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Abstract

We introduce an efficient approach for op-
timization over orthogonal groups on highly
parallel computation units such as GPUs or
TPUs. As in earlier work, we parametrize
an orthogonal matrix as a product of House-
holder reflections. However, to overcome
low parallelization capabilities of comput-
ing Householder reflections sequentially, we
propose employing an accumulation scheme
called the compact WY (or CWY) transform
– a compact parallelization-friendly matrix
representation for the series of Householder
reflections. We further develop a novel Trun-
cated CWY (or T-CWY) approach for Stiefel
manifold parametrization which has a com-
petitive complexity and, again, yields ben-
efits when computed on GPUs and TPUs.
We prove that our CWY and T-CWY meth-
ods lead to convergence to a stationary point
of the training objective when coupled with
stochastic gradient descent. We apply our
methods to train recurrent neural network
architectures in the tasks of neural machine
translation and video prediction.

1 INTRODUCTION

Training weight matrices in a neural network with an
orthogonality constraint gives various benefits for a
deep learning practitioner, including enabling control
over the norm of the hidden representation and its gra-
dient which can be helpful for several reasons. A series
of works addresses the problems of exploding or van-
ishing gradients in recurrent neural networks (RNNs)
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(Hochreiter, 1998) by using orthogonal or unitary tran-
sition matrices (Arjovsky et al., 2016; Wisdom et al.,
2016; Jing et al., 2016; Mhammedi et al., 2017; Helfrich
et al., 2018; Lezcano-Casado and Mart́ınez-Rubio,
2019). Further, orthogonality appears to improve for-
ward and backward information propagation in deep
convolutional neural networks where convolutions are
parametrized by a Stiefel manifold—a general class of
orthogonal matrices (Huang et al., 2018; Bansal et al.,
2018; Li et al., 2020). The norm-preserving property of
an orthogonal linear operator helps to gain control over
the Lipschitz constant of the deep architecture and,
therefore, can enhance adversarial robustness of the
model and its generalization capabilities both in the-
ory and practice (Cisse et al., 2017). Orthogonality is
also useful when designing invertible constructions for
flow-based generative modelling (Van Den Berg et al.,
2018).

Yet there is a lack of an orthogonal optimiza-
tion method which is compatible with the industry-
standard use of highly-parallel devices (GPU or TPU)
for computations. Indeed, existing approaches for
training an N ×N orthogonal matrix can be grouped
into two categories (see Table 1):

• Algorithms involving expensive operation of N ×
N -sized matrix inversion or exponent (Wisdom
et al., 2016; Lezcano-Casado and Mart́ınez-Rubio,
2019; Helfrich et al., 2018) resulting in at least
O(N2 logN) parallel complexity (Tuma, 2020).

• Algorithms decomposing the orthogonal operator
into a set of L < N linear operators applied se-
quentially (Jing et al., 2016; Mhammedi et al.,
2017), not taking full advantage of parallel matrix
multiplication on GPU and TPU (Schatz et al.,
2016; Tuma, 2020), and resulting in at least O(L)
parallel complexity.

Hence, there is a critical gap, with no method which
works when a) cubic time is prohibitive and b) large
L for non-cubic approaches is slow while small L seri-
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ously restricts model capacity.

We present a new approach to optimization over or-
thogonal matrices, focusing on computational effi-
ciency. We employ the compact WY (or CWY) trans-
form, a scheme for the composition of several House-
holder reflections (Householder, 1958). Our proposed
approach has several advantages:

1. While in exact arithmetic being equivalent to de-
composition into Householder reflections (Mhammedi
et al., 2017), the parallel complexity of the algorithm
is only O(log(LN)) with O(L2 logL) preprocessing
(see Table 1) which makes it especially efficient when
executed on GPU or TPU. We observe 20× speedup
in practice compared to sequential Householder reflec-
tions (Mhammedi et al., 2017) (see Table 2) and 1-3
orders of magnitude speedups compared to ma-
trix exponential and Cayley map (Figure 1c).

2. We introduce an extension for parametrizing Stiefel
manifolds – nonsquare generalizations of orthogonal
matrices. The extension scheme, named “Truncated
CWY” (or T-CWY), is to our knowledge a novel
parametrization of the Stiefel manifold which
requires the smallest number of floating point
operations (FLOPs) among methods for Stiefel op-
timization (see Table 2).

3. Finally, we prove that SGD based on CWY or T-
CWY leads to a gradient norm convergence to zero
with o(K−0.5+ε) rate for any ε > 0 where K is an
iteration index.

We evaluate CWY on standard benchmarks (Copy-
ing task, Pixel-by-pixel MNIST) and neural machine
translation. We evaluate T-CWY on the task of video
prediction. All theoretical results are proven in Ap-
pendix F.

2 RELATED WORK

We discuss orthogonality in the motivating example of
RNN gradient explosion and vanishing. Then we re-
view orthogonal optimization methods and their prop-
erties, summarized in Tables 1 and 2.

2.1 Gradient Explosion and Vanishing

The rollout of a recurrent neural network (RNN) can
be formalized as a series of computations (Jordan,
1990):

yt := Wht−1 + b; ht := σ(yt + V xt); (1)

for t = 1, . . . , T . Here x1, . . . , xT ∈ RK are the states
of an observed sequence X = {x1, . . . , xT } from the
training set, h0, . . . , hT ∈ RN is a sequence of hidden

states (h0 is fixed and usually zero), W ∈ RN×N is a
transition matrix, b ∈ RN is a bias term, V ∈ RN×K
is an input transformation matrix and σ(·) is an ele-
mentwise nonlinear function. N and K are the dimen-
sions of the hidden and observed states respectively.
In this work, we are interested in constraining W to a
restricted (orthogonal) form Q, which we shall make
precise shortly. Let C denote an objective function to
minimize. For ease of illustration, we assume that C is
a function of the last hidden state: C = C(hT ). Then
one has the following expression for gradients w. r. t.
intermediate hidden states:

∂C

∂ht
=

(T−1∏
k=t

∂hk+1

∂hk

)
∂C

∂hT
=

(T−1∏
k=t

Jσ(hk)W>
)
∂C

∂hT
,

where Jσ is the Jacobian of σ(·) applied element-
wise. In practice, the expression leads to the hidden
state norm increasing exponentially fast with T − t
when ‖W‖2 = sup‖h‖2=1 ‖Wh‖2 > 1 (gradient explo-
sion) or decreasing exponentially fast when ‖W‖2 < 1
(gradient vanishing). Both effects are undesirable as
they lead to unstable learning and inability to cap-
ture long-term dependencies in the data. To allevi-
ate this problem, Arjovsky et al. (2016) proposed us-
ing an orthogonal or unitary matrix W , that is to set
either W = Q ∈ O(N) or W = Q ∈ U(N). Here
O(N) = {Q ∈ RN×N |Q>Q = I} is called the orthog-
onal group, U(N) = {Q ∈ CN×N |QHQ = I} is called
the unitary group, QH denotes the conjugate transpose
and I denotes an identity matrix, with shape inferred
from the context. Since orthogonal or unitary linear
operators are l2-norm preserving (i.e. ∀h : ‖Qh‖2 =
‖h‖2), the norm of the intermediate state gradient is
approximately constant when Jσ(hk) ≈ I. Next we
discuss approaches to tackle the constrained optimiza-
tion problem formulated as

min
W,V,b

C s.t. W = Q ∈ O(N) (or Q ∈ U(N)). (2)

2.2 Orthogonal Optimization

We review two families of earlier methods to solve the
constrained optimization problem (2).

2.2.1 Parametrization

This is a family of methods constructing Q as a func-
tion of unconstrained parameters, on which standard
gradient descent can be performed.

URNN (Unitary Recurrent Neural Net-
work, Arjovsky et al., 2016) expresses Q as
D(3)H(2)F−1D(2)ΠH(1)FD(1), where D(1), D(2), D(3)

are parametrized diagonal unitary matrices, H(1), H(2)

are parametrized Householder reflections ((House-
holder, 1958), see the definition below), F is a
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discrete Fourier transform matrix and Π is a random
permutation matrix.

EURNN (Efficient Unitary RNN, Jing et al., 2016)
parametrizes Q = DF (1)F (2) . . . F (L) ∈ U(N) where
L ≤ N , D is diagonal unitary and F (i) ∈ CN×N are
permuted block-diagonal with 2× 2 blocks.

HR (Householder reflections, Mhammedi et al., 2017)
decomposes Q = H(v(1)) . . . H(v(L)) ∈ O(N) where
for each nonzero v ∈ RN , H(v) = I − 2vv>/‖v‖22 ∈
O(N) is a Householder reflection.

EXPRNN (Exponent RNN, Lezcano-Casado and
Mart́ınez-Rubio, 2019). This method takes advantage
of the fact that the matrix exponent exp(A) is a surjec-
tive mapping from the set of skew-symmetric matrices
Skew(N) = {A ∈ RN×N |A = −A>} to the special
orthogonal group O+1(N), where for s = ±1 we de-
fine Os(N) = {Q ∈ O(N) | detQ = s}. Notice that
O(N) = O+1(N) ∪ O−1(N).

SCORNN (Skew Cayley, Helfrich et al., 2018) uses
the Cayley transform instead of matrix exponent: Q =
Cayley(A) = (I+A/2)−1(I−A/2) which is a bijective
map from Skew(N) to O+1(N) \ Θ where Θ is a set
of matrices with −1 eigenvalue. To cover all matrices
from O(N), Q is scaled as Q̃ = QD̃ where D̃ is a
diagonal matrix with ±1 values. The number of −1’s
in D̃ is a hyperparameter, which requires an additional
search method. For fair comparison, we fix D̃ = I.

OWN (Orthogonal Weight Normalization, Huang
et al., 2018). This method considers the more general
task of optimizing a function over the Stiefel man-
ifold St(N,M) = {Ω ∈ RN×M |Ω>Ω = I} where
M ≤ N , which generalizes the set O(N). Ω is set as
Ω = Ṽ PΛ−1/2P>, Ṽ = (V − 1

N 11>V ) where PΛP> is

an eigendecomposition of matrix Ṽ >Ṽ ∈ RM×M and
1 is the all-ones N -vector.

2.2.2 Riemannian Gradient Descent (RGD)

These methods instead consider gradient descent di-
rectly on the Stiefel manifold. Rather than “straight-
line” steps as in typical gradient descent, RGD goes
along a curve which a) lies in St(N,M) and b) points
in the direction of fastest descent along the mani-
fold. More precisely, RGD starts with a predefined
matrix Ω(0) ∈ St(N,M) and makes sequential updates
of the type Ω(k) := gk(ηk) where ηk is a step size,
gk : R → St(N,M), gk(0) = Ω(k−1) and g′k(0) is the

gradient ∂f
∂Ω (Ω(k−1)) projected onto the tangent space

TΩ(k−1) – a linear space approximating the Stiefel man-
ifold St(N,M) at the point Ω(k−1). It is known that
TΩ = {Z ∈ RN×M |Z>Ω ∈ Skew(M)}. For a rigorous
introduction to Riemannian manifolds and Rieman-
nian Gradient Descent see (Absil et al., 2007).

In a Riemannian manifold, the tangent space TΩ

must have an inner product, usually chosen as either
the canonical inner product 〈Z1, Z2〉1 = Tr(Z>1 (I −
1
2ΩΩ>)Z2) or Euclidean inner product 〈Z1, Z2〉2 =
Tr(Z>1 Z2). Consequently, the projection of the gra-
dient has the form: g′k(0) = A(k−1)Ω(k−1), A(k−1) =

Â
(k−1)
i − Â(k−1)

i
> where Â

(k−1)
1 = ∂f

∂Ω (Ω(k−1))Ω(k−1)>

corresponds to the canonical inner product choice, and

Â
(k−1)
2 = Â

(k−1)
1 − 1

2Ω(k−1)Ω(k−1)>Â
(k−1)
1 corresponds

to the Euclidean inner product choice. Next, there is
freedom in choosing the type of gk(η) function. Two

popular choices are 1) Cayley retraction gCay
k (η) =

Cayley(ηA(k−1))Ω(k−1) and 2) QR-decomposition re-

traction gQR
k (η) = qf(ηA(k−1)Ω(k−1)) where qf(·) de-

notes a Q matrix of the argument’s QR decomposition
so that diagonal elements of the R matrix are posi-
tive. Wisdom et al. (2016); Li et al. (2020) evaluate
performance of RGD in the context of deep learning.

2.3 Runtime Complexity

We compare the serial and parallel runtime complexity
of different methods to train orthogonal RNNs in Ta-
ble 1 (we introduce the notation OL(N) later in this
section). We also show the domain covered by each
optimization approach.

Row “RNN” indicates the complexity of an uncon-
strained RNN. Mhammedi et al. (2017) show that any
RNN with a unitary transition matrix can be mod-
elled by a different network with orthogonal weights.
Hence, we opt for simplification by only covering the
orthogonal group O(N). As noted by (Wisdom et al.,
2016), URNN parametrization is not enough to cover
all matrices from U(N), which is an N2-dimensional
manifold.

RGD, SCORNN and EXPRNN employ a costly O(N3)
operation of matrix exponent or Cayley transform.
Note that the limitation of EXPRNN covering only
O+1(N) can be alleviated, since a matrix Q ∈ Os(N)

can be parametrized by Q̂ ∈ O−s(N) obtained by in-
verting one of Q’s rows.

EURNN enables a tradeoff between computational
complexity and unitary matrix coverage. Matrix-
vector product with F (i) can be efficiently computed
in serial time O(N) (parallel O(1)). Next, by choos-
ing bigger L, we can increase the family of supported
unitary matrices at the cost of additional computation
time. Eventually, when L = N , all unitary matrices
are covered. Similar properties hold for HR decompo-
sition – applying a Householder reflection to a vector
is an O(N) (parallel O(logN)) operation and the fol-
lowing theorem holds:

Theorem 1 (adapted from Mhammedi et al., 2017).
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Table 1: Comparison of runtime complexity required for a forward pass through RNN. To report parallel com-
plexity we use that a) a product of d1×d2 and d2×d3-sized matrix takes O(log(d1d2d3)) time (distribution over
O(d1d2d3) processes) (Schatz et al., 2016) and b) finding an inverse of d1 × d1-sized matrix takes d2

1 log d1 time
(distribution over O(d1) processes) (Tuma, 2020). All complexities are in O(·) notation, terms related to V xt
computation are omited (serial TKN and parallel T log(KN) additional term). The Cheap Gradient Principle
(Griewank and Walther, 2008) states that serial complexity of the backward pass coincides with that of the
forward pass (can be extended to parallel complexity, see Bischof, 1991; Juedes and Griewank, 1990).

METHOD SERIAL TIME PARALLEL TIME SOLUTION DOMAIN
RNN TN2 T logN —
URNN TN logN TN logN U(N)’s subset
SCORNN TN2 +N3 T logN +N2 logN O+1(N) \Θ
RGD for U(N) TN2 +N3 T logN +N2 logN U(N)
EXPRNN TN2 +N3 T logN +N3 O+1(N)
EURNN, L iter. TLN TL U(N) when L = N
HR, L refl. TLN TL logN OL(N)
CWY, L refl. (ours) TLN + L2N + L3 T log(LN) + L2 logL OL(N)

Let Q ∈ Os(N) where s = (−1)N . Then there
exist nonzero v(1), . . . , v(N) ∈ RN s.t. Q =
H(v(1)) . . . H(v(N)).

Although EURNN and HR methods don’t have an
O(N3) term in runtime complexity, they cannot be
parallelized in L, the number of sequentially applied
operators F (i) or H(v(i)). This becomes a prob-
lem when N is big and, thus, bigger L is needed
to obtain good expressiveness. We use the notation
OL(N) for the set of orthogonal matrices which can
be obtained with L Householder reflections: OL(N) =
{H(v(1)) . . . H(v(L)) | ∀i : v(i) ∈ RN \ {0}}.

Table 2 summarizes the runtime complexity of Stiefel
manifold optimization approaches. OWN requires an
eigenvalue decomposition of a dense M ×M -sized ma-
trix which is a cubic operation. See Appendix Section
A for additional discussion of RGD-based methods’
runtime complexity.

3 EFFICIENT O(N) and St(N,M)
PARAMETRIZATION

We define the CWY transform and demonstrate its
utility for RNN training. Next, we introduce a novel T-
CWY map, and for both transforms prove stochastic-
optimization convergence guarantees.

3.1 Compact WY (CWY) Transform

We suggest an alternative algorithm to compute the
composition of L Householder reflections. Our ap-
proach can compute a series of reflections in parallel
on GPU or TPU thus increasing the effectiveness of
RNN rollout in terms of floating point operations per
second (FLOPS). The approach is called the compact

WY (CWY) transform (Joffrain et al., 2006), and to
our knowledge, has not been applied previously in ma-
chine learning. Mhammedi et al. (2017) used CWY
only for theoretical reasoning about backpropagation
– they used the explicit Householder series in experi-
ments.

Theorem 2 (adapted from Joffrain et al., 2006). Let
v(1), . . . v(L) ∈ RN be nonzero vectors. Then

H(v(1)) . . . H(v(L)) = I − US−1U>, (3)

where U =
[
v(1)/‖v(1)‖2 . . . v(L)/‖v(L)‖2

]
∈ RN×L ,

and S = 1
2I+striu(U>U) where striu(·) returns an ar-

gument matrix with all diagonal and lower-triangular
elements zeroed out.

We store v(1), . . . , v(L) as learnable parameters. An
efficient way to do a forward pass with CWY-based
RNN is as follows. We don’t compute and store
Q = I − US−1U> explicitly. Instead, before each
RNN rollout, we precompute U and S−1 and expand
Equation (1, left) into the following computations:
ut := U>ht−1, vt := S−1ut, yt := ht−1 − Uvt + b,
which has two matrix-vector products with matrices
of size L×N and N×L. Altogether this results in the
complexity estimate shown in Table 1. The latter ap-
proach is asymptotically efficient when L < N , while
when L = N we precompute the transition matrix (3)
into Q and then perform the RNN rollout as usual.

The better parallelization pattern of CWY comes with
a price of an L2 logL term related to inverting the S
matrix. In practice, we find that for moderate L this
addition is comparable to the rollout cost, considering
also that S is upper-triangular and, hence, takes less
FLOPs to invert (Hunger, 2005).
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Table 2: Complexity of performing a gradient step when optimizing over Ω ∈ St(N,M). In the notation “RGD-
A-B” “A” is C or E for canonical or Euclidean inner product choice respectively, and “B” is C or QR for Cayley
or QR retraction respectively. The term related to computing the objective function and Ω’s gradient is omitted.
Parallel complexity is reported in O(·) notation while FLOPs are reported for the forward pass with exact
constants in the leading terms. The backward pass requires only a constant time more operations (the Cheap
Gradient Principle, Griewank and Walther, 2008). To report parallel complexity we use the same assumptions
as for Table 1. In our estimations we use that a) a product of d1 × d2 and d2 × d3-sized matrix takes 2d1d2d3

FLOPs (Hunger, 2005), b) an inverse of d1 × d1-sized dense and upper-triangular matrix takes d3
1 and d3

1/3
FLOPs respectively (Hunger, 2005), c) QR decomposition of a d1×d2-sized matrix, d1 ≥ d2, takes 2d2

2(d1− 1
3d2)

FLOPs (Hammarling and Lucas, 2008) and d) eigendecomposition of a d1×d1-sized positive semi-definite matrix
(as it is in OWN) coincides with its SVD which requires 8

3d
3
1 FLOPs (Trefethen and Bau, 1997). Since N ≥M ,

T-CWY needs the smallest number of FLOPs.

APPROACH PARALLEL TIME INVERTED MATRIX SIZE FLOPs
RGD-C-QR M log(MN) — 10NM2 − 2M3/3
RGD-E-QR M log(MN) — 14NM2 − 2M3/3
RGD-C-C log(MN) +M2 logM 2M × 2M 28NM2 + 16M3

RGD-E-C log(MN) +M2 logM 3M × 3M 72NM2 + 25M3

OWN log(MN) +M3 — 4NM2 + 14M3/3
T-CWY (ours) log(MN) +M2 logM M ×M upper-triangular 4NM2 + 7M3/3

3.2 Extension: Truncated CWY (T-CWY)

We extend our approach and propose, to our knowl-
edge, a novel parametrization of the Stiefel mani-
fold St(N,M) which we call the truncated CWY (T-
CWY) transform. We parametrize the Stiefel mani-
fold St(N,M) with M < N by RN×M minus a zero-
measure set.

Theorem 3. Consider M < N and a function
γN,M : (RN \ {0})M → RN×M defined as follows.
For v(1), . . . v(M) ∈ RN construct a matrix U =[
v(1)/‖v(1)‖2 . . . v(M)/‖v(M)‖2

]
∈ RN×M and as-

sign γN,M (v(1), . . . v(M)) =
[
I 0

]> − US−1U>1 ∈
RN×M where U1 is an upper M ×M submatrix of U
and S = 1

2I + striu(U>U). Then γN,M is a surjective
mapping to St(N,M).

In other words, Theorem 3 states that Stiefel matrices
can be parametrized by taking M first columns of a
N × N CWY-parametrized matrix with L = M , but
without forming this N×N matrix explicitly. Compu-
tational complexity of T-CWY is indicated in Table 2.
T-CWY is fully-parallelizable in N with the number
of floating point operations smaller than for any other
approach due to the inverted matrix S size M ×M
and upper-triangular structure (Hunger, 2005).

3.3 SGD Convergence Analysis

Consider a function f : O(N) → R (e. g. an em-
pirical risk) which is accessed through its stochastic

proxy f̃ (e. g. a minibatch loss). We prove a standard
result (Bonnabel, 2013; Bottou et al., 2016) stating

that CWY-based stochastic optimization can get ar-
bitrarily close to a stationary point where ∇f = 0.
For convenience we formulate our results in terms of
a Householder decomposition which is equivalent to
CWY.

Theorem 4. Let f : RN×N → R be a differen-
tiable function with Lipschitz-continuous gradients on
O(N): ∀X ′, X ′′ ∈ O(N) : ‖∇f(X ′) − ∇f(X ′′)‖F ≤
M1‖X ′ − X ′′‖F for some M1 > 0 (‖ · ‖F denotes

Frobenius norm). Let f̃ : RN×N → R be a stochas-
tic differentiable function such that ∀X ∈ O(N) :

E∇f̃(X) = ∇f(X) and suppose there exists M2 > 0

such that ∀X ∈ O(N) : E‖∇f̃(X)‖2F ≤ M2. Con-
sider a sequence {(v(k,1) ∈ RN , . . . , v(k,L) ∈ RN )}∞k=0

where v(0,1), . . . , v(0,L) ∈ RN are deterministic and
nonzero and for all k > 0, 1 ≤ l ≤ L: v(k,l) =
v(k−1,l)− k−0.5∇v(k−1,l) f̃(H(v(k−1,1)) . . . H(v(k−1,L))).
Then all {v(k,l)} are well-defined and for any ε > 0,

min
0≤k′<K

L∑
l=1

E‖∇v(k′,l)f(H(v(k′,1))× . . .

×H(v(k′,L)))‖22 = o(K−0.5+ε).

Observe that an identical result holds for T-CWY
parametrization. Indeed, using notation of Theorem 3
for any f : St(N,M) → R f(γN,M (v(1), . . . , v(M))) =
f((H(v(1)) . . . H(v(M))):,:M ). Gradient Lipschitz-

continuity of f and bounded variance of f̃ hold for
composite functions f((·):,:M ) and f̃((·):,:M ) which are
plugged into Theorem 4 to get analogous result for T-
CWY. The proof of Theorem 4, as well as a high-level
sketch to help intuition, can be found in Appendix F.4.
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3.4 Convolutional Non-Exploding Recurrent
Unit (ConvNERU)

Based on the proposed Stiefel matrix parametrization,
we introduce a convolutional non-exploding recurrent
unit (ConvNERU) – a recurrent module which is prov-
ably resistant to gradient and hidden state explosion.
Given a sequence of images X1, . . . , XT ∈ Rh×w×fin ,
our proposed module is the following modification of
(1): Yt := K ∗ G(t−1) + B, G(t) := σ(Yt + Kin ∗Xt)
where G(0), . . . , G(T ) ∈ Rh×w×fout are hidden states,
B ∈ Rh×w×fout is a bias tensor which is parametrized
by b ∈ Rfout so that b = Bi,j for any i, j, σ is an
element-wise nonlinearity, “∗” denotes convolution op-
eration and K ∈ Rq×q×fout×fout ,Kin ∈ Rq×q×fin×fout

are convolution kernels with q being kernel size. De-
note by K̂ a (q2fout × fout)-sized matrix such that
for any l, p ≤ q and i, j ≤ fout it holds that
K̂lqfout+pfout+i,j = Kl,p,i,j . We equip ConvNERU with

a constraint (qK̂) ∈ St(q2fout, fout) which is imple-
mented by T-CWY parametrization. In Appendix
Section B, we theoretically show that ConvNERU is
resistant to norm explosion.

4 EXPERIMENTS

We evaluate CWY on standard benchmarks and a neu-
ral machine translation setup. Then, we evaluate T-
CWY and ConvNERU on a video prediction setup.

4.1 Standard Tasks and Time Comparison

We evaluate orthogonal RNN with CWY parametriza-
tion on standard benchmarks, aimed to test the ability
of RNN to capture long-term dependencies in the data:

1. Copying task. The input contains 10 digits sam-
pled uniformly from {1, . . . , 8}, then T zeros, one “9”
(start) and 9 zeros. The output consists of T +10 zeros
and 10 first digits from the input. Hence, the goal of
RNN is to copy the random input prefix after observ-
ing T zeros. The goal is to beat a no-memory baseline,
which outputs T + 10 zeros and 10 randomly sampled
digits from {1, . . . , 8} independently of the input. The
cross-entropy of this baseline is 10 log 8/(T + 20).

2. Pixel-by-pixel MNIST. The input contains images
of digits from MNIST (LeCun et al., 2010), flattened
into sequences of length 784. The goal is to classify
the digit using the last hidden state of the RNN.

For both experiments we reuse the publicly avail-
able code from (Lezcano-Casado and Mart́ınez-Rubio,
2019) in PyTorch (Paszke et al., 2017), without tun-
ing any hyperparameters, changing random initial-
izations or seeds, etc. Figures 1a, 1b (a-b) demon-
strates the results of plugging CWY directly into the

code. In the Copying task with T = 1000, L =
N = 190, CWY is converging to zero cross en-
tropy faster, than EXPRNN and DTRIV∞ (Lez-
cano Casado, 2019), while SCORNN fails to con-
verge to zero and LSTM (Hochreiter and Schmidhu-
ber, 1997) cannot beat the baseline. In the Pixel-
by-pixel MNIST, CWY (L = N) shows competitive
performance, going beyond 95% accuracy and match-
ing the results of Mhammedi et al. (2017). See de-
tails and additional experimental results (Copying task
with T = 2000 and permuted MNIST) in Appendix C.

In addition to standard benchmarks, we perform
a time comparison for computing CWY, exponen-
tial parametrization and Cayley map (Figure 1c),
where the argument is a random matrix. See Ap-
pendix C for details. We conduct experiments
on GPU and use the following methods from Py-
Torch 1.7: torch.matrix exp implementing a state-
of-the-art algorithm for matrix exponential (Bader
et al., 2019), torch.solve for Cayley map and
torch.triangular solve for CWY. We observe that
for a range of matrix sizes CWY is 1-3 orders of mag-
nitude faster than other parametrizations. While we
used full CWY (L = N) for this comparison, L < N
would lead to further speedups.

4.2 Neural Machine Translation

We train an orthogonal RNN-based seq2seq model
with attention mechanism (Bahdanau et al., 2014) to
translate sentence pairs between a given source and
target language. See Appendix Section D for ad-
ditional architectural and experimental details. We
focus on the English-to-Spanish dataset within the
Tatoeba corpus (Artetxe and Schwenk, 2019), a pub-
licly available dataset with over 100,000 sentence pairs.
We compare several variants of orthogonal RNNs with
absolute value nonlinearities which are exact norm-
preserving (Dorobantu et al., 2016) and compare them
against GRUs and LSTMs used as RNN units in a
seq2seq architecture. All variants of RNN have hid-
den dimension N = 1024. For the CWY and non-
orthogonal variants, we conduct experiments with the
Adam optimizer (see Table 3).

We find that standard RNNs underperform
LSTMs and GRUs (Cho et al., 2014), but that
parametrization-based orthogonal RNN variants are
able to achieve comparable performance. Among or-
thogonal RNN methods, our CWY approaches achieve
the lowest test cross-entropy, whilst requiring the
fewest parameters and, via our efficient parametriza-
tion, retaining training speed comparable to LSTMs
and GRUs. We find that even the full-orthogonal
CWY scheme with L = N runs faster in practice
than other orthogonal approaches. A sweet-spot
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Figure 1: (a) Copying task, T = 1000. (b) Pixel-by-pixel MNIST, test accuracy. (c) parametrization time
comparison, mean and standard error over 10 samples.
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Figure 2: The CWY and HR methods are numeri-
cally equivalent; however, the parametrization of the
CWY allows us to perform projections much more ef-
ficiently, leading to dramatic improvements in training
time and, thereby, practical viability. The experiment
is conducted on a Tensor Processing Unit (TPU).

parameter value L = 128 illustrates the trade-off
between the capacity of the model (which increases
with larger values of L) and the landscape of the
objective function (that simplifies with smaller values
of L). As mentioned before, in exact arithmetic
our CWY is equivalent to the explicit Householder
reflections approach leveraged by Joffrain et al.
(2006); however, our approach achieves far superior
speed, as illustrated in Table 2. The enhanced
speed of our CWY variants, when paired with the
optimizer-choice flexibility, makes this approach a
compelling alternative to LSTMs and GRUs.

4.3 Video prediction with ConvNERU

We demonstrate performance of T-CWY and Con-
vNERU in the task of one-step-ahead video predic-
tion on the KTH action dataset. As a baseline we
chose ConvLSTM (Xingjian et al., 2015), a convolu-

Table 3: Tatoeba Spa-to-Eng NMT results. We report
perplexity (PP) on a test set (a smaller value indicates
a better result). Time is reported for 10 epochs. CWY
achieves the best performance while preserving speed
and requiring the fewest parameters. There is a sweet-
spot for the test loss (L = 128).

MODEL
TEST

PP
TIME
(MIN.)

PARAMS

RNN 1.66 148 ≈ 25M
GRU 1.47 173 ≈ 32M
LSTM 1.46 232 ≈ 37M
SCORNN 1.49 1780 ≈ 25M
RGD 4.03 1780 ≈ 25M
EXPRNN 1.51 2960 ≈ 25M
CWY L=1024 1.47 1111 ≈ 25M
CWY L=512 1.58 338 ≈ 24M
CWY L=256 1.56 213 ≈ 23M
CWY L=128 1.41 198 ≈ 23M
CWY, L=64 1.52 175 ≈ 23M

tional adaptation of LSTM. In addition, our goal is to
compare with other methods for Stiefel optimization
and justify the need for Stiefel constraints.

We conduct experiments on the KTH action dataset
(Schüldt et al., 2004) containing grey scale video
recordings of 25 people, each performing 6 types of
actions: walking, jogging, running, boxing, hand wav-
ing and hand clapping. We do separate evaluations
for each action type to evaluate how the model learns
different types of dynamics. As a video-prediction ar-
chitecture we apply a simplified version of (Lee et al.,
2018; Ebert et al., 2017) where we try different types of
recurrent block design (see further). We opt for mini-

mizing the l1-loss |Î−I| (l1-loss) during training where

Î, I denote predicted and ground-truth frame respec-
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Table 4: KTH action dataset test results. The indicated metric is average per-frame l1-loss. Video frames are
in grey scale with brightness ranged in [0, 1]. The GPU memory is evaluated for the “Box[ing]” class which has
the longest sequences. We do not report the last two columns for the “Zeros” method which is only aimed to
demonstrate the importance of recurrent connections.

METHOD WALK JOG RUN BOX WAVE CLAP # PARAMS GPU MEMORY
ConvLSTM 223.3 266.8 297.8 188.9 157.9 162.3 ≈ 3.26 M 8.7 Gb
Zeros 160.3 176.1 203.8 179.0 197.2 147.4 — —
Glorot-Init 145.8 161.5 182.1 179.9 164.5 145.4 ≈ 0.72 M 3.5 Gb
Orth-Init 139.9 153.2 175.0 173.3 150.8 144.0 As above As above
RGD-C-C 135.8 155.7 170.7 172.9 160.3 144.5 As above As above
RGD-E-C 143.3 152.5 173.7 171.9 172.9 142.6 As above As above
RGD-C-QR 143.1 155.0 171.5 173.1 150.2 142.7 As above As above
RGD-E-QR 135.5 153.9 169.6 169.9 160.4 142.5 As above As above
RGD-Adam 142.6 157.3 177.8 176.8 159.1 145.2 As above As above
OWN 137.5 155.0 177.7 171.3 149.8 142.5 As above As above
T-CWY 134.6 149.8 166.7 166.2 147.8 141.2 As above As above
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Figure 3: Validation l1-loss. Mean and standard error across each 10 epochs is reported.

tively. For all unconstrained parameters we use the
Adam optimizer. See Appendix Section E for more
details on data preprocessing, experiment setup and
architecture. We compare different designs of recur-
rent unit used in the full architecture. ConvLSTM
was used in the original variant of the architecture
(Lee et al., 2018; Ebert et al., 2017). Zeros indicates
ConvNERU with transition kernel K zeroed out (i.e.
prediction conditioned on the previous frame only).
Glorot-Init is a modified ConvNERU where K is un-
constrained initialized through Glorot uniform initial-
ization (Glorot and Bengio, 2010). Orth-Init indicates

a modified ConvNERU with unconstrained qK̂ initial-
ized as a Stiefel matrix by QR decomposition of a ran-
dom matrix. RGD-*-* indicates Stiefel RGD for opti-
mizing qK̂ with various combinations of inner product
and retractor (consistent with the notation in Table
2). RGD-Adam is an Adam adaptation of RGD (Li

et al., 2020) applied to optimization of qK̂. Finally,

OWN and T-CWY indicate ConvNERU with qK̂ ma-
trix parametrized by OWN and T-CWY respectively.

Table 4 demonstrates test l1-loss, number of parame-

ters and maximal GPU memory consumption. Addi-
tionally, Figure 3 demonstrates validation l1-loss de-
pending on epoch number for a subgroup of evalulu-
ated methods. We see from the figure that in most
cases, with the same learning rate, ConvLSTM cannot
outperform “Zeros” baseline which has no recurrence
and, hence, does not face an issue of gradient explosion
or vanishing. Among the versions of ConvNERU and
its unconstrained analogs, we observe that T-CWY
performs best on both validation and test set while
having several times less parameters and using much
less GPU memory than ConvLSTM.

5 CONCLUSION

We introduced an efficient scheme for parametriz-
ing orthogonal groups O(N) and Stiefel manifolds
St(N,M), and compared to earlier approaches. The
proposed O(N)-parametrization scheme is efficient
when working with large-scale orthogonal matrices on
a parallelized computation unit such as GPU or TPU.
We empirically demonstrated strong performance in
real-world applications.
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