
Nonlinear Projection Based Gradient Estimation for Query Efficient Blackbox Attacks

A Instantiations of Generalized Gradient Estimator

As discussed in Section 4.1, the generalized gradient estimator in Definition 2 unifies the boundary gradient
estimator in HSJA (Chen et al., 2020), QEBA (Li et al., 2020), and our NonLinear-BA. In this section we discuss
the instantiations of them in detail.

In the generalized gradient estimator, the u1, u2, . . . , uB are a sampled subset of orthonormal basis, whereas
in practice, all these methods only uniformly sample normalized vectors for efficiency concern. As implied
by Lemma 1, when n becomes large, 〈ui, v〉’s PDF is highly concentrated at x = 0, implying that with high
probability the sampled normalized vectors are close to orthogonal. Therefore, the orthonormal basis sampling
can be approximated by normalized vector sampling. With this mindset, we express each gradient estimator
using generalized gradient estimator (Definition 2).

HSJA. At a boundary-image x(t)adv, the HSJA gradient estimator (Chen et al., 2020) is

˜∇S(x
(t)
adv) =

1

B

B∑
b=1

sgn
(
S
(
x
(t)
adv + δub

))
ub.

We define the projection f : Rm → Rm as an identical mapping. The gradient estimator reduces to

∇̃S(f(x0)) =
1

B

B∑
i=1

sgn (S (f(x0 + δui))) f(ui) =
1

B

B∑
i=1

sgn (S (x0 + δui))ui, (13)

which is exactly the HSJA gradient estimator.

QEBA. At a boundary-image x(t)adv, the QEBA gradient estimator (Li et al., 2020) is

˜∇S(x
(t)
adv) =

1

B

B∑
b=1

sgn
(
S
(
x
(t)
adv + Wδub

))
Wub.

The W ∈ Rm×n is an orthogonal matrix. We define the projection f : Rn → Rm by f(v) = Wv + x0. Notice that
f(0) = x0 is a boundary-image of difference function S. At the origin, the Equation (5) becomes

∇̃f T∇S =
1

B

B∑
i=1

sgn (S (f(δui)))ui =
1

B

B∑
i=1

sgn (S (x0 + δWui))ui,

and the gradient estimator becomes

∇̃S(f(0)) = W∇̃f T∇S =
1

B

B∑
i=1

sgn (S (x0 + δWui))Wui, (14)

which is the QEBA gradient estimator.

NonLinear-BA. In NonLinear-BA, a nonlinear projection f is already trained. The gradient estimation uses
Equation (2). To bridge the gap between Equation (2) and the generalized gradient estimator in Equation (5), we
define a new projection g such that g(v) = x0 + ‖v‖f (v/‖v‖). We assume that f is highly linear within the L2

ball {r : ‖r‖ ≤ 1}. Therefore, ∇g(0) exists, and for normalized vector ui, g(ui)− g(0) ≈ ∇g(0)ui. Notice that
g(ui) = x0 + f(ui) and g(0) = x0, so f(ui) ≈ ∇g(0)ui.

We apply generalized gradient estimator with projection g at the boundary-image g(0) = x0:

∇̃S(g(0)) = ∇g(0)

(
1

B

B∑
i=1

sgn (S (g(δui)))ui

)
=

1

B

B∑
i=1

sgn (S (x0 + δf(ui)))∇g(0)ui (15)

≈ 1

B

B∑
i=1

sgn (S (x0 + δf(ui))) f(ui), (16)

Huichen Li∗, Linyi Li∗, Xiaojun Xu, Xiaolu Zhang, Shuang Yang, Bo Li

where the Equation (16) is the NonLinear-BA gradient estimator in Equation (2). We implement NonLinear-BA
gradient estimator by Equation (16) instead of the precise Equation (15) to avoid gradient computation and
improve the efficiency.

Notice that in all these methods we perform boundary attack iterations in the raw input space. However, for the
gradient estimation, QEBA and NonLinear-BA use low dimension space while HSJA uses raw input space. To
reflect the boundary point x0 found in raw input space, in QEBA and NonLinear-BA, the projection is defined as
the difference from the bounadry image x0, i.e., f(0) = x0 and the gradient estimation is for f(0). In this way, we
circumvent the possible sparsity of the boundary-images in low dimension space.

In summary, all these gradient estimators are instances of generalized gradient estimator in Definition 2. Moreover,
we can observe that HSJA and QEBA use linear projection, and NonLinear-BA permits nonlinear projection.

B Proof of Cosine Similarity Bounds

In this section, we prove the universal cosine similarity bounds as shown in Theorem 1. The proof is derived from
careful analysis of the distribution of randomly sampled orthonormal basis, combining with Taylor expansion and
breaking down the cosine operator.
Lemma 1. Let u1, u2, . . . , uB be randomly chosen subset of orthonormal basis of Rn (B ≤ n). Let v be any fixed
unit vector in Rn. For any i ∈ [B], define ai := 〈ui, v〉. Then each ai follows the distribution pa with PDF

pa(x) :=
(1− x2)(n−3)/2

B
(
n−1
2 , 12

) , x ∈ [−1, 1], (17)

where B is the Beta function.
Remark. Lemma 1 shows the distribution of projection of orthonormal base vector on arbitrary normalized vector.
Later we will apply the lemma to any normalized vector.

Proof of Lemma 1. Since ui is the randomly chosen orthonormal base vector, the marginal distribution of each ui
is the uniform distribution sampled from (n− 1)-unit sphere. As a result, for any unit vector v, the distribution
of 〈ui, v〉 should be the same. Consider e1 = (1, 0, 0, . . . , 0)T,

ai = 〈ui, e1〉 = ui1. (18)

Now consider the distribution of ui1, i.e., the first component of ui. We know that ui1 = x1/
√
x21 + · · ·+ x2n

where each xi ∼ N (0, 1) independently (Muller, 1959; Marsaglia et al., 1972). Therefore, let X ∼ N (0, 1), and
Y ∼ χ2(n− 1), ui1 = X/

√
X2 + Y . Denote f(x) to the PDF of ui1, from calculus, we obtain

f(x) =

∫ ∞
0

y
n−1
2 −1 exp

(
−y2
)

2
n−1
2 Γ

(
n−1
2

) · 1√
2π

exp

(
− x2y

2(1− x2)

) √
y

(1− x2)−3/2
dy =

(1− x2)
n−3
2

B
(
n−1
2 , 1

2

) (19)

for x ∈ (−1, 1). Combining Equation (18) and Equation (19), we have

pa(x) =
(1− x2)(n−3)/2

B
(
n−1
2 , 12

) , x ∈ [−1, 1].

Lemma 2. Define ω as in Definition 5. Let f(x0) be a boundary-image. The projection f and the difference
function S satisfy the assumptions in Section 4.1. Let

J := ∇f(x0), ∇S := ∇S (f(x0)) , and v :=
JT∇S
‖JT∇S‖2

.

When 0 < δ � 1, for any unit vector u ∈ Rn,

〈u, v〉 > ω

‖JT∇S‖2
=⇒ sgn (S (f(x0 + δu))) = 1,

〈u, v〉 < − ω

‖JT∇S‖2
=⇒ sgn (S (f(x0 + δu))) = −1.

Nonlinear Projection Based Gradient Estimation for Query Efficient Blackbox Attacks

Remark. The Lemma 2 reveals that 〈u, v〉 in some degree aligns with the sign of S(f(x0 + δu)). Later, we will
write the cosine similarity as the sum of the product 〈u, v〉sgn (f(x0 + δu)). Such alignment, along with Lemma 1,
provides the bound for this sum of the product.

Proof of Lemma 2. We do Taylor expansion at point x0 and f(x0) for f and S to the second order respectively
using Lagrange remainder:

f(x0 + δu) = f(x0) + J · δu+
1

2

n∑
i=1

(θδu)TT(x0)i(θδu) = f(x0) + δJu+
1

2
βf δ

2ε, (20)

S (f(x0 + δu)) = S (f(x0)) +∇ST

(
δJu+

1

2
βf δ

2ε

)
+

1

2
βS

(
δLf +

1

2
βf δ

2

)2

θ1 (21)

= δ∇STJu+ δ2
(

1

2
βfLS +

1

2
βSL

2
f +

1

2
δβfβSLf +

1

8
δ2βSβ

2
f

)
θ2. (22)

In above expressions, θ ∈ [0, 1], θ1, θ2 ∈ [−1, 1], ε ∈ Rm is an error vector such that ‖ε‖2 ≤ 1.

In Equation (20), we use the smoothness condition of f , which leads to ‖∑n
i=1 v

TT(x0)iv‖2 ≤ βf‖v‖22, where T is
the second-order gradient tensor, i.e., T(x)ijk = ∂f(x)i/ (∂xj∂xk). In Equation (21), similarly, the smoothness
condition of S leads to vTHv ≤ βS‖v‖22 where H is the Hessian matrix of S and its spectral radius is bounded by
βS . We let v = δJu+ 1

2βf δ
2ε and observe that ‖v‖2 ≤ ‖δJu‖2 + 1

2βf δ
2 ≤ δLf + 1

2βf δ
2. From Taylor expansion

we get Equation (21). Equation (22) follows from S(f(x0)) = 0 by the boundary condition and ∇STv ≤ LS‖v‖2
by the Lipschitz condition.

Consider the expression in the parenthesis of Equation (22), we have

0 ≤ 1

2
βfLS +

1

2
βSL

2
f +

1

2
δβfβSLf +

1

8
δ2βSβ

2
f = ω/δ,

where ω is as defined in Definition 5. As a result, we rewrite Equation (22) as

S(f(x0 + δu)) = δ∇STJu+ δωθ2.

Given that θ2 ∈ [−1, 1], S (f(x0 + δu)) can be bounded:

δ∇STJu− δω ≤ S (f(x0 + δu)) ≤ δ∇STJu+ δω.

Since ∇STJu = (JT∇S)Tu = ‖JT∇S‖2〈u, v〉, we rewrite the bound as:

δ (‖JT∇S‖2〈u, v〉 − ω) ≤ S (f(x0 + δu)) ≤ δ (‖JT∇S‖2〈u, v〉+ ω) .

Thus, when ‖JT∇S‖2〈u, v〉 − ω > 0, i.e., 〈u, v〉 > ω/‖JT∇S‖2, S (f(x0 + δu)) > 0; when ‖JT∇S‖2〈u, v〉+ ω < 0,
i.e., 〈u, v〉 < −ω/‖JT∇S‖2, S (f(x0 + δu)) < 0, which concludes the proof.

Lemma 3. Let f(x0) be a boundary-image, i.e., S (f(x0)) = 0. The projection f and the difference function
S satisfy the assumptions in Section 4.1. Over the randomness of the sampling of orthogonal basis subset
u1, u2, . . . , uB for Rn space, The expectation of cosine similarity between ∇̃f T∇S (defined as Equation (5)) and
∇f(x0)T∇S (f(x0)) (∇f T∇S for short) satisfies(

2

(
1− ω2

‖∇f T∇S‖22

)(n−1)/2

− 1

)
· 2

√
B

B
(
n−1
2 , 1

2

)
· (n− 1)

≤ E cos 〈∇̃f T∇S, ∇f T∇S〉 ≤ 2
√
B

B
(
n−1
2 , 1

2

)
· (n− 1)

.

(23)
Here, ω is as defined in Definition 5, and we assume ω ≤ ‖∇f T∇S‖2.
Remark. This theorem directly relates the intermediate gradient estimation ∇̃f T∇S to the mapped true gradient
∇f T∇S by providing general cosine similarity bounds between them. The assumption that ω ≤ ‖∇f T∇S‖2 can
be easily achieved since δ is typically small and limδ→0 ω/δ is a constant.

Huichen Li∗, Linyi Li∗, Xiaojun Xu, Xiaolu Zhang, Shuang Yang, Bo Li

Proof of Lemma 3. According to Equation (5),

∇̃f T∇S =
1

B

B∑
i=1

sgn (S (f(x0 + δui)))ui.

Define J := ∇f(x0). Since u1, u2, . . . , uB is a subset of the orthonormal basis,

〈∇̃f T∇S, ∇f T∇S〉 =
1

B

B∑
i=1

sgn (S (f(x0 + δui))) 〈JT∇S, ui〉

=
‖JT∇S‖2

B

B∑
i=1

sgn (S (f(x0 + δui)))
〈 JT∇S
‖JT∇S‖2

, ui

〉
.

Let v := JT∇S/‖JT∇S‖2. Note that
∥∥∇̃f T∇S

∥∥
2

=
√∑B

i=1(1/B)2 = 1/
√
B, we have

cos 〈∇̃f T∇S, ∇f T∇S〉 =
〈∇̃f T∇S, ∇f T∇S〉
‖∇̃f T∇S‖2‖∇f T∇S‖2

=
1√
B

B∑
i=1

sgn (S (f(x0 + δui))) 〈v, ui〉. (24)

According to Lemma 1, 〈v, ui〉 follows the distribution pa. Intuitively, we know that 〈v, ui〉 in some degree decides
sgn (S (f(x0 + δui))).

Consider each component (sgn (S (f(x0 + δui))) 〈v, ui〉). By Lemma 2, in the worst case, only when ‖〈v, ui〉‖ >
ω/‖JT∇S‖2, the sgn (S (f(x0 + δui))) is aligned with the sign of 〈v, ui〉, otherwise their signs are always different.
Since ω/‖JT∇S‖2 ≤ 1,

Eui
sgn (S (f(x0 + δui))) 〈v, ui〉

≥
∫ −ω/‖JT∇S‖2

−1
−xpa(x)dx+

∫ 0

−ω/‖JT∇S‖2
xpa(x)dx+

∫ ω/‖JT∇S‖2

0

−xpa(x)dx+

∫ 1

ω/‖JT∇S‖2
xpa(x)dx

=

∫ ω/‖JT∇S‖2

0

−2xpa(x)dx+

∫ 1

ω/‖JT∇S‖2
2xpa(x)dx

=
2

B
(
n−1
2 , 1

2

)
· (n− 1)

(
2

(
1− ω2

‖∇f T∇S‖22

)(n−1)/2

− 1

)
.

Here we use the fact that pa is symmetric. Inject it into Equation (24):

E cos 〈∇̃f T∇S, ∇f T∇S〉 ≥ 2
√
B

B
(
n−1
2 , 1

2

)
· (n− 1)

(
2

(
1− ω2

‖∇f T∇S‖22

)(n−1)/2

− 1

)
. (25)

On the other hand, the upper bound can be obtained by forcing 〈v, ui〉 and S (f(x0 + δui)) be of the same sign
everywhere, which means that

Eui sgn (S (f(x0 + δui))) 〈v, ui〉 ≤
∫ 0

−1
−xpa(x)dx+

∫ 1

0

xpa(x)dx =

∫ 1

0

2xpa(x) =
2

B
(
n−1
2 , 1

2

)
· (n− 1)

.

Inject it into Equation (24):

E cos 〈∇̃f T∇S, ∇f T∇S〉 ≤ 2
√
B

B
(
n−1
2 , 1

2

)
· (n− 1)

. (26)

Lemma 4. For any positive integer n ≥ 2, define

cn :=
2
√
n

B
(
n−1
2 , 1

2

)
· (n− 1)

,

where B is the Beta function. We have cn ∈ (2/π, 1) and cn+2 < cn.

Nonlinear Projection Based Gradient Estimation for Query Efficient Blackbox Attacks

Remark. Using Lemma 4, we can simplify the term 2
√
B/
(
B(n−12 , 1

2) · (n− 1)
)
in Lemma 3 to cn

√
B/n.

Proof of Lemma 4. Let dn := Γ
(
n
2

)
/Γ
(
n−1
2

)
, where Γ(·) is the Gamma function. Notice that

cn =
2
√
n

B
(
n−1
2 , 1

2

)
· (n− 1)

=
2
√
nΓ(n2)

Γ(n−12)
√
π · (n− 1)

= dn
2
√
n

(n− 1)
√
π
.

(I.) For n ≥ 5, dn =
Γ
(
n
2

)
Γ
(
n−1
2

) =
n− 2

n− 3
· Γ
(
n−2
2

)
Γ
(
n−3
2

) =
n− 2

n− 3
dn−2. Notice that

dn√
n− 2

=

√
n− 2

n− 3
dn−2 =

√
(n− 2) · (n− 4)

n− 3
· dn−2√

n− 4
≤ dn−2√

n− 4
,

and
d3√

1
=

√
π

2
,
d4√

2
=

2√
π
,

we have
dn√
n− 2

≤
√
π

2
for n ≥ 3. Therefore,

cn = dn
2
√
n

(n− 1)
√
π
≤
√
π

2
· 2
√
n(n− 2)

(n− 1)
√
π

< 1

for n ≥ 3. When n = 2, cn =
2
√

2

π
< 1. So cn < 1 holds for any n ≥ 2.

(II.) Similarly, notice that

dn√
n− 1

=
n− 2

(n− 3)
√
n− 1

dn−2 =
n− 2√

(n− 3)(n− 1)
· dn−2√

n− 3
≥ dn−2√

n− 3
,

and
d3√

2
=

1

4

√
2π,

d2√
1

=
1√
π
,

we have
dn√
n− 1

≥ 1√
π

for n ≥ 2. Therefore,

cn = dn
2
√
n

(n− 1)
√
π
≥
√
n− 1

π
· 2

√
n

(n− 1)
√
π

=
2

π

√
n

n− 1
>

2

π
.

(III.) Since dn+2 = dn · n/(n− 1) and cn = dn · (2
√
n) / ((n− 1)

√
π) , we have

cn+2

cn
=
dn+2

dn
·
√
n+ 2

n+ 1
· n− 1√

n
=

n

n− 1
·
√
n+ 2

n+ 1
· n− 1√

n
=

√
n(n+ 2)

n+ 1
< 1.

In summary, for any positive integer n ≥ 2, we have shown 2/π < cn < 1 and cn+2 < cn.

Now we are ready to prove the main theorem which provides the general cosine similarity bounds for our gradient
estimator.
Theorem 1 (restated). Let f(x0) be a boundary-image, i.e., S (f(x0)) = 0. The projection f and the difference
function S satisfy the assumptions in Section 4.1. Over the randomness of the sampling of orthogonal basis
subset u1, u2, . . . , uB for Rn space, the expectation of cosine similarity between ∇̃S (f(x0)) (∇̃S for short) and
∇S (f(x0)) (∇S for short) satisfies(

2

(
1− ω2

‖∇f T∇S‖22

)(n−1)/2

− 1

)
‖∇f T∇S‖2
Lf‖∇S‖2

√
B

n
cn ≤ E cos 〈∇̃S, ∇S〉 ≤ ‖∇f

T∇S‖2
lf‖∇S‖2

√
B

n
cn, (27)

where ω is as defined in Definition 5, and we assume ω ≤ ‖∇f T∇S‖2; cn ∈ (2/π, 1) is a constant depended on n;
Lf is as defined in assumptions in Section 4.1; and lf := λmin(∇f(x0)).

Huichen Li∗, Linyi Li∗, Xiaojun Xu, Xiaolu Zhang, Shuang Yang, Bo Li

Proof of Theorem 1. According to Equation (6), we know ∇̃S = ∇f∇̃f T∇S, where ∇f is the shorthand of ∇f(x0).
Thus,

〈∇̃S, ∇S〉 = ∇̃ST∇S = ∇̃f T∇S
T

∇f T∇S = 〈∇̃f T∇S, ∇f T∇S〉 = cos 〈∇̃f T∇S, ∇f T∇S〉 ·
∥∥∇̃f T∇S

∥∥
2
‖∇f T∇S‖2.

Therefore,

cos 〈∇̃S, ∇S〉 = cos 〈∇̃f T∇S, ∇f T∇S〉
∥∥∇̃f T∇S

∥∥
2
‖∇f T∇S‖2∥∥∇̃S∥∥

2
‖∇S‖2

. (28)

According to the estimation formula of ∇̃f T∇S (Equation (5)),
∥∥∇̃f T∇S

∥∥
2

=
√
B. Furthermore,

∥∥∇̃S∥∥ ≤
λmax(∇f) ·

∥∥∇̃f T∇S
∥∥
2
≤ Lf

√
B,
∥∥∇̃S∥∥ ≥ λmin(∇f) ·

∥∥∇̃f T∇S
∥∥
2

= lf
√
B, which means that

1

Lf
≤
∥∥∇̃f T∇S

∥∥
2∥∥∇̃S∥∥

2

≤ 1

lf
.

According to Equation (28), we have

cos 〈∇̃f T∇S, ∇f T∇S〉‖∇f
T∇S‖2

Lf‖∇S‖2
≤ cos 〈∇̃S, ∇S〉 ≤ cos 〈∇̃f T∇S, ∇f T∇S〉‖∇f

T∇S‖2
lf‖∇S‖2

. (29)

Inject the bound for E cos 〈∇̃f T∇S, ∇f T∇S〉 in Lemma 3 and the simplification from Lemma 4 to Equation (29)
yields the desired bound.

We discuss the implications of the bound in Section 4.2 and Appendix D.

Corollary 1 (restated). Let f(x0) be a boundary-image, i.e., S (f(x0)) = 0. The projection f is locally linear
around x0 with radius δ. Lf := λmax(∇f(x0)), lf := λmin(∇f(x0)). The difference function S satisfies the
assumptions in Section 4.1. Over the randomness of the sampling of orthogonal basis subset u1, u2, . . . , uB for
Rn space, the expectation of cosine similarity between ∇̃S (f(x0)) (∇̃S for short) and ∇S (f(x0)) (∇S for short)
satisfies Equation (8) with

ω :=
1

2
δβSL

2
f . (30)

We assume ω ≤ ‖∇f T∇S‖2. The cn ∈ (2/π, 1) is a constant depended on n.

Remark. This is a direct application of Theorem 1. Since f is locally linear, we have βf = 0, and the corollary
follows. We discuss its implication in Section 4.2.

Corollary 2 (restated). Given the projection f and the difference function S, to achieve expected cosine similarity
E〈∇S(f(x0)), ∇̃S(f(x0))〉 = s, the required query number B is in Θ(s2).

Proof of Corollary 2. From Theorem 1, we can observe that

Θ(
√
B) ≤ E cos〈∇̃S, ∇S〉 ≤ Θ(

√
B).

Therefore, when E cos〈∇̃S, ∇S〉 = s, the number of queries B is in Θ(s2).

Remark. The above corollary shows the relation between the expected cosine similarity and the query number
when the projection f is fixed. Note that the cosine similarity is bounded, i.e., the cosine similarity between two
totally aligned vectors is 1. The Θ(s2) order implies that to achieve moderate cosine similarity, a small number
of queries is needed, while high cosine similarity needs much more queries. Therefore, to achieve high cosine
similarity, it is better to fix the number of queries and reduce the dimension of subspace, n, which is related with
cosine similarity with order Θ(1/

√
n). The reduction on subspace dimension is the shared technique between

QEBA and NonLinear-BA.

Nonlinear Projection Based Gradient Estimation for Query Efficient Blackbox Attacks

C Proof of Existence of Better Nonlinear Projection

Theorem 2 (restated). Let f(x0) be a boundary-image, i.e., S (f(x0)) = 0. The projection f is locally linear
around x0 with radius δ. Lf := λmax(∇f(x0)), lf := λmin(∇f(x0)). The difference function S satisfies the
assumptions in Section 4.1.

There exists a nonlinear projection f ′ satisfying the assumptions in Section 4.1, with f ′(x0) = f(x0) and ∇f ′(x0) =
∇f(x0), such that over the randomness of the sampling of orthogonal basis subset u1, u2, . . . , uB for Rn space,
the expectation of cosine similarity between ∇̃S (f ′(x0)) (∇̃S for short) and ∇S (f ′(x0)) (∇S for short) satisfies
Equation (8) with

ω :=
1

2
δβSL

2
f −

1

5
βfβSδ

2Lf <
1

2
δβSL

2
f . (31)

We assume ω ≤ ‖∇f T∇S‖2. The cn ∈ (2/π, 1) is a constant depended on n.

Proof of Theorem 2. For convenience, in the proof, we define J := ∇f(x0). According to the proof of Theo-
rem 1 (especially the usage of Lemma 2), we only need to show that for arbitrary S, there exists a projection f ′

such that ∇f ′(x0) = ∇f(x0) = J , f ′(x0) = f(x0) and f ′ satisfies the smoothness and Lipschitz assumptions, so
that for arbitrary vector u with ‖u‖2 = 1,〈

u,
JT∇S
‖JT∇S‖2

〉
>

ω

‖JT∇S‖2
=⇒ sgn(S(f(x0 + δu))) = 1,〈

u,
JT∇S
‖JT∇S‖2

〉
<

ω

‖JT∇S‖2
=⇒ sgn(S(f(x0 + δu))) = −1.

(32)

We prove this by construction: we define f ′ : Rn → Rm such that for arbitrary u ∈ Rn,

f ′(x0 + u) = f(x0) + J · u− 1

2
α‖u‖2Ju, (33)

where α ∈ [0, 0.8βf/Lf] is an adjustable parameter (it is later fixed to 0.8βf/Lf , but for the generality of the
proof, we deem it as an adjustable parameter for now).

Fact 2.1. The f ′ defined as in Equation (33): (1) has gradient J at point x0, (2) is Lf -Lipschitz, and (3) is
βf -smooth around x0 with radius δ.

Proof of Fact 2.1.

Gradient at x0. Since

lim
u→0

∥∥∥1

2
α‖u‖2Ju

∥∥∥
2

‖u‖2
=

1

2
α lim
u→0
‖Ju‖2 ≤

1

2
αLf‖u‖2 = 0,

we have f ′(x0 + u) = f ′(x0) + J · u+ o(u) so ∇f ′ := ∇f ′(x0) = J .

Lipschitz. Firstly, let us derive the gradient of f ′ at an arbitrary point. Because

∂f ′(x0 + u)i
∂uj

= Jij −
1

2
α
∂ (‖u‖2Ju)i

∂uj
= Jij −

1

2
α

(
uj
‖u‖2

n∑
k=1

Jikuk + ‖u‖2Jij
)

=

(
1− 1

2
α‖u‖2

)
Jij −

α

2‖u‖2
(JuuT)ij ,

we have
∇f ′(x0 + u) =

(
1− 1

2
α‖u‖2

)
J − α

2‖u‖2
JuuT. (34)

We bound its maximum eigenvalue:

λmax (∇f ′(x0 + u)) ≤
(

1− 1

2
α‖u‖2

)
λmax(J) +

α

2‖u‖2
λmax(J)‖u‖22 = λmax(J) = Lf .

Therefore, f ′ is Lf -Lipschitz.

Huichen Li∗, Linyi Li∗, Xiaojun Xu, Xiaolu Zhang, Shuang Yang, Bo Li

Smoothness. The smoothness part is more involved.

To show f ′ is βf -smooth, we need to consider arbitrary u1, u2 ∈ Rn, and prove that

λmax (∇f ′(x0 + u1)−∇f ′(x0 + u2))

‖u1 − u2‖2
≤ βf

always holds. From Equation (34),

∇f ′(x0 + u1)−∇f ′(x0 + u2) =
α

2
(‖u2‖2 − ‖u1‖2)J − α

2
J

(
u1u

T
1

‖u1‖2
− u2u

T
2

‖u2‖2

)
.

Thus,

λmax (∇f ′(x0 + u1)−∇f ′(x0 + u2))

‖u1 − u2‖2
≤
λmax

(α
2

(‖u2‖2 − ‖u1‖2)J
)

‖u1 − u2‖2
+
αLf

2
·
λmax

(
u1u

T
1

‖u1‖2
− u2u

T
2

‖u2‖2

)
‖u1 − u2‖2︸ ︷︷ ︸

(∗)

.

Consider the first term: from
∣∣‖u2‖2 − ‖u1‖2∣∣ ≤ ‖u1 − u2‖2,

λmax

(α
2

(‖u2‖2 − ‖u1‖2)J
)

‖u1 − u2‖2
≤ 1

2
αLf .

Fact 2.2. For arbitrary u, v ∈ Rn,

λmax

(
uuT

‖u‖2
− vvT

‖v‖2

)
≤ 1.5‖u− v‖2.

From Fact 2.2, the second term (∗) is bounded by 1.5. By summing them up, we have

λmax (∇f ′(x0 + u1)−∇f ′(x0 + u2))

‖u1 − u2‖2
≤ 1.25αLf ≤ βf/Lf · Lf = βf ,

i.e., f ′ is β-smooth.

Proof of Fact 2.2.

λmax

(
uuT

‖u‖2
− vvT

‖v‖2

)
= max
‖w‖2=1

wT

(
uuT

‖u‖2
− vvT

‖v‖2

)
w = max

‖w‖2=1

‖uTw‖22
‖u‖2

− ‖v
Tw‖22
‖v‖2

= max
‖w‖2=1

‖u‖ cos2〈u, w〉 − ‖v‖ cos2〈v, w〉.
(35)

From geometry, we know that the cos〈u, w〉 of a unit vector w lying outside the place Puv equals to
‖wuv‖2 cos〈wuv, u〉, where wuv is its projection onto plane Puv, having length ‖wuv‖2 ≤ 1. Therefore, we
only need to consider all vectors with length smaller or equal to 1 lying on the plane Puv (i.e., the projection of
any unit vector w onto the plane Puv), i.e.,

Equation (35) = max
‖w‖2≤1
w∈Puv

‖w‖2
(
‖u‖ cos2〈u, w〉 − ‖v‖ cos2〈v, w〉

)
= max
‖w‖2=1
w∈Puv

(
‖u‖ cos2〈u, w〉 − ‖v‖ cos2〈v, w〉

)
.

Let θ be the angle between u and v, β be the angle between u and w, then the angle between v and w is β − θ.
Written as the optimization over β, we have

Equation (35) = max
β
‖u‖ cos2 β − ‖v‖ cos2(β − θ)

= max
β

1

2
(‖u‖ − ‖v‖) +

1

2
(‖u‖ cos 2β − ‖v‖ cos 2(β − θ))

=
1

2
(‖u‖ − ‖v‖) +

1

2

(
max
β
‖u‖ cosβ − ‖v‖ cos(β − 2θ)

)
.

From geometry, we know for any β, ‖u‖ cosβ − ‖v‖ cos(β − 2θ) ≤ 2‖u− v‖. Furthermore, ‖u‖ − ‖v‖ ≤ ‖u− v‖.
Thus, Equation (35) ≤ 1.5‖u− v‖.

Nonlinear Projection Based Gradient Estimation for Query Efficient Blackbox Attacks

Given Fact 2.2, as shown before, f ′ is β-smooth.

To this point, we have proven the three arguments in Fact 2.1 respectively.

Now we inject f into the Taylor expansion expression for S(f ′(x0 + δu)), where u is a unit vector, i.e., ‖u‖2 = 1.
Similar as Equations (20) to (22):

S(f ′(x0 + δu))

=S

(
f(x0) + δJu− 1

2
αδ2Ju

)
=S(f(x0)) + δ∇STJu− 1

2
αδ2∇STJu+

1

2
θ2
(
δJu− 1

2
αδ2Ju

)T

H

(
δJu− 1

2
αδ2Ju

)
,

(36)

where θ ∈ [−1, 1] is depended on S, and H is the Hessian matrix of S at point x0. Because f(x0) is the
boundary-image, we have S(f(x0)) = 0. We can also bound the last term from the smoothness assumption on S:

∣∣∣1
2
θ2
(
δJu− 1

2
αδ2Ju

)T

H

(
δJu− 1

2
αδ2Ju

) ∣∣∣ ≤ 1

2
βSδ

2
∥∥∥Ju− 1

2
αδJu

∥∥∥2
2
≤ 1

2
βSδ

2

(
1− 1

2
αδ

)2

L2
f .

Define v := JT∇S(f(x0))/‖JT∇S(f(x0))‖2. From Equation (36), we get

S(f ′(x0 + δu)) ≥ δ
(

1− 1

2
αδ

)
〈u, v〉‖v‖2 −

1

2
βSδ

2

(
1− 1

2
αδ

)2

L2
f ,

S(f ′(x0 + δu)) ≤ δ
(

1− 1

2
αδ

)
〈u, v〉‖v‖2 +

1

2
βSδ

2

(
1− 1

2
αδ

)2

L2
f .

Therefore,

|〈u, v〉|‖v‖2 ≥
1

2
βSδ

(
1− 1

2
αδ

)
L2
f =⇒ sgn(S(f(x0 + δu))) = sgn(〈u, v〉).

Note that α ∈ [0, 0.8βf/Lf], and larger α induces smaller RHS. We let α = 0.8βf/Lf , and get

|〈u, v〉|‖v‖2 ≥
1

2
δβSL

2
f −

1

5
βfβSδ

2Lf =⇒ sgn(S(f(x0 + δu))) = sgn(〈u, v〉).

In other words,

ω :=
1

2
δβSL

2
f −

1

5
βfβSδ

2Lf

satisfies the condition Equation (32). Following the same proof as in Theorem 1 using ω, we get the desired cosine
similarity bound for the projection f ′.

D Implications of Gradient Estimation Analysis

In this section, we provide further discussions on the gradient estimation analysis omitted in Section 4.2 and the
supporting theorems.

D.1 Comparison of Different Gradient Estimators

We instantiate the cosine similarity bounds for gradient estimators in HSJA (Chen et al., 2020) and QEBA (Li
et al., 2020). Then, we compare these bounds along with the bound for NonLinear-BA. The definitions of these
estimators are presented in Appendix A.

HSJA. In HSJA, the projection is an identical function. Therefore, ‖∇f T∇S‖ = ‖∇f T∇S‖, and Lf = 1, βf = 0.
We apply Theorem 1 and yield the following cosine similarity bound.

Huichen Li∗, Linyi Li∗, Xiaojun Xu, Xiaolu Zhang, Shuang Yang, Bo Li

Corollary 3 (Bound for HSJA Gradient Estimator). Let x0 be a boundary-image, i.e., S (x0) = 0. The difference
function S satisfies the assumptions in Section 4.1. Using HSJA gradient estimator as in Equation (13), over
the randomness of the sampling of orthogonal basis subset u1, u2, . . . , uB for Rm space, the expectation of cosine
similarity between ∇̃S (x0) (∇̃S for short) and ∇S (x0) (∇S for short) satisfies(

2

(
1− ω2

‖∇S‖22

)m−1
2

− 1

)√
B

m
cm ≤ E cos 〈∇̃S, ∇S〉 ≤

√
B

m
cm,

where ω = 1
2δβS, and the cm ∈ (2/π, 1) is a constant depended on m.

Remark. In the corollary, we can see that without subspace projection, all terms are directly related to the
dimensionality of the input space, m.

QEBA. In QEBA, the projection is a random orthogonal transformation denoted by the matrix W. Similarly,
we yield the following bound.
Corollary 4 (Bound for QEBA Gradient Estimator). Let x0 be a boundary-image, i.e., S (x0) = 0. The difference
function S satisfies the assumptions in Section 4.1. Using QEBA gradient estimator as in Equation (14), over
the randomness of the sampling of orthogonal basis subset u1, u2, . . . , uB for Rn space, the expectation of cosine
similarity between ∇̃S (x0) (∇̃S for short) and ∇S (x0) (∇S for short) satisfies(

2

(
1− ω2

‖WT∇S‖22

)n−1
2

− 1

)
‖WT∇S‖2
‖∇S‖2

√
B

n
cn ≤ E cos 〈∇̃S, ∇S〉 ≤ ‖W

T∇S‖2
‖∇S‖2

√
B

n
cn,

where ω = 1
2δβS, and the cn ∈ (2/π, 1) is a constant depended on m.

Li et al. (2020) present a similar but slightly tighter cosine similarity bound which replaces ‖WT∇S‖2 by ‖∇S‖2
leveraging the fact that the projection W is random.

Comparison between HSJA and QEBA. In QEBA, when W contains a base vector which aligns well
with ∇S, i.e., there exists i ∈ [n] such that | cos〈W:,i, ∇S〉| is close to 1, then ‖WT∇S‖2 ≈ ‖∇S‖2. Heuristics
are used in QEBA to increase the alignment between basis and the vector ∇S. When the alignment is good,
the bound in Corollary 4 differs from that in Corollary 3 only in that m is replaced by n. Given that n is the
dimension of subspace which is usually much smaller than m, we know(

1− ω2

‖WT∇S‖22

)n−1
2

�
(

1− ω2

‖∇S‖22

)m−1
2

and

√
B

n
�
√
B

m
.

As a result, when B is the same, both the lower bound and upper bound in QEBA outperform those of HSJA
significantly; and to achieve the same cosine similarity, QEBA requires much fewer queries than HSJA.

NonLinear-BA. Our proposed NonLinear-BA enables the use of nonlinear projection f . As shown by Theorem 1,
due to the nonlinearity, the cosine similarity lower bound of nonlinear projection is worse than the linear
counterpart (QEBA) due to the additional terms in ω. However, Theorem 2, when compared with linear
projection bound in Section 4.2, implies the existence of better nonlinear projection. The existence is proved by a
specific construction of a ‘good’ nonlinear projection which provides higher cosine similarity. Here, we present
another ‘good’ nonlinear projection, to show that such nonlinear projection is not rare or specific.
Theorem 3 (Existence of Better Nonlinear Projection, Part II). Let f(x0) be a boundary-image, i.e., S (f(x0)) = 0.
The projection f is locally linear around x0 with radius δ. Lf := λmax(∇f(x0)), lf := λmin(∇f(x0)). The difference
function S satisfies the assumptions in Section 4.1.

There exists a nonlinear projection f ′ satisfying the assumptions in Section 4.1, with f ′(x0) = f(x0) and ∇f ′(x0) =
∇f(x0), such that over the randomness of the sampling of orthogonal basis subset u1, u2, . . . , uB for Rn space,
the expectation of cosine similarity between ∇̃S (f ′(x0)) (∇̃S for short) and ∇S (f ′(x0)) (∇S for short) satisfies
Equation (8) with

ω <
1

2
δβSL

2
f . (37)

We assume ω ≤ ‖∇f T∇S‖2, and δ < LS/(βSLf). The cn ∈ (2/π, 1) is a constant depended on n.

Nonlinear Projection Based Gradient Estimation for Query Efficient Blackbox Attacks

Proof of Theorem 3. Let J := ∇f(x0), and v := JT∇S(f(x0))/‖JT∇S(f(x0))‖2. For arbitrary u ∈ Rn, we define
f ′(x0 + u) as such:

f ′(x0 + u) = f(x0) + J · u+
1

2
sgn(〈u, v〉)〈u, v〉2k∇S, (38)

where k ∈ [0, βf/LS] is an adjustable parameter.

Fact 3.1. The f ′ defined as Equation (38) has gradient J at point x0 and is βf -smooth.

Proof of Fact 3.1. Since

lim
u→0

∥∥∥1

2
〈u, v〉2k∇S

∥∥∥
2

‖u‖2
≤ lim
u→0

1

2
|〈u, v〉|k‖∇S‖2 ≤ lim

u→0

1

2

βf
LS

LS‖u‖2 = 0,

we have f ′(x0 + u) = f(x0) + J · u+ o(u) so ∇f ′(x0) := ∇f(x0) = J .

We compute ∇f ′ for arbitrary point, since

∂f ′(x0 + u)i
∂uj

= Jij + sgn(〈u, v〉)〈u, v〉vjk∇Si,

we know ∇f ′(x0 + u) = J + sgn(〈u, v〉)k〈u, v〉∇SvT. Consider arbitrary u1, u2:

• If 〈u1, v〉 · 〈u2, v〉 ≥ 0, ∇f ′(x0 + u1)−∇f ′(x0 + u2) = sgn(〈u1, v〉)k〈u1 − u2, v〉∇SvT. Therefore,

λmax(∇f ′(x0 + u1)−∇f ′(x0 + u2))

‖u1 − u2‖2
≤ |〈u1 − u2, v〉|‖u1 − u2‖2

kλmax(∇SvT) ≤ kLs ≤ βf .

• If 〈u1, v〉 · 〈u2, v〉 < 0, without loss of generality, let 〈u1, v〉 > 0 and 〈u2, v〉 < 0. Therefore,

∇f ′(x0 + u1)−∇f ′(x0 + u2) = k〈u1 + u2, v〉∇SvT.

Since 〈u1, v〉 > 0 and 〈u2, v〉 < 0, |〈u1 + u2, v〉| ≤ |〈u1 − u2, v〉|. Thus,

λmax(∇f ′(x0 + u1)−∇f ′(x0 + u2))

‖u1 − u2‖2
≤ |〈u1 + u2, v〉|
‖u1 − u2‖2

kλmax(∇SvT) ≤ |〈u1 − u2, v〉|‖u1 − u2‖2
kλmax(∇SvT) ≤ βf .

According to the smoothness definition, f ′ is βf -smooth.

Now let us inject f ′ into the Taylor expansion expression for S (f ′(x0 + δu)) in a similar way as Equations (20)
to (22), where u is a unit vector, i.e., ‖u‖2 = 1:

S(f ′(x0 + δu))

=S

(
f(x0) + δJu+

1

2
sgn (〈u, v〉) 〈u, v〉2δ2k∇S

)
=S(f(x0)) + δ∇STJu+

1

2
sgn(〈u, v〉)〈u, v〉2δ2k‖∇S‖2+

1

2
θ2
(
δJu+

1

2
sgn(〈u, v〉)〈u, v〉2δ2k∇S

)T

H

(
δJu+

1

2
sgn(〈u, v〉)〈u, v〉2δ2k∇S

)
,

(39)

where θ ∈ [−1, 1] is depended on S, and H is the Hessian matrix of S at point x0. Because x0 is the boundary
point, we have S(f(x0)) = 0.

We can bound the last term as such:∣∣∣1
2
θ2
(
δJu+

1

2
sgn(〈u, v〉)〈u, v〉2δ2k∇S

)T

H

(
δJu+

1

2
sgn(〈u, v〉)〈u, v〉2δ2k∇S

) ∣∣∣
≤1

2
βS

(
δLf +

1

2
〈u, v〉2δ2kLS

)2

=
1

2
βSδ

2

(
Lf +

1

2
〈u, v〉2δkLS

)2

.

Huichen Li∗, Linyi Li∗, Xiaojun Xu, Xiaolu Zhang, Shuang Yang, Bo Li

When 〈u, v〉 > 0, from Equation (39), we get

S(f ′(x0 + δu)) ≥ δ∇STJu+
1

2
〈u, v〉2δ2kL2

S −
1

2
βSδ

2

(
Lf +

1

2
〈u, v〉2δkLS

)2

= δ〈u, v〉‖v‖2 +
1

2
〈u, v〉2δ2kL2

S −
1

2
βSδ

2

(
Lf +

1

2
〈u, v〉2δkLS

)2

,

and similarly, when 〈u, v〉 < 0, we get

S(f ′(x0 + δu)) ≤ δ〈u, v〉‖v‖2 −
1

2
〈u, v〉2δ2kL2

S +
1

2
βSδ

2

(
Lf +

1

2
〈u, v〉2δkLS

)2

.

Therefore,

|〈u, v〉|‖v‖2 ≥ −
1

2
〈u, v〉2δkL2

S +
1

2
βSδ

(
Lf +

1

2
〈u, v〉2δkLS

)2

=⇒ sgn(S(f(x0 + δu))) = sgn(〈u, v〉). (40)

Denote h (k; 〈u, v〉) to the RHS:

h (k; 〈u, v〉) := −1

2
〈u, v〉2δkL2

S +
1

2
βSδ

(
Lf +

1

2
〈u, v〉2δkLS

)2

.

When k = 0,

h(k; 〈u, v〉) =
1

2
βSδL

2
f ,

∂h(k; 〈u, v〉)
∂k

∣∣∣
k=0

= −1

2
〈u, v〉2δL2

S +
1

2
〈u, v〉2δ2LSLfβS =

1

2
〈u, v〉2δLS(δLfβS − LS).

Therefore, when |〈u, v〉| ≥ ε′ > 0,

∂h(k; 〈u, v〉)
∂k

∣∣∣
k=0
≤ 1

2
ε′2δLS(δLfβS − LS) < 0,

and thus there exists small ε > 0, η > 0, when k = ε and |〈u, v〉| ≥ ε′, h(k; 〈u, v〉) < 1

2
βSδL

2
f − η.

As a result, from Equation (40), we know that when |〈u, v〉| ≥ ε′, if |〈u, v〉|‖v‖2 ≥
1

2
βSδL

2
f−η, sgn(S(f(x0+δu))) =

sgn(〈u, v〉). In other words, let

ω′ :=
1

2
βSδL

2
f − η,

then this ω′ satisfies the condition in Equation (32).

Following the same proof as in Theorem 1 using ω′, we get the desired lower bound.

Theorems 2 and 3 present two constructions of nonlinear projection f ′ which is better than the corresponding
linear projection, and they also provide a checkable condition to examine whether the given nonlinear projection
is ‘good’ in terms of outperforming corresponding linear projection. Since the two constructed projections are
quite different from each other, we conjecture that such nonlinear projection is not rare or specific. Even though
there is no theoretically guaranteed approach for searching such ‘good’ nonlinear projection, in experiments, we
show that AE, VAE, or GAN are possible choices that usually work well in practice.

D.2 Improve The Gradient Estimation

In Theorems 1 and 2, we relate the cosine similarity bound to variables characterizing the projection f such as
∇f , Lf , βf . By examining the change tendency of the bound with respect to these variables, we learn ways for
improving the gradient estimation in terms of improving its cosine similarity with the true gradient.

Nonlinear Projection Based Gradient Estimation for Query Efficient Blackbox Attacks

• Increase the alignment between ∇S and ∇f :
The term ‖∇f T∇S‖2/‖∇S‖2 reveals that, we should increase the alignment between ∇S and ∇f to improve
the cosine similarity. When LS and Lf are fixed, if they are more aligned, ‖∇ST∇f‖22 is larger so that the lower
bound becomes larger. It implies that the mapping f should reflect the main components of ∇S as much as
possible. Similar conclusion is shown for QEBA in Appendix D.1.

• Reduce the subspace dimension n and increase number of queries B:
When ∇S and ∇f can be aligned, it is better to keep the subspace dimension of f , n, be small. The reason is
analyzed in Appendix D.1 when comparing HSJA and QEBA. At the same time, increasing number of queries
B is also helpful, according to the query complexity analysis in Section 4.2.

• If we can find good nonlinear projection, decrease the smoothness; otherwise, increase the smoothness and
decrease step size δ:
If the a good nonlinear projection can be found, we consider the bound in Theorem 2, which shows the
outcome of a good nonlinear projection. Learned from its ω in Equation (10), increasing βf , i.e., decreasing the
smoothness, could reduce ω and hence improve cosine similarity bound. If the good nonlienar projection cannot
be found, we consider the bound in Theorem 1, which bounds the general projections. To reduce ω in this case
which is defined by Definition 5, we need to reduce βf , i.e., increase the smoothness, and reduce the step size δ.
We remark that the choice of step size δ needs to consider many other factors as Chen et al. (2020) outlined.

E Target Models

In this section, we introduce the target models used in the experiments including the implementation details and
the model performance.

E.1 Implementation Details

Offline Models. Following Li et al. (2020), we use models based on a pretrained ResNet-18 model as the target
models. For models that are finetuned, cross entropy error is employed as the loss function and is implemented as
‘torch.nn.CrossEntropyLoss’ in PyTorch.

For ImageNet, no finetuning is performed as the pretrained target model is trained exactly on ImageNet. The
model is loaded with PyTorch command ‘torchvision.models.resnet18(pretrained=True)’ following the
documentation (PyTorch, 2021).

For CelebA, the target model is finetuned to do binary classification on image attributes. Among the 40 binary
attributes associated with each image, we sort the attributes according to how balance the numbers of positive and
negative samples are. The more balanced the dataset is, it is better for the classification model training. The top-5
balanced attributes are ‘Attractive’, ‘Mouth_Slightly_Open’, ‘Smiling’, ‘Wearing_Lipstick’, ‘High_Cheekbones’.
Though the ‘Attractive’ attribute is the most balanced one, it is more objective than subjective, thus we instead
use the second attribute ‘Mouth_Slightly_Open’.

For MNIST and Cifar10 datasets, we first do linear interpolation and get 224× 224 images, then the target model
is finetuned to do 10-way classification. One reason for doing interpolation is that our proposed method reduces
query complexity when the original data dimension is high so it is more illustrative after upsampling. The linear
interpolation step also makes image sizes consistent among all the tasks and experiments.

We report the benign target model performance for the four datasets in Table 1.

Commercial Online API. Among all the APIs provided by the Face++ platform (MEGVII, 2021c), we use
the ‘Compare’ API (MEGVII, 2021a) which takes two images as input and returns a confidence score of whether
they are the same person if there are faces in the two images. This is also consistent with the same experiment in
QEBA (Li et al., 2020). In implementation during the attack process, the two image arrays with floating number
values are first converted to integers and stored as jpg images on disk. Then they are encoded as base64 binary
data and sent as POST request to the request URL (MEGVII, 2021b). We set the similarity threshold as 50% in
the experiments following QEBA (Li et al., 2020): when the confidence score is equal to or larger than 50%, we
consider the two faces to belong to the ‘same person’, vice versa.

Huichen Li∗, Linyi Li∗, Xiaojun Xu, Xiaolu Zhang, Shuang Yang, Bo Li

Table 1: The benign model accuracies of the target model (ResNet-18).

Dataset CelebA CIFAR10 MNIST
Benign Accuracy 0.9417 0.8796 0.9938

For source-target images that are from two different persons, the goal of the attack is to get an adv-image that
looks like the target-image (has low mean squared error distance between the adv-image and target-image), but
is predicted as ‘same person’ with the source-image. We randomly sample source-target image pairs from the
CelebA dataset that are predicted as different persons by the ‘Compare’ API. Then we apply the NonLinear-BA
pipeline with various nonlinear projection models for comparison.

E.2 Model Performance of Target Models

The benign accuracies of the target model ResNet-18 on the datasets are shown in Table 1.

F Nonlinear Projection Based Gradient Estimator

In this section, we introduce the details of nonlinear projection models including the model structure, training
procedure. We also introduce how the projection models are used in the NonLinear-BA process including the
gradient estimation and attack implementation details.

F.1 Generative Model Structure

AE and VAE. We borrow the idea from U-Net (Ronneberger et al., 2015) which has the structure of an
information contraction path and an expanding path, with a small latent representation in the middle.

Define 2D convolution layer Conv2d(in_channels, out_channels, kernel_size, padding_size).

Define the DoubleConv(in_channels, out_channels) layer as composed of 6 layers: a 2D convolution layer
Conv2d(in_channels, out_channels) with kernel size 3 and padding size 1; a 2D batch normalization layer
BatchNorm2d(out_channels); a ReLU layer; another 2D convolution layer Conv2d(out_channels, out_channels)
with kernel size 3 and padding size 1; a 2D batch normalization layer BatchNorm2d(out_channels); and a ReLU
layer.

Define the Down(in_channels, out_channels) layer with two components: a max-pooling layer MaxPool2d with
kernel size 2; a DoubleConv(in_channels, out_channels) as defined above.

Likewise, the Up(in_channels, out_channels) is defined with two components: a up-scaling layer and a Double-
Conv(in_channels, out_channels) as defined above.

The AE and VAE models have similar structures except for the fact that the encoder part of VAE has two
output layers to produce the mean and standard deviation vectors, and the AE only has one. The detailed
network structures are shown in Table 2. The n_channels is the number of image channels determined by the
image dataset. For the grey-scale images in MNIST, there is only 1 channel; for the other three colored datasets
(ImageNet, CelebA and CIFAR10), there are RGB channels so n_channels is 3. The latent dimension of the two
models is 48× 14× 14 = 9408.

GAN. Define ConvBlock(in_channels, out_channels, n_kernel, n_stride, n_pad, transpose, leaky) with three
layers: a 2D convolution layer; a batch normalization layer; and a nonlinear ReLU layer.

For ImageNet and CelebA, the detailed model network structures for the generator and discriminator are listed
in Table 3 and Table 4.

For CIFAR10 and MNIST, we use DCGAN (Radford et al., 2015) structure with pretrained weights from
https://github.com/csinva/gan-vae-pretrained-pytorch/ and add a linear interpolation layer to resize the
generated images to size 224× 224.

https://github.com/csinva/gan-vae-pretrained-pytorch/

Nonlinear Projection Based Gradient Estimation for Query Efficient Blackbox Attacks

Table 2: The detailed network structure for AE and VAE models.

Layer Name AE Layer Name VAE
InConv DoubleConv(n_channels, 24) InConv DoubleConv(n_channels, 24)
Down1 Down(24, 24) Down1 Down(24, 24)
Down2 Down(24, 48) Down2 Down(24, 48)
Down3 Down(48, 48) Down3 Down(48, 48)
Down4 Down(48, 48) DownMu Down(48, 48)

- - DownStd Down(48, 48)
Up1 Up(48, 48) Up1 Up(48, 48)
Up2 Up(48, 48) Up2 Up(48, 48)
Up3 Up(48, 24) Up3 Up(48, 24)
Up4 Up(24, 24) Up4 Up(24, 24)

OutConv Conv2d(24, n_channels, 1, 0) OutConv Conv2d(24, n_channels, 1, 0)

Table 3: The detailed model structure for generator in GAN.

Generator
ConvBlock(z_latent, 128, 4, 1, 0, transpose=True, leaky=True)

ConvBlock(128, 64, 3, 2, 1, transpose=True, leaky=False)
ConvBlock(64, 64, 4, 2, 1, transpose=True, leaky=False)
ConvBlock(64, 32, 4, 2, 1, transpose=True, leaky=False)
ConvBlock(32, 32, 4, 2, 1, transpose=True, leaky=False)
ConvBlock(32, 16, 4, 2, 1, transpose=True, leaky=False)
nn.ConvTranspose2d(16, n_channels, 4, 2, 1, bias=False)

nn.Tanh()

F.2 Estimator Training Procedure

The attacker first trains a set of reference models that are generally assumed to have different structures compared
to the blackbox target model. Nonetheless, attacker-trained reference models can generate accessible gradients
and provide valuable information on the distribution of the target model gradients.

In our case, there are five reference models with different backbones compared with the target model, while the
implementation and training details are similar to the target model in Section E.1. The benign test accuracy
results for CelebA, Cifar10 and MNIST datasets are shown in Table 5, Table 6 and Table 7 respectively. After the
reference models are trained, their gradients with respect to the training data points are generated with PyTorch
automatic differentiation function with command ‘loss.backward()’. The loss is the cross entropy between the
prediction scores and the ground truth labels.

For ImageNet and CelebA, since the number of images is large, the gradient dataset generated by reference
models is also too large to be handled in our GPU memory especially when we evaluate the baseline method
QEBA-I (Li et al., 2020) since it requires approximate PCA. Thus, we randomly sample 500, 000 gradient images
(100, 000 per reference model) for each of ImageNet and CelebA and fix them throughout the experiments for fair
comparison. For CIFAR10 and MNIST, there are fewer images and the machine can handle them properly, so
we use the whole gradient dataset generated with 250, 000 gradient images for CIFAR10 (50, 000 per reference
model) and 300, 000 (60, 000 per reference model) gradient images for MNIST.

The generative models are trained on the gradient images of the corresponding dataset generated as above.

F.3 Reference Model Performance

Intuitively, with well-trained reference models that perform comparatively with the target models, the attacker
can get gradient images that are in a more similar distribution with the target model’s gradients for training, thus
increasing the chance of an attack with higher quality. The reference model performances in terms of prediction
accuracy for CelebA, Cifar10 and MNIST datasets are shown in Table 5, Table 6, and Table 7. The model
performances are comparable to those of the target models.

Huichen Li∗, Linyi Li∗, Xiaojun Xu, Xiaolu Zhang, Shuang Yang, Bo Li

Table 4: The detailed model structure for discriminator in GAN.

Discriminator
nn.Conv2d(n_channels, 16, 4, 2, 1, bias=False)

nn.LeakyReLU(0.2, inplace=True)
ConvBlock(16, 32, 4, 2, 1, transpose=False, leaky=True)
ConvBlock(32, 32, 4, 2, 1, transpose=False, leaky=True)
ConvBlock(32, 64, 4, 2, 1, transpose=False, leaky=True)
ConvBlock(64, 64, 4, 2, 1, transpose=False, leaky=True)
ConvBlock(64, 128, 3, 2, 1, transpose=False, leaky=True)
nn.Conv2d(128, 1, 4, 1, 0, transpose=False, leaky=True)

Table 5: The benign model accuracies of the reference models for CelebA dataset (attribute:
‘mouth_slightly_open’).

CelebA DenseNet-121 ResNet-50 VGG16 GoogleNet WideResNet
Benign Accuracy 0.9415 0.9410 0.9417 0.9315 0.9416

Table 6: The benign model accuracies of the reference models for Cifar10 dataset (linearly interpolated to size
3× 224× 224).

Cifar10 DenseNet-121 ResNet-50 VGG16 GoogleNet WideResNet
Benign Accuracy 0.9079 0.8722 0.9230 0.9114 0.8568

Table 7: The benign model accuracies of the reference models for MNIST dataset (linearly interpolated to size
224× 224).

MNIST DenseNet-121 ResNet-50 VGG16 GoogleNet WideResNet
Benign Accuracy 0.9919 0.9916 0.9948 0.9943 0.9938

F.4 Nonlinear Projection Based Gradient Estimation

We provide the pseudo code for the gradient estimation process with the nonlinear projection functions in
Algorithm 1.

F.5 Attack Implementation

The goal is to generate an attack image that looks similar as the target-image but is predicted as the label of the
source-image. We fix the random seed to 0 so that the samples are consistent across different runs and various
methods to ensure reproducibility and to facilitate fair comparison.

Offline Models. During the attack, we randomly sample source-target pairs of images from each of the
corresponding datasets. We query the offline models with the sampled images to make sure both source-image
and target-image are predicted as their ground truth labels and the labels are different so that the attack is
nontrivial. For the same dataset, the results of different attack methods are reported as the average of the same
50 randomly sampled pairs.

Online API. For the online API attacks, the source-target pairs are sampled from the face image dataset
CelebA.

Nonlinear Projection Based Gradient Estimation for Query Efficient Blackbox Attacks

Algorithm 1 Nonlinear Projection Based Gradient Estimation
Input: a data point on the decision boundary x ∈ Rm, nonlinear projection function f , number of random

sampling B, access to query the decision of target model φ(·) = sgn(S(·)).
Output: the approximated gradient ∇̃S(x

(t)
adv).

1: sample B random Gaussian vectors of the lower dimension: vb ∈ Rn.
2: use nonlinear projection function to project the random vectors to the gradient space: ub = f(vb) ∈ Rm.
3: get query points by adding perturbation vectors to the original point on the decision boundary x(t)adv + δfvb.
4: Monte Carlo approximation for the gradient:

∇̃S(x
(t)
adv) =

1

B

B∑
b=1

φ
(
x
(t)
adv + δf(vb)

)
f(vb) =

1

B

B∑
b=1

sgn
(
S
(
x
(t)
adv + δf(vb)

))
f(vb).

5: return ∇̃S(x
(t)
adv).

Table 8: The mean squared error (MSE) distance thresholds used for four datasets that determine whether the
attack is successful.

Dataset ImageNet CelebA MNSIT CIFAR10
MSE Threshold 1−3 1−4 5−3 1−4

G Quantitative Results

G.1 Attack Success Rate for Offline Models

The ‘successful attack’ is defined as the adv-image reaching some predefined mean squared error (MSE) distance
threshold. Note that because of the varying complexity of tasks and images among different datasets, we set
different MSE distance thresholds for different datasets. For example, ImageNet images are the most complicated
and the task is most difficult. Thus, we set larger (looser) threshold for it. Specifically, the thresholds are shown
in Table 8. The attack success rates on the four datasets are shown in Table 7.

G.2 Proxy for the ω Value

According to the analysis in Section 4.1, smaller ω leads to better gradient estimation. The exact computation
of ω requires computing the tight Lipschitz and smoothness constant for both the projection f and the difference
function S, which is challenging. Therefore, we provide a proxy of the ω variable during the training. When
estimating the gradient at each boundary-image x(t)adv point with Equation (2), there are some perturbations that
contribute negatively in the Monte-Carlo estimation. More formally, a perturbation vector f(vb) has a negative
contribution to the gradient estimation if

sgn
(
S
(
x
(t)
adv + δf(vb)

))
6= sgn

(
cos
〈
(∇̃S(x

(t)
adv), f(vb)

〉)
. (41)

0 5K 10K 15K 20K
(a) ImageNet # Queries

0.0

0.2

0.4

0.6

0.8

1.0

A
tt

ac
k

S
u

cc
es

s
R

at
e

0 5K 10K 15K 20K
(b) CelebA # Queries

0.0

0.2

0.4

0.6

0.8

1.0

0 5K 10K 15K 20K
(c) CIFAR10 # Queries

0.0

0.2

0.4

0.6

0.8

1.0

0 5K 10K 15K 20K
(d) MNIST # Queries

0.0

0.2

0.4

0.6

0.8

1.0

Figure 7: The attack success rate vs query number for four different datasets.

Huichen Li∗, Linyi Li∗, Xiaojun Xu, Xiaolu Zhang, Shuang Yang, Bo Li

0 5K 10K 15K 20K
(a) ImageNet # Queries

0.0

0.1

0.2

0.3

O
m

eg
a

0 5K 10K 15K 20K
(b) CelebA # Queries

0.00

0.02

0.04

0.06

0.08

0.10

0 5K 10K 15K 20K
(c) CIFAR10 # Queries

0.00

0.05

0.10

0.15

0.20

0 5K 10K 15K 20K
(d) MNIST # Queries

0.00

0.05

0.10

0.15

0.20 HSJA

QEBA-S

QEBA-F

QEBA-I

NLBA-AE

NLBA-VAE

NLBA-GAN

Figure 8: The ω value at different queries for attacks on diverse datasets.

Figure 9: The cosine similarity values at different ω values for attacks on diverse datasets.

In other words, the sign of target model prediction disagrees with the sign of the cosine similarity between the
estimated gradient and the perturbation direction. We deem the ratio of samples that satisfy Equation (41) as
the proxy of ω. The results are shown in Figure 8.

G.3 Correlation between ω and Cosine Similarity

To verify the correlation between variable ω and the cosine similarity measure as proposed by Equation 11 in
Section 4.2, we calculate the two variables during the attack process on different datasets with various projection
models and plot them as x and y axis in Figure 9. The cosine similarity values exhibit a descending trend with
the increase of the ω values. To further confirm this, we calculate Pearson’s correlation score and the results are
shown in Figure 10. On ImageNet, CIFAR10, and MNIST datasets, the Pearson’s correlation scores are negative
with large absolute values, showing the ω and cosine similarity values have a strong negative correlation. On
CelebA dataset, the negative correlation between the two variables is less statistically significant.

H Qualitative Results

In this section, we present the qualitative results for attacking both offline models and online APIs.

H.1 CelebA Case Study

The whole figure for the case study on CelebA dataset of the attack performance at the early stage of the attack
process is shown in Figure 11.

H.2 Offline Models

The goal of the attack is to generate an adv-image that looks like the target-image but has the same label with
source-image. We report qualitative results that show how the adv-image changes during the attack process in
Figure 12, Figure 13, Figure 14 and Figure 15 for the four datasets respectively. In the figures, the left-most column
has two images: the source-image and the target-image. They are randomly sampled from the corresponding
dataset. We make sure images in the sampled pairs have different ground truth labels (otherwise the attack is
trivial). The other five columns each represents the adv-image at certain number of queries as indicated by #q at
the bottom line. In other words, all images in these five columns can successfully attack the target model. Each

Nonlinear Projection Based Gradient Estimation for Query Efficient Blackbox Attacks

Figure 10: The ω vs cosine similarity values for the 4 datasets and 7 projection methods.

Huichen Li∗, Linyi Li∗, Xiaojun Xu, Xiaolu Zhang, Shuang Yang, Bo Li

d=2.243e-02 d=1.401e-02 d=1.048e-02 d=8.689e-03 d=7.223e-03

H
S

J
A

d=6.960e-03 d=2.844e-03 d=1.741e-03 d=1.162e-03 d=8.596e-04

Q
E

B
A

-S

d=1.100e-02 d=4.106e-03 d=2.263e-03 d=1.528e-03 d=1.111e-03

Q
E

B
A

-F

d=6.031e-03 d=2.776e-03 d=1.749e-03 d=1.297e-03 d=1.025e-03

Q
E

B
A

-I

d=5.969e-03 d=2.461e-03 d=1.458e-03 d=9.878e-04 d=8.512e-04

N
L

B
A

-A
E

d=6.393e-03 d=2.272e-03 d=1.057e-03 d=7.208e-04 d=5.425e-04

N
L

B
A

-V
A

E

d=1.241e-03
#q=135

d=2.342e-04
#q=252

d=1.295e-04
#q=369

d=1.081e-04
#q=486

d=9.938e-05
#q=603

N
L

B
A

-G
A

N

Figure 11: The attack performance of all the NonLinear-BA methods and the baseline methods on one pair of
image of the CelebA dataset. The source-image and target-image of this case study are shown in Figure 4. The d
in the figure denotes the perturbation magnitude (mean squared error) of the adversarial example with respect to
the target-image. The #q values are the number of queries used at the point for each column.

Nonlinear Projection Based Gradient Estimation for Query Efficient Blackbox Attacks

row represents one method as shown on the right. The d value under each image shows the MSE between the
adv-image and the target-image. The smaller d can get, the better the attack is.

H.3 Commercial Online API Attack

As discussed in Section 5, the goal is to generate an adv-image that looks like the target-image but is predicted as
‘same person’ with the source-image. In this case, we want to get images that looks like the man but is actually
identified as the woman. The qualitative results of attacking the online API Face++ ‘compare’ is shown in
Figure 16. In the figure, the source-image and target-image are shown on the left-most column.

Huichen Li∗, Linyi Li∗, Xiaojun Xu, Xiaolu Zhang, Shuang Yang, Bo Li

Figure 12: The qualitative case study of attacking ResNet-18 model on ImageNet dataset.

Nonlinear Projection Based Gradient Estimation for Query Efficient Blackbox Attacks

Figure 13: The qualitative case study of attacking ResNet-18 model on CelebA dataset.

Huichen Li∗, Linyi Li∗, Xiaojun Xu, Xiaolu Zhang, Shuang Yang, Bo Li

Figure 14: The qualitative case study of attacking ResNet-18 model on CIFAR10 dataset.

Nonlinear Projection Based Gradient Estimation for Query Efficient Blackbox Attacks

Figure 15: The qualitative case study of attacking ResNet-18 model on MNIST dataset.

Huichen Li∗, Linyi Li∗, Xiaojun Xu, Xiaolu Zhang, Shuang Yang, Bo Li

Figure 16: A case study of Face++ online API attack process. The source-target image pair is randomly sampled
from CelebA dataset (ID: 163922 and 080037).

