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SUPPLEMENTARY MATERIALS FOR THE PAPER “CWY
PARAMETRIZATION: A SOLUTION FOR PARALLELIZED OPTI-
MIZATION OF ORTHOGONAL AND STIEFEL MATRICES”

In this Appendix we provide the following;:

e In Section[A] Stiefel RGD through the Sherman-Morrison-Woodbury formula

In Section [B] Hidden state gradients of ConvNERU

In Section [C] Copying, pixel-by-pixel MNIST and time comparison details

In Section [D] Neural machine translation details

In Section [E} Video prediction details

In Section [F] Proofs of results

A STIEFEL RGD THROUGH THE SHERMAN-MORRISON-WOODBURY
FORMULA

RGD with Cayley retraction requires inverting the N x N-sized matrix 7, A*~1 thus becoming cubic in N. To
make the computation more tractable, Tagare (2011) proposes to use the Sherman-Morrison-Woodbury formula
which reduces the size of the inverted matrix to 2M x 2M when the canonical inner product is chosen for
RGD. A straightforward extension of Tagare’s approach to the Euclidean inner product would require to invert
3M x 3M-sized matrix. To demonstrate that, we adapt derivations of Tagare| (2011)) for canonical inner product
and extend them to Euclidean inner product. The following Lemma shows how to compute update gi(n;) in
time O(NM? + M?) without constructing A*~1) explicitly.

Lemma 1. Consider Q € RV*M gnd A = BCT € Skew(N) for some matrices B,C € RN*P D < N. Then

1 -1
Cayley(A)Q = Q — B(I + 2CTB) <CTQ) (4)
Proof. We first need to show that the right hand side of always exists, i.e. I+ %C’TB is nonsingular:

1 1 1
det (I + §CTB) = det (I + 5BCT) = det(I + 5 4) #0

where in the first transition we apply Sylvester’s determinant identity. I + %A is nonsingular, because the
spectrum of any skew-symmetric matrix is pure-imaginary (Theorem 12.9 from |Gallier} [2011)). So the right hand
side is well defined.

Through the application of Sherman-Morrison-Woodbury formula we deduce that
1 - 1
Cayley(A)Q = (I + 2BCT) (1 — 2BCT)Q
1 | [
=(I--B(I+-C B)"'C I—--BC |Q
2 2 2
1 LTyt L T T
:Q—gB (I+§C’ B) (I—iC’ B)+1)|C'Q
1 1
=Q-SB(I+ §CTB)*1(21 -C0"B+C'B)CTQ

—1
=Q- B(I + ;CTB) <0T9>

which concludes the proof. O
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For convenience denote G#—1) = %(Q(k_l)). Depending on the inner product choice we get the following cases:

1. Canonical inner product. Then
e Ak=D — nkg(kq)g(kqﬁ _ nkQ(kq)g(kq)T — BCT
where

B = [g(k—l) Q(k—l)] , C= [Q(k—l) _g(k—l)} . B,C e RNX2M

2. Euclidean inner product. Then
AR — nkg(kfl)Q(kfl)T _ nkQ(kq)g(kq)T 4 %kQ(kq)EQ(kq)T — BCT

where

k=1) T o (k— k=1) T o (k— _ - _
E =gk k-1 k-1 glk-1)  p— M [g(k k-1 %Q(k ”E] ,
C = [Q(k—l) _g(k—l) Q(k—l)] , B,Ce RINV*3M

B HIDDEN STATE GRADIENTS OF CONVNERU

The convolution operation can be expressed as

(K@), =KTG Y, GO e rhxwxafou,

—(t— -1 -1 -1
Ggfjl)—concat<{Gt1)| <l<z+(12j—2<p<j+q2})

where Gl(f; D ¢ Rfout is a zero vector when I, p are pointing outside image borders (zero padding). By definition

of @V and K * G4 we have the following chain of inequalities between Frobenius norms || - ||r
= (t 12 -1)
I+ G5 = Z I0C+ G ))igll3 = D IKT Gy 3 < Z IRIZIG: I3
1,7

—(t—1) = _
= IKI3 - IG"1I% < ¢®IKI5 - IGY V1%

Assuming that |o(z)| < |2| which holds for most popular choices of nonlinearity (ReLU, LeakyReLU, tanh), the
norm of G® cannot grow in exponential manner. The same holds for a sequence of gradients with respect to
{G(t)}, since it is obtained by sequentially applying a transposed linear operator corresponding to ”Kx” convo-
lution operation and transposition preserves the linear operator norm. This justifies the property of ConvNERU
being robust to gradient explosion while allowing long-term information propagation thank to Stiefel convolu-
tion kernel. The conducted analysis is reminiscent of Lipschitz constant estimate for image classification CNNs
performed by |Cisse et al.| (2017)).

C COPYING, PIXEL-BY-PIXEL MNIST AND TIME COMPARISON: MORE
DETAILS AND RESULTS

Results for Copying task (7 = 2000), and permuted MNIST (i.e. when pixels in a flatten image are permuted
randomly) are shown on Figure For all setups but SCORNN in the Copying task we used initialization
technique from (Henaff et al.| |2016)), whilst for SCORNN we used initialization from (Helfrich et al., |2018). For
all setups in the Pixel-by-pixel MNIST (whether permuted or not) we used initialization from (Helfrich et al.|
2018). While our results on Pixel-by-pixel MNIST match those of [Mhammedi et al| (2017), Mhammedi et al.
(2017)) were not able to provide comparable results for the Copying task. We observe that correct initialization
is crucial for this task.

To initialize CWY, we, first of all, initialize a skew-symmetric matrix, as discussed above. Then we take exponent
of this matrix, obtaining an orthogonal matrix. Then, in order to initialize vectors v, ... .o we run the
same procedure as in the Theorem |1 proof (QR decomposition using Householder reflections).



CWY Parametrization: a Solution for Parallelized Optimization of Orthogonal and Stiefel Matrices

To do the time comparison, we draw elements of v ... v(N) for CWY from a standard normal distribution.
For matrix exponent and Cayley map, we initialize skew symmetric arguments as X — X' T, where entries of X
are sampled from a standard normal distribution.

Tr LN . 100.0
0.0200 cwyY
0.0175 ——— EXPRNN 97.51
= SCORNN
0.0150 — LSTM 95.0 1
> = DTRIV
2 92.5
£ 0.0125 —— baseline | &
c ©
© 0.0100 -= S 90.0
n [V
g b
S 0.0075 87.5 —— CWY N=512
0.0050 85.0 = EXPRNN N=512
’ ’ = SCORNN N=512
0.0025 82.5 —— LSTM N=256
= DTRIVeo N=512
0.00001— . . - ; - ; - J 80.0 — r . : —1 —1 . .
0 500 1000 1500 2000 2500 3000 3500 4000 0 10 20 30 40 50 60 70
iterations # epoch
(a) (b)

Figure 4: (a) Copying task, 7 = 2000. (b) Permuted Pixel-by-pixel MNIST, test accuracy.

D NEURAL MACHINE TRANSLATION: MORE DETAILS AND RESULTS

We take aligned bi-texts between the source and target languages and, as preprocessing, remove accents and
return word pairs in the form [English, Spanish]. The resulting dataset has an average sequence length of ~ 17
for both the input and target sequences.

Using a single Tensor Processing Unit (TPU) per model, we train several models from scratch, with no pre-
training, on 80,0004 sentence pairs and test on the remaining 20,0004 pairs from the full 100,000+ pair dataset
to compare their learning capabilities and stability. We use JAXEl library for the implementation. Given that
we evaluate all models on the same corpus and that our goal is to benchmark across architectures, we elected to
employ no pre-training and examine/compare cross-entropy loss directly.

See Figure [f] for the architecture illustration. In our experiments, we used a batch size of 64, an embedding
dimension size of 256, and a learning rate of 10~2. For hyperparameter sweeps, we ran experiments with smaller
hidden unit sizes. We also experimented with larger and smaller learning rates. Ultimately, for simplicity and
clarity, we only present results using the parameters described above.

For additional experimental results, see Table

E VIDEO PREDICTION: MORE DETAILS

All videos, 4 seconds in average, are recorded with a static camera with 25 fps frame rate and frame size
of 160 x 120 pixels. We crop and resize each frame into 128 x 128 pixels and then reshape each frame into
64 x 64 x 4 by moving groups of 2 x 2 pixels into channel dimension. Since each video sequence has a different
number of frames, we employ zero padding during batch construction. We use persons with indices 1-12 for
training, 13-16 for validation and 17-25 for testing. See Table [f] for KTH dataset statistics.

Given a sequence of known frames Z(M ..., Z(") ¢ [0,1]64%64%4  the network outputs a prediction Z(+D) of the
next frame Z(+1 . The network is designed as a recurrent block composed of several convolutional recurrent
units stacked together with the sequence {Z (i)}le passed to the input. In order to increase the receptive field of
the recurrent architecture while maintaining a tractable training procedure, we adapt a simplified version of the
video prediction architecture from |Lee et al|(2018); Ebert et al|(2017). Namely, we stack several recurrent units
with a bottleneck structure (hidden sizes 32 x32x 32 — 16 x 16 x 64 — 8 x 8 x 128 — 16 x 16 x 64 — 32 x 32 x 32)
and skip connections. We alternate recurrent layers with strided convolutions and then deconvolutions. After

"https://jax.readthedocs.io/en/latest/
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Table 5: Tatoeba Spa-to-Eng NMT results. We ran 3 seeds for each model. Below we present the average
test loss across these seeds, as well as the associated standard deviation. We did not run additional seeds for
non-CWY orthogonal parameterization approaches as these methods are slow (requiring many TPU hours to
train) and our primary comparison with them was w.r.t. speed.

MODEL TEST CE LOSS STANDARD ERROR
RNN 0.74 .08
GRU 0.56 05
LSTM 0.55 05
RGD 2.01 14
CWY, L =1024 0.56 .03
CWY, L =512 0.66 .03
CWY, L =256  0.64 .06
CWY, L =128 0.50 01
CWY,L=64  0.60 01

Table 6: KTH action dataset statistics.

STATISTIC WALK JOG RUN BOX WAVE CLAP
Min sequence length 62 42 26 42 62 24
Max sequence length 231 152 111 362 245 235
Mean sequence length 109.3 68.0 48.9 110.3  129.0 106.2
Total frames count (train set) 20122 12730 9096 20515 23958 19529
Total frames count (val. set) 7622 4551 3448 7558 8436 6415

Total frames count (test set) 15991 9913 7018 15277 18963 16125

each convolution and deconvolution we place a ReLU nonlinearity, as well as using ReLU as the recurrent
nonlinearity . In the proposed architecture a prediction Z(**+1) is conditioned upon Z®*) through bottleneck
and skip connections and conditioned upon {I(t/)}tfq through recurrent temporal connections. See Figure |§| for
architecture illustration.

We opt for batch size of 3, recurrent kernel size ¢ = 3, learning rate of 1072, Our experiments are implemented
in Tensorflow and run on a single Nvidia Tesla P100 GPU for each experiment. For each experiment we run 150
epochs and choose the model’s state showing smallest validation loss value for testing.

F PROOFS

F.1 Theorem 1

Proof. The proof proceeds by induction in N. For N = 1 such @ is unique and is equal to [—1]. So simply take
U = [— 1]. Now assume the statement is true for N =k —1> 1. When N = k > 1 we consider @’s first column

q= [q1 o qN] T and define a vector v € R* as follows:
_e .
W . if ‘q1| <1
v= [0 0 1} if g1 =1 (5)
e if g =—1
Observe that
1 7T
HEQ= |y ©)

for some r € RF~1. From the fact that H(v)Q € O(k) we deduce:

1 o[t »T 1 r’
|:7, Q/T:| |:O Q/:| = |:7' Q/TQ/+TTT:| =1 (7)
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Figure 5: Sketch of the architecture used for Neural Machine Translation experiments. For ease of illustration we
use 5 as maximal input and output length. w!", w¢"* are input and output word embeddings respectively, (eos)
and (pad) denote embeddings of “end of sentence and “padding” tag respectively. We use two different RNN
units for the encoder rollout h§ — --- — h¢ (blue) and decoder rollout h¢ — --- — h¢ (pink). We illustrate how
the distribution of predicted output word wO“t is computed, other output words are processed similarly. Given
hd, the context vector c; € RY is computed as Y, a;h§ where >, a; = 1, a; oc exp(v | tanh(Wih¢ + Wohg)),
v € RN, Wy, Wy € RV*N are learnable parameters. Then c3 is concatenated with previous word embedding
(wg** or null tag embedding for the first predicted word) and passed into decoder RNN as input. Decoder RNN
output (h%) is passed through linear layer + softmax to obtain a distribution over wg“*.
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Figure 6: Sketch of the architecture used for video prediction experiments. Blue and grey blocks illustrate
hidden representations with and without recurrent connections respectively. We compare different designs of
the blue block (ConvLSTM, ConvNERU). In our comparison we try different designs of blue recurrent units
with everything else unchanged. As in the original papers (Lee et al. 2018} [Ebert et all, [2017), we find that
ConvLSTM version works best when instance normalization (Ulyanov et al.| [2016) is added after each convolution
and before the nonlinearity, including convolutions inside ConvLSTM. We don’t use instance normalization with
other model variants.
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Hence, r = 0 and Q' € O(k — 1). By Sylvester determinant identity det(I — 2vv') =1 — 2vTv = —1, therefore
det Q' = (—1)*~1. By the induction step assumption there exist nonzero v'(), ... v'*=1 e RF-1 g t,

Q =HWW)...H@'* D)
T T
We define v® = {o Uf(lﬁ} o) = [0 U/(k—lﬁ] and obtain that

H(©)Q =Hw?)...Huw®) (8)

Finally, we define v(!) = v, left-multiply by H(vM)) and complete the induction step. O

F.2 Theorem 2

Proof. First, observe that S is upper-triangular matrix with % on the diagonal. Hence, it is nonsingular and the
Theorem statement is valid. Now the proof proceeds by induction in L. For L = 1 Theorem is trivial. Suppose
Theorem is true for L = k — 1 > 1. Then the following is true:

HW) .  H@*Dy=1-0'8"t0'"

ey pF=1)

A
where U’ = O o=,

} and
S = %I + strin(U’'TU”)
Then for L = k we get:
HW)...H@w®) =1 -U's'UT)HL®)

T T
_ s ot g
[v®)]|3 [o®)]|3
2 2
-1 _oqi—17pT _o®
—r-ul® 28 U2 EIHE

And the step of induction is completed by observing that

-1 _oqi—17pT _o® -1 _oqi—17pT _o® ’ T _o®
s 25U |v<k>|%] xS = [5 257U |v<k>|%] x lS v |1v<k>|§] —1
0 2 0 2 0 5

F.3 Theorem 3

on the diagonal. Hence, it is

N[

Proof. Similarly to Theorem 2, observe that S is upper-triangular matrix with
nonsingular and Theorem’s statement is valid.

Observe that for any nonzero vectors v(1), ... v(M) ¢ RN
I L) (1 1T T Trra—1 ~1 T\ T
0 -Us™'u; 0 -USsS™ vy | =1+U, ST U'UST-5"-8 U,

=I14+U,5 " (UTU - S> STyl =1

Hence, vy ar (v, ... o)) € St(N, M). To show surjectivity of vy s, consider arbitarary Q € St(N, M). Let

q= [q1 o qN} T be ’s first column. We consider value v defined by . Using derivations similar to ,
we obtain:
1 0
H(U)Q = [0 Q’]

where ' € St(NV —1,M —1).
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Set v(!) = v. Analogously find v’ for Q' such that

HW)Q = [(1) g‘”

and set v® = [0 v'T] T, Repeat this procedure M — 2 more times to obtain:

N

HO). . Hu®)0 = H 0

Left-multiply (9) by H(v™)... H(v®)):

Q= "W). Hu™) H

Finally, apply Theorem 2 for series of Householder reflections H(v(")) ... H(vM)):

Q= (1— US‘lUT> H _ H —USTUT = v (0,0 D)

which justifies surjectivity of yn as. O

F.4 Theorem [

Before providing results which build to the complete proof, we first give a high-level sketch to aid intuition.
Lemma shows that, for any iteration of SGD, v, ... v(F) stay in a region S = {x € RV | ||z||2 > A}, where
A > 0 is some fixed number. Lemma [3| shows that the composition of f and CWY has Lipschitz-continuous
gradients in S. Next, Lemma [4] shows that the gradient proxy has bounded variance in S. The proof itself is
essentially Theorem 4.10 from (Bottou et al., 2016), which uses Lipschitz continuity and boundedness to establish
SGD convergence guarantees.

Lemma 2. Suppose conditions of Theorem@ hold. Since all vOV ... vOL) are nonzero, there exists a number

A > 0 such that for alll € {1,...,L} : A < ||[v(®D|5. Define a set S = {x € RN ||lz||2 > A}. Then for each
kE>0ov®D . o®L) gre well-defined and lie in S.

Proof. The statement is true for k = 0. Suppose it’s true for k — 1. Since v*=1D  y*=1LL) are nonzero,
v®D | w®ELD) are well-defined. Fix I € {1,...,L}. Observe that for any nonzero v € RN: H(v) = H(72-).

llvll2
(k—1,1)

Hence, f(H(v*=1D) . H(u*=1L))) can be represented as a function g(m) so that
Y k—1,1 k—1,L v 1h
Vvucq,z)f(H(U( o )) oo H(’U( o ))) = Vvucfu)g(m).

Denote s(v) = —5—. Then

llvll2

1
va(s(v)) = HU”Q (I - s(v)s(v)T)VSg(s(v))
and, hence, v V,g( moz) = 0- We use it to derive that for any n € R
(k—1,0) (k—1,0) (k—1,0)
(k—=1,0) _ v 2 _ 1, (k=1,0))12 v 2 (k=1,)T v
[|v nvv(’c—lv”g(HU(;C_U)HQ)HQ = |jv 15+ IV yx-1.09( Hv(k_l’l)||2)”2 2 9( [oE=10,
(k—1,0)
= [[o* YIS + 17V 1.0 9 )iz > [[v* )5 > A% > 0. (10)

[C P

In particular, by setting = k~9® and observing that v(#! = (=10 _ k*0'5vv<k71,z)g(%) we conclude

that |Jv*! ||y > A so the step of induction is completed. O
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Lemma 3. Suppose conditions of Theorem (and, hence, of Lemma@ hold. Fix k > 0. According to (@) we
can define a function h: R — R as

h(n) = f(H(v(l)(n)) ... H(U(L)(n))>7 vie{l,...,L}:

vV (n) = k1D _p. V,U(kl,l)f<H<'U(k_171)) e H(U(k_l’L))>.

Then —
|Vh(n) — Vh(0)| < CMn,

where

2L
c= (5 6Ms(N +2) +\/2M2+48M1(N+2 (v2(N + 60) + 8y/6N( N+2))>

AQ

L
M =Y [V fH@EED) L H@BR0)))12,
=1

Proof. Observe that due to (10) ||[vV(n)|2 > A. By applying a chain rule we deduce that

ZVW o fHESTID) L H RSN TY 0 fH WD () - H @S (1)),

Next, we derive that
|Vh’( | = ‘Z V,U(k 1 z)f k 1 1)) . H(U(kfl,L)))T

x (mf(H(v(”(n))  HEO W) — Vooeso fH*D) . H(v““v“))) |

L
g J S IV FEEO@)) . HW (1)) = Vymro fE@EDD) L HEELD)[2 (1)
=1

where we use the Cauchy-Schwarz inequality. Fix I € {1,...,L} and let ¢'(v®), g¢"(v=1D) be
FHWD (). Hw™ (n)) and f(H(u*=ED) . H@w*=1L))) represented as functions of v and v~ re-
spectively. Then

Voo FH@D (1) ... HW 1) = Vo4 00) = m(I—S( v)s(@D) Vg (s(u)),

Vot f(H@EEDY L H@E L)) = ¥, oo g” (vF1Y)

1 _ - -
= a0 s st VL ().

While [ is fixed denote v/ = v® and v = v*~1D_ Then we have:

IV g’ (@) = Vyarng” (@) 2 = | (I = s(v")s(v') ) Vg (s(v"))

v ’H

— m(l _ S(UH)S(U”)T)ng//(s(vﬂ))HQ

= I (1 = (0)3(0) )95/ (50) = T (7 = s(0)s(6) ) Vo (5(6')

+ ﬁ([ — 5(v)s(v") Vg (s(v))) — m(] —s(v")s(v") ) Vsg" (s("))]|2
1

<l (I = s(v)s(v") )Vsg'(s(v")) = (I = s()s(v") ) Vsg (s(v))ll2

Hv’Hz [0 [l2
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+ ||m(1 —s(v)s(v) Vg (s(v")) — m([ —s(v")s(v") ) Vsg" (s(0"))]|2
< | = I = s()s(@) ) Vg ()]

[v'll2 (vl
+ ”v,l,”2 (1 = s(v")s(v") ")Veg (s(v) = (I = s(v")s(v") ") Vsg" (s(v"))l|2

< %Hvl —0"]2][Vsg' (s(v)) |2 + %”(I = s(v)s(v") 1) Vg (s(v)) = (I = s(v")s (") ") Vsg" (s(v")) 2

= ' =0l T (5 + (T~ 5(0)s(0) )V (5(0))
(= ()Y )V (56") (T = 5 )s(0) IVag" (5(67)) — (1 = (0" )0 ) Vg (50"

szu—vwzVw%AMMb+jnu—awﬁwSU(Vgxdv»—ngduw)u
+Auﬁf—dww@vw—wf—awﬁwa)wadwnm
1

1 /
< gl = alIVed (s@ll2 + 2 11Vsg'(s()) = Vog"(s("))12

A
6300 T = 500" )V (50
< Sl = 12V.g () + 71V (5() = Fg” (50
+ 500N T = 5050 T 1749 (5Dl
<l = 12Vg () + 71V (5() = Tg (50
500N T = 5005 + 505~ 500" 01748 (5Dl
< 5l = el T (5 2 + IV (5(0)) = Vg (50"
+ 1500 = s Vs (50 + I sw) = 500" T 1148 (5Dl
< gl =l T (5 s+ 51V (5(0)) — Vg (50" )

S

+ 7 1s@)ll2lls() = s(") 2l Vsg" (s("))llz + %H(S(v’) = s(W")l2lls(@")ll2lVsg” (s(v"))ll2

< %Hv’ — "2/ Vg (s(v))l2 + %Ilvsg’(S(v’)) = Vg (s(v"))ll2 + %IIS(U’) = 5(")2lIVsg” (s(v"))l2
< %Hv’ =" 2(IVsg (s()l2 + 4 Vag” (s(v"))]l2) + %Hvsg’(S(v’)) = Vag"(s("))ll2, (12)

where we use submultiplicativity of the matrix norm ||- || and that for any v,v’,v” € S,z € RV: a) I —s(v)s(v) "
is an orthogonal projection matrix and, therefore, ||I — s(v)s(v)T|2 <1, b) |t — mor| = e ||V]]2 —
o'l Mo”2 o [2 110" [l

[v"]l2] < Zzllv" = v"||2 and )

7], ,U// ,U/ ,U/ ,Ul ,U//
[s(v) = s )2 = 777 — 2 = |l - - ll2
[l [lv"]l2 [vll2 7l 72 (0”2
1 1 1 1
< _ ’ M — ol ron
= | Hv/”2 ||U//||2 |||U ”2 + HU”H2 HU v H2 ||1)”||2 Hlv H2 HU ||2| + HU”H2 HU v H2

2
< WHUI -]z < ZHU/ —0"[|2.

For s € RV, ||s||2 = 1 let s; denote i’th position of vector s, Hj, ;, denote (j1, j2)’th position of matrix H and [/]
denote indicator. Then

VSiH(S)jlaj2 = vs'i(l B 2S‘J|<19(|9|]22 )
2
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((s5, + 55,) [ = illj2 = 1] + 55, [j2 = i]lj1 # 1] + 555l = ill2 # i) |Is]|3 — 255, 55,5
15113

= dsj, 55,81 — 2(5j1 []2 = Z] + 84, []1 = l])

=2

We further obtain that

IVH(s)[F = Y. (4sj,85,8i — 2(s5,[j2 = ] + 85, [0 = 1))
1<i,j1,52<N
<3 Z (1657, 57,57 4 457 [jo = i] + 4sj,[j1 = i])
1<i,g1,52<N
N N N
=48 8 Y Sy si412 > st 412 Y s, =24(N +2),
=1 ja=1 =1 1<i,j1<N 1<i,ja<N
IVoH(s) = Ve H(s" 7 = D (4s),s),5; — 45}, 57,57 — 2], — 7)o = 1]
1<4,51,j2<N
_2(892 - 8312)[-71 = Z])2 <3 Z (16(SJ1SJ28’L - 82/183/28;/) + 4( Sii T ;/1)2[j2 = 7’]
1<i,j1,52<N
A P = D S Y (5 st — sl sl = sl
1<d,j1,j2<N
D e D D C
1<i,j1<N 1<i,j52<N
<96 Z (s}, 85,85 — 85,87, 80)7 + (s, 87,81 — 57 s, s1)?) + 8N ||s" — s"[|3
1<i,j1,j2<N
=96 Z (5’2 (3]25Z — 52’2 s + 8;’38;’2(331 — 33’1)2) +8N|s" —s"|3
1<i,j1,§2<N
=96 Z (s (s, 8 — sh, s + 85,8 — s, 8)7 + s72s12 (s, — s7)%) + 8N||s" — 5|3
1<i,51,52<N
=96 > s — )+ 285875, — s7,) + ST (s5, — 5)%)
1<i,j1,92<N
N
+8N||s' = s"[[3<96-5) " s> S (s 24+ 8N||s' — s"|]2 < 8(60 + N)||s’ — s”||2

1=l ja=1 =1

(13)

(14)

where we use the Cauchy-Schwarz inequality and, in particular, that (a + b)? < 2(a? + b?) and (a + b+ ¢)? <

3(a® + b + ).

By Jensen’s inequality, for every X € O(N) we have ||V f(X)||% = ||
X"(s) denote H(v(M(n))...H(s(v'))... Hwv") (n)) and H (v
s(v") and s(v") respectively. Then

I;lVf(X)HF <E|Vf(X )II%

N
IV X' ()7 = ZIIV&X s)|l5 = ZIIH W)... Vo, H(s(") ... H@® )3
= Z IV H(s)IE = [IVH (s(0)) [ < 24(N +2),
VX' (s(v") = Vo X" (s("))llr = [[VaX"(s(v")) = VX' (s(v")) + Vs X' (s(v")

=V X"(s(")r < [VaX'(s(")) = VX' (s(v") | r + IIV X'(s(v")) = VX" (s(")ll r

N
- Z [H (M () ... (Vs H(s(v') = Vs, H(s(v"))) ... HE )|[7 + |V X' (s(v"))

VX" (s()lr = IVH (s(v')) = ViH (s(v"))l|F + [V X (s(v")) = VX" (s(v")) | p

3. By X'(s),
H(s(v"))... Hu®* 1) as functlons of
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N
< 2¢/2(N +60)[|s(v") = s(v")]l2 + Z 1H (M () ... Vo, H(s("))... HW ™ ()

—H@%*= 1Dy v, H(s(v"))... Ho* )| p (15)

For every 1 < ¢ < N we have:
M) ...V, H(s(@") ... Hw®P (n)) = H* D) v, H(s("))...
= [|[H@wM (n)... Vo, H(s("))... HP(n)) = Ho* "N H@P () ...V, H(s(0")) ... Hv™ (n))
+H@F PN H@P () ...V, H(s(0")) ... HoW (n)) = H* D)V H(s("))... Ho* )| p
<NH@D () ... Vo, H(s(")) ... HP () = Hu* Y H@P) (n))... Ve, H(s()) ... Hw™ (n))||
+ || H (v*= 1) <H(v .VsiH(s(v”))...H(U(L)(n))—...V&,H(s(v”))...H(v(k_l’L))>||F
< H@W () — H@* D) g [HeP (). Vo, H(s(@")) ... Ho™ )|
HH@WP (). V ). H@wH () — He® 1)V H(s@")... Hu* )| p
) )

H(s(v'
< |[|H(v (”( )) = H* D) |p[| Vs, H(s(o")) | r
HIH P () ... Vo, H(s(0")).. (v(“(n))—H(v('“ BO) VG H(s(W) . HR )| (17)

< <V Hs(0") HFZHH O @) = Hw* )
I'=1

H| Ve Hs(W")) ... HP () = Vo, H(s(W")) ... H* ) p,
where ... correspond to repeating the reduction of type (16H17)) to the term

|H@wP(n)... Ve, H(s@")... HoE () — H* 1) .V, H(s@"))... Ho* D) p

15 (v

and so on until it becomes

Vs H(s(v")) ... Ho'B (1)) = Vo, H(s(v")) ... Hu" D) . (18)

Then, one can repeat the reduction of type (L6H17) to (L8]), but by extracting right-hand side reflections, so that
becomes ||V, H(s(v")) — Vs, H(s(v"))||r = 0 and (16) is continued as

1 (v (1) .. VszH( (v)... H(v (L)( )) = H@* M) LV H(s(0")) . H0E ) p

< Vo Hs@W)) e Y IH @ () — H@E )5+ |V, H(s(0') — Vo, H(s(v")) | p
Ul
< ||V H(s( ||FZ||H ®) H(o*10)|
I’'=1

We sum this inequality for 1 < i < N, apply Cauchy-Schwarz inequality and use ([13)|14]) to obtain that

N
Z |H @M (). .V, H(s()... Ho®P () = H*1D) . .V, H(s@"))... Hw* VD) p

N L
< \/N\l S IV HsNIZ Y IH@ () = H* )| (19)
i=1 =1
L (z) )( T (k—1,I"), (k—1,0)T
?7) v v
=1
@) pe=1,0) gy (k=1,1)T
CEERI I o >|(|2) B P 2!

I'=1
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For each 1 <!’ < L we have

U(l/)(n)v(l/)(n)'r pE=10)  (k=11)T

|| 7 - 11/ ||F
[o@ ()13 [o®=11]3
IO RION 0@ ()@ () T IO RION v<k*1*l'>v<Hl’>T”
7 - 7 7 7 7 - N 7 a
0@ ()13 o @) [J2l[o®=L ]y [Jo@ ()| [0, [o=1]2
1 1 1 !’ !
T - | [0 () ()T ||
[l [Jo®=LO];" [o@ ()]
N 1 ” v(l’)(n)v(l')(n)T v(kfl,l’)v(kfl,l’)T ||
o=, o ()] [ot=10)], 1
< @ @)z — o2 4|
1 @B + gy | e T o T
) 7 7 v 7 7 - 7
[0 () [[3]Jo*=15 ] P2 =T, T @ ()] [oG=10)],

]. ’ !’
< <o) = o 1O,

1 O @ ()T =L B=LIT k=) (k= LI)T (k=1 (k=110 T
AT T T e T ~ e, I
oL [loW) (n) ]l [0 (0)]]2 [0 (0)]]2 [[oE=1E ]
1 ’ ’ 1 ’ !’ / !’
- (l ) _ (k—l,l ) (l ) (l ) T _ (k—l,l ) (k—l,l )T
S AHU (T}) v ||2 + Hv(k_l’l/)|‘2||v(l/)(77)H2||U (77)“ (T}) v v HF
1 1 1 ! /
n : : _ : =11 (k=10) T
o0, @ Gl ~ oo, | I+
1 ! ’ 1 ’ ! ’ 7
_ = (l ) _ (k—l,l ) (l ) (l ) T _ (k—l,l ) (k—l,l )T
- AHU (77) v ||2 + H’U(k_l’l/)HQHU(l/)('I’])HQ||U (77)“ (77) v v HF
1 ’ !’ 7
; ; o @)z = o*= D [lo][o* =1 2
||U(’“ L0 ()2 ?
1, ,
< L) o0
1 7 7 / ’ 1 7 ’
" / / o @ ()T = =ty k=10 Ty L @y )
IO @, ) Ie+ R I

2 ’ !
< o) — o O,

— k=Ll (k=LI)T)

]_ 7 ’ ’ ’ ’ ’
+ : : 2O M@ (T = @) () E=1IDT 4 (1) () (k=11 T
Hv(k—l,l )HQHU(Z )(77)“2 l (n) (n) (n) ()

2 ! !
< 2o ) — o 1O

]_ ’ ’ 11 ’ 11/ 17
O ) () =N + [ (00 () = oFH)p 0T )

+ ! / ,l}
RN G
2

1

< @) _ (k=10 ) (k—1,1") @) _ y(k=10)

< G0 o+ e (O )+ IOl o) — 0O,

2 ’ 7 1 1 ’ !’ 4 !’ ’
< 2 _ k=11") @) _ =L« 21, () _ =117
< 10 = o s (e + gl ) = o Ol < 2 ) — O

‘We combine this with and conclude that

Vs X'(s(v') = VX" (s(v")llr < 2v/2(N + 60)|s( ")l
+41/6N(N +2) Z( 0@ (1) — v(kl’l/)Hg)

U'=1
k 1l)H2

2
< Z\/2(N+60)Hv( v * Dy 4+ 4y /6N (N + 2) Z —||v(l

I'=1



CWY Parametrization: a Solution for Parallelized Optimization of Orthogonal and Stiefel Matrices

i<\/2N+60 +8\/6NN+2>Z||U(Z p*=L ||,
Next, we deduce that
N N
Vs (s())13 = D (Vsid (5(0)))* = Y (Ve f(X(5(v)))))?
i=1 i=1
N N
=D Trace(VF(X'(s(0") TV, X (s(v))? < DIV (s(N)IF Vs, X () I
=1 i=1
N
<Mz Y ||V, X' (s()|F = Ma| VX' (s()) |7 < 24Ma(N +2).
i=1
Analogously it is derived that ||Vsg”(s(v"))||3 < 24M(N + 2). We proceed by observing that
N
IVsg' (s(6) = Vsg" (s D5 = Y _(Veid (s(v))) = V6" (s(x")))
i=1
N

(Trace(V.f(X'(s(v"))) T Vi, X'(s(v))) = Trace(V (X" (s(v"))) TV, X" (s(v"))))?
1

3

:N
= > (Trace(Vf(X'(s(v)) TV, X'(s(¢"))) — Trace(V f(X'(s(v))) TV, X" (s(v")))

=1

+Trace(Vf(X'(s(v'))) Vi, X" (5(0"))) — Trace(V f(X" (s(v"))) T Vs, X" (s(v"))))?

N
<2 (Trace(V (X' (s() T (Vs, X' (s(v) = Vi, X" ((+))))?

i=1

+Trace((Vf( "(s(v)) = VAX"(s(u"))) Vs, X" (s(0")))?)

<2Z IV 7 (s D)3V, X (5(0)) = Vo, X (s(0")) 3
VO () = TSN T X ()
N
<20 Y V. X (5(6) = Vo X (s(0DI[F + 2MFX (5(0)) = X" (5(0") ||FZ||V X" (s(0"))3

< (2Ma + 2M7 [V X" (s(u") [2) Vs X (s(v) = Vo X" (s(v" ))IIF

L
< (2My + 48MF(N +2)( (/2N 1 60) + 8GNV +2)) 3 o) () — -0 )2

I'=1

We continue and deduce that
_ 10
IV g @) = V109" (051Dl < 1z VOMa(N +2)[[v" = o"l2

L
2 ,
+ E\/2M2 4 A8M2(N +2)(v/2(N 1 60) + 86N (N + 2) § 0@ (1) — w10

b«\ﬁ

L L

17 C ’ ’
§ |v(l ) — k=1 )H2 < \/EJ E [0 (n) — w11 |2,
=1 I'=1

We plug the last inequality into to obtain that

IVh(n)Vh(O)lgfE \ILZHv(l) — k=12
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=1

L
eV J ST = 0V e F(HGE1D) L H (0= 10)) 12

L
n.c\/ﬁ\l2| oot F(H (=10 . H(vk=11)))||2 = CM7.

=1
O

Lemma 4. Suppose conditions of Theorem (and, consequently, of Lemma@ hold. For any vV, ... v(B) e 8

L
B[ 9,0 f(HE®D) . H@P)E <D, D= 2 N(N +2)LM,
Proof. For each 1 <1 < L we have
N
1900 FHED)... HEE)E = 3T, 0 fH D). H©®)?
i=1

N
= Z Trace(Vf(H(v™). .. H(M“))Tvvgl) (H(v(l)) e H(U(L))) )2
i=1
N
< D IFFHED) HEO - ). ¥ HEO) o HE D)
= [IVF(HW).. . H®") ”FZ IV, 0 H@)E = IVFH@D)... HoD) [V 0 H )7

N
= |VA(H®D). --H(U(L)))II%Z IV, 0 H (s )17

N

N
= [VAHEW) ... HG)IED 1DV, 080"V, Hs@?)

i j=1

=1
N

< IVAEED) .. HEW))E D IV,0s@O)3IVH (s(0W))1F
i=1

= |VF@HEY). . H(v (L)))II%HVMS( DFIVH (D)1
< |IVAH@D)... Hv (L)))HF” 0 ||2|| s(®)s(®)T|% - 24(N +2)

< 2EN(N + ) IVFHED) . HED)]F

where we use |1 — s(v)s(v®)T||2 < N because I — s(vM)s(v)T is an orthogonal projection matrix. Next,
we obtain that

L
= 24
EY |[Vyworn fHEED)CH@EE)|E < NN +2)- EL||Vf(H@* ). HE B3 < D.

O

Theorem[]] proof. As shown by Lemma [2] all step sizes are well-defined. We adapt the proof of Theorem 4.10
from (Bottou et al., |2016)). We consider a step k£ and deduce from Lemma [3| that

=05 k05
(70%) = 1(0) = k0*Vh0) = [ (Vh(n) = VA(O)dn < [ VA(s)  VAO)ldg
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R CMk!
SCM/ ndn = 5
0

By expanding h’s definition, we deduce
CME™!
(k1) (kL) _ (k—1,1) (k=1,0)) | <
f<H(v )...H(v )) f(H(v )...H(v )) 5

L
—k705 N "V eman fH@FTED) L H @) T g fH (0FTEY) L H (0BT ER)Y),

=1
Take expectation conditioned on Fj, — a o-algebra associated with {{v*" D .. ,v(k"L)}}ﬁ,;ll:
E[M|Fi]k~!
E[f <H(v(’“’1)) . H(v(k’L))> | Fi] — f(H(MM)) . H(UUCLL))) < %

L
—E05 N BV, e FHEETD) L H@ETH N F]T X Ve FHETED) L H(BTLE)),
=1

By ]?’s definition we have
E[V -1 f(H@* D) H@P V)| Fl = Voe-ro f(H (P 0D) . Hp®F=L0)Y)

and, therefore,

E[f <H(v(k,1>) ) ..H(U(u))) | Fi] — f(H(U(k—l,l)) _ ._H(,U(k—l,L))) < %ﬂ]k—l
L
_ k705 Z ||Vv(k71,z>f(H(U(k—1,1)) o H(v(k—l,L)))H% (22)
=1

Next, we combine and Lemma applied to M , to obtain that

CDk™!
2

Bl (HO0) ) )] - () ) <
L
—k 705 Vv f(H (D) L H (0B 2,

=1

Take full expectation and regroup:

L
EOPRY IV f(H@FDD) L H@EED)) 13 <Ef <H(v(k_1’1)) . H(v(k_l’L))>

=1
Dk~1
~Ef <H(v(k’1)) .. H(UUC’L))) + CT
For K > 0 take a sum for 1 <k < K:
K L
SR TPED IV fHEE D) H@E LR < f(H(v(O’”) - H(v“m))
k'=1 =1

K .~
—]Ef(H(v(K’l))...H(U(K,L))> +3 CDk 1.

2
k=1
f is continuous on a compact domain O(N), hence there exists a minimal value f* of f on O(N). We continue
and derive that
K

L X cpr—1
SR TOSEY IV 0w fH P ID) L H@E LR))|2 < f(H(v(o’”) . H@«w)) ey :

2
k'=1 =1 k=1
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L
oéﬁiEKE; IV s f(HF1D) L H @R )|

K L
< e 2K TOE Y [V FHEE D) L HEE )3
=1

1

= K —

D= K00 T

.. CD YK _ K
S K /Os(f(H(/U(O,l))"'H(/U(O,L))> _f )—'—7 ZI? = ,705'
D pr—y K0 Dpr—y K0

The proof is concluded by observing that 25:1 k=95 = Q(K°5) and Z,If,:l kK=t = O(log K) = o(K¢) for any
€> 0. O
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