 ))
√
DsV ∗s ,

C2± =
[
(C3C4 ±

√
(1− C2

3 )(1− C2
4 ))
√
DcV ∗c +

e−
γ2

2 4c
]
, with

C1 =

√
2ζs

Ds(1− e−2γ2)
, C2 =

e−
γ2(1−ρ)2

2 − e−
γ2(1+ρ)2

2√
2(1− e−2γ2)V ∗s

,

C3 =

√
ζc

D̃c(
1
2

[
1 + e−2γ2

]
− e−γ2)

,

C4 =

1
2

[
e−

γ2(1−ρ)2
2 + e−

γ2(1+ρ)2

2

]
− e−

γ2(1+ρ2)
2√

( 1
2

[
1 + e−2γ2

]
− e−γ2)V ∗c

.

Theorem 2 gives a universal bound on the QRP-RFF
mean for any Q at any γ and ρ, which states that
KQ “concentrates” around K with error no more than
O(Ds + Dc +

√
Ds +

√
Dc). Thus, smaller non-linear

distortions lead to stronger concentration, as smaller
Ds and Dc imply better approximation of QRP-RFF

to RFF. As b → ∞, the distortions go to 0 and KQ

converges to K.

Variance. Another important factor that affects the
learning performance with randomized algorithms is
the variance of the estimation. In Figure 5, we plot
variances of full-precision RFF, QRP-RFF with LM
quantization and StocQ estimators at representative γ
levels. We see that at low bit constraint b = 1, 2, the
stochastic StocQ has much larger variance than QRP-
RFF estimators. Consequently, StocQ may perform
worse than QRP-RFF in low-bit training. We omit
the figures for more bits, since the variance of QRF-
RFF converges to that of FP-RFF as expected.
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Figure 5: Variance of a random feature of FP-RFF,
StocQ and QRP-RFF (Theorem 1, to be scaled by k).
The variance of StocQ follows from Li and Li (2021).

4.4 Approximation error

In practice, it is favorable to produce and store as few
RFFs as possible to achieve small approximation er-
ror to the true RBF kernel. Similarly, we are also
interested in the sufficient number of QRP-RFFs to
approximate KQ within some pre-defined error. In
this context, it is important to understand the sam-
ple complexity of QRP-RFF, measured by the uniform
approximation error sup

x,y∈X
|K̂Q(x, y) − KQ(x, y)|. For

full-precision RFF (Rahimi and Recht, 2007; Suther-
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land and Schneider, 2015), k is required to be at least
O( dε2 log 1

ε ) to guarantee ε-approximation w.h.p.. To
proceed, we first introduce the following definition.

Definition 2. (Mean Smooth Quantizer) We say
a quantizer Q(·) is mean Lipschitz smooth w.r.t. dis-

tribution Γ and function f with constant LfQ, if for
∀δ > 0, the following holds,

Et∼Γ

[
sup
|r|≤δ

|f(Q(t+ r))− f(Q(t))|

]
≤ LfQδ. (7)

Basically, quantizer Q is mean smooth if the average
maximal deviation of a function f applied to the quan-
tized random measurements from Γ is bounded in a
Lipschitz way. This is a an “averaged” version of Lip-
schitz continuity, which also works for discrete func-
tions. Definition 2 is a generalisation of (Schellekens
and Jacques, 2020) which was restricted to periodic
functions. In our problem where f is sine or cosine,
f ◦ Q, when composited as one function, is no longer
periodic. By extending the characterization to a more
general setting, the uniform approximation error of
QRP-RFF is given as below (with general quantizers).

Theorem 3. (Uniform Approximation Error)
Assume the sample space S is the unit sphere (normal-
ized data). Let QRP-RFF estimators be defined as (6).
Let Γ ∼ N(0, γ2) in Definition 2. Suppose a quantizer
Q is mean smooth w.r.t. sin and cos functions with
Lipschitz constant LsQ and LcQ, respectively. Then for

∀ ε > 0, with probability at least 1− 4e−kε
2/256,

|K̂Q(x, y)−KQ(x, y)| ≤ ε, for ∀x, y ∈ S,

when k ≥ 512d
ε2 log(

64 max{LsQ,L
c
Q}γ

ε + 1).

Theorem 3 says that to achieve ε-error, the sample
complexity of QRP-RFF is the same as that of full-
precision RFF, within constant factor. We now show
that for our problem where f is the sin or cos func-
tion and Γ ∼ N(0, γ2), every bounded quantizer with
finite bits is mean smooth. Hence, the error bound in
Theorem 3 holds for LM quantizer.

Proposition 1. When f is sin or cos function and
Γ ∼ N(0, γ2) in Definition 2, every finite-bit bounded

quantizer is mean Lipschitz smooth with LQ = 4(2b−1)

γ
√

2π
.

Proof. We present the analysis of sine function. As-
sume the quantizer has b bits. Thus it contains 2b − 1
finite borders, denoted as t∗1, ..., t

∗
2b−1. For a fixed point

t, the value sup|r|≤δ | sin(Q(t+ r))− sin(Q(t))| equals
to 0 if t∗i + δ ≤ t ≤ t∗i+1 − δ for some i. Otherwise,
sup|r|≤δ | sin(Q(t+ r))− sin(Q(t))| would be bounded

by 2. Therefore, integrating over the domain of Γ gives

Et∼N(0,γ2)

[
sup
|r|≤δ

∣∣f(Q(t+ r))− f(Q(t))
∣∣]

≤2P
[
t ∈ ∪2b−1

i=1 [t∗i − δ, t∗i + δ]
]

≤4(2b − 1)

γ
√

2π
δ.

The last line is due to the fact that for t ∼ N(0, γ2),
the property of normal density implies P [t∗ − δ ≤ t ≤
t∗ + δ] ≤ 2δ · 1

γ
√

2π
for any t∗. Therefore, the mean

smoothness constant LsQ is at most 4(2b−1)

γ
√

2π
. Similar

proof holds for cosine function.

5 Experiments

In this section, we test the learning performance of
QRP-RFF scheme in kernel classification problems.
The main purpose is to show that (i) QRP-RFF per-
forms better than StocQ with low bits; and (ii) when
b is as large as 4, the performance of QRP-RFF is
similar to the full-precision RFF.

Setting. We compare three randomized approxima-
tions: 1) the full-precision RFF; 2) QRP-RFF with
underlying LM quantization; and 3) stochastic quan-
tization (StocQ)2. For approaches involving quantiza-
tion, after the FP-RFFs are generated, we process
them with corresponding quantization strategy, then
feed them into a linear SVM solver. We tune the pa-
rameters C for SVM and γ for RBF kernel over a wide
range of values. We use public datasets from UCI ma-
chine learning repository (Dua and Graff, 2017). For
all datasets, the samples are normalized to have unit
norm. On each dataset, we randomly split the samples
into 60% for training and 40% for testing. For each
method, the best test accuracy among C and γ are
reported, averaged over 10 independent repetitions.

Results. In Figure 6, we report the classification test
accuracy against the number of RFFs used, with b =
1, 2, 4. We observe the following:

• Low-bit training. For b = 1, on all datasets,
we observe significant higher accuracy of QRP-
RFF over StocQ. On ISOLET, QRP-RFF with
b = 1 almost achieves the same accuracy as full-
precision RFF. For b = 2, QRP-RFF also com-
pares favorably with StocQ, when the number of
random sketches is moderate (i.e., more than 210).
The poor performance of StocQ can be partially
explained by its large variance with low bits (see
Figure 5 and Li and Li (2021)).

2We implemented StocQ to both aforementioned for-
mulations of RFFs, and found very similar performance.
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Figure 6: Test accuracy of (linearized) kernel SVM using RFF with different quantization strategies. The dash
line is for standard RBF kernel SVM.

• More bits. As we use more bits, the test accu-
racy of both quantization methods gets improved.
For QRP-RFF, on all datasets, b = 4 is suffi-
cient to approach the performance of FP-RFF,
with moderate number of random features.

Memory saving. The benefit of QRP-RFF in terms
of storage saving becomes obvious given Figure 6.
Since 4-bit QRP-RFF almost has same test accuracy
as using FP-RFF, the storage can typically be reduced
by at least 32/4 = 8x or 16x, when FP-RFFs are rep-
resented by 32 bits or 64 bits, respectively.

6 Discussions and Conclusions

In this paper, we consider the problem of construct-
ing random Fourier features (RFF) from quantized
random projections (QRP). Our proposed QRP-RFF
scheme is “one-sketch-for-all” in the sense that we only
need to store one set of compressed linear sketches
for both linear and non-linear learning (and for any
γ parameter for the Gaussian kernel), which is con-
venient in practical scenarios where one would com-
monly discard full-precision RPs after deriving the
QRPs from the original data and RPs. We provide
general bounds on the mean and uniform approxima-
tion errors of the proposed kernel estimator and com-
pare Lloyd-Max quantization with a stochastic round-

ing method. In the experiments, QRP-RFF outper-
forms stochastic rounding, in terms of the kernel SVM
accuracy in the low-bit training scenario, which is
important in practice, and approximates the perfor-
mance of full-precision RFF with 4-bit quantization.
Compared with Li and Li (2021), which directly op-
timized the quantized outputs on top of the RFFs,
the proposed method would unavoidably lose certain
accuracy. Nevertheless, QRP-RFF provides a feasible
alternative in certain application scenarios in which
practitioners could not afford to store multiple sets of
RFFs for different tuning parameters (γ) of the Gaus-
sian kernel. Finally, we should mention one additional
price which the proposed scheme has to pay, that is, we
will need to compute sine and cosine functions on the
fly. The computations can be to an extent avoided by
tabulations (i.e., one look-up table for each γ value).

In conclusion, for applications where we know the best
tuning parameter γ, we should use the quantization
scheme in Li and Li (2021). If the best γ is unknown
(e.g., in an early stage of exploration), our proposed
method provides a feasible alternative.
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