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7 Example of functions and variables in a realistic setting

We consider the model proposed by Rahimian et al. (2018) for prediction of emergency admission to a hospital
in a given time period on the basis of electronic health records (EHRs). Such a model is not in common use in
the location considered (England), so the data in the original paper is not affected by the problems we describe
in the main manuscript.

For clarity9, we presume a prediction window of ten months (February-November), and that predictions are
made and distributed to primary health practitioners in January, with a new model being trained on the basis of
each year’s data in December, to be implemented the following January. In this setting, distribution of the score
may open a second causal pathway between covariates and outcome as shown in figure 1, and is thus susceptible
to the problems of naive updating.

In this setting, variables and functions may be interpreted as follows:

1. Y the event ‘an emergency admission in the following year’

2. Xe(0) the values of all variables which affect E(Y ) at the time when the predictive score is computed (the
start of each year)

3. An ‘epoch’: the time in which a given model is in use; eg, each year.

4. ‘Time’: t = 0 when the predictive score is computed (the start of January); t = 1 represents the time after
which any interventions are made (the start of Feburary).

5. Xs
e covariates affecting E(Y ) which are included in the predictive score but which cannot be directly modified

in the time frame: age, time since most recent emergency admission

6. Xa
e covariates affecting E(Y ) included in the predictive score which can be modified in the time frame:

current medications.

7. Xℓ
e covariates affecting E(Y ) which are not included in the predictive score, and possibly can be modified

in the time frame: blood pressures, cardiac function

8. fe the underlying causal process for Y given patient status; that is, the probability of admission in the
subsequent year, given covariates.

9. gae Hypothetical prescribed interventions made on Xa in response to a predictive score; for instance, reduce
drug dosages. We roughtly assume that this intervention is symmetric; for a patient at low emergency risk,
a higher drug dose is acceptable.

10. gℓe Hypothetical prescribed interventions made on Xℓ in response to a predictive score; for instance, treat
low or high blood pressure.

It is clear that if such a risk score were used universally, and data was collected from the period in which a model
was in place was then, then the data would be affected by the effect of the predictive score itself.

The model does not fully describe this setting. The trichotomisation into Xℓ, Xa, and Xs is not perfect;
intervention on XL could also affect some variables in Xa and vice versa. Interventions are likely to be random-
valued to some extent.

8 Alternative system described by naive updating

We note that the definition of h (equation (9)), and hence the following comments on recursion dynamics,
can be used to describe a related setting in which we track the same samples over epochs, and the effect of
interventions ga, gℓ remain in place. Formally, we retain definitions of Xs, Xa, Xℓ, e, t, fe, g

a
e , g

ℓ
e, ρe and all

assumptions except 4,7. In place, we assume that fe, gae , gℓe are fixed across epochs, but instead of resampling
Xe(0) from µe, we have

Xe+1(0) = Xe(1) (11)
9Analogous times and variables can be described for other prediction periods and updating patterns
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thus, while values X0(0) are sampled from the distribution µ0, values Xe(0) are then determined for e > 0. We
illustrate this in figure 4
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Figure 4: Diagram showing alternative setup for naive updating. Values xs, xa, xℓ are sampled at (e, t) = (0, 0),
and used to determine ρ0. Values are conserved until t = 1, and remain the same at the start of epoch 1
((e, t) = (1, 0)). Values are intervened on by ga, gℓ according to ρ0 (x

s
1(0), x

a
1(0))), and resultant values at

(e, t) = (1, 1) are conserved until the start of the next epoch at (e, t) = (2, 0). Lowercase leters indicates that,
while quantities random-valued, they inherit all randomness from their values at (e, t) = (0, 0). Colour and line
conventions are as for figure 2

Now formulas (8), (9) will hold, and the recursion will proceed as detailed in theorem 1.

9 Proofs and counterexamples

9.1 Optimising both ρ and ga, gℓ is equivalent to a general resource allocation problem

Consider the constrained optimisation problem in section 2.3. We show that if we allow ρ and ga, gℓ to vary
independently, then the constrained optimisation is equivalent to the solution of a problem in which the use of
a predictive score is redundant.
Theorem 2. Suppose that the triple (ρopt, g

a
opt, g

ℓ
opt) minimises quantity (4) subject to constraint (5) in sec-

tion 2.3, where all are arbitrary functions of two variables in the appropriate range. Let ha
opt and hℓ

opt be
solutions to a second constrained optimisation problem: find ha(xs, xa) and hℓ(xs, xa, xℓ) which minimise

EXe(0){f(X
s,

ha(Xs
e (0), X

a
e (0)),

hℓ(Xs
e (0), X

a
e (0), X

ℓ
e(0)))} (12)

subject to

EXe(0){c
a(Xa

e (0),

Xa
e (0)− ha(Xs

e (0), X
a
e (0)))+

cℓ(Xℓ
e(0),

Xℓ
e(0)− hℓ(Xs

e (0), X
a
e (0), X

ℓ
e(0)))} ≤ C (13)

with ca, cℓ, f as for section 2.3.

Then the minima of quantity (4) in the main text and of quantity (12) achieved by (ρopt, g
a
opt, g

l
opt) and (ha

opt, h
ℓ
opt)

are the same.

Proof. Given a triple (ρopt, g
a
opt, g

l
opt), we explicitly construct an (ha

opt, h
ℓ
opt) which attains the same minimum,

and vice versa.
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Given (ρopt, g
a
opt, g

l
opt), the corresponding forms of ha

opt, hℓ
opt are simply

ha
opt(x

s, xa) = gaopt (ρ(x
s, xa), xa)

hℓ
opt(x

s, xa, xℓ) = gℓopt
(
ρ(xs, xa), xℓ

)
(14)

Given ha
opt, hℓ

opt, the correspondence is slightly more complex. Set ρopt as a bijective function from Rns+na to
R; for instance, set it to ‘splice’ the decimal digits of arguments together. Now set gaopt, gℓopt to firstly ‘decrypt’
the value of ρopt back into constituent parts (xs and xa), and then compute ha

opt(x
s, xa) and hℓ

opt(x
s, xa, xℓ) as

outputs.

This shows that the two constrained optimisation problems are equivalent.

We note that this implies that optimising (ρ, ga, gℓ) jointly is equivalent to a more general treatment-allocation
problem which does not involve a predictive score.

9.2 Counterexample showing naive updating can cause better models to appear worse

For this counterexample we shall use the following set up:

f(xs, xa, xℓ) =f(xs, xa) = (1 + e−xs−xa

)−1 (15)

ρ0(x
s, xa | X⋆

0 , Y
⋆
0 ) =


∑n

i=1(Y
⋆
0 )i1{

∑2
j=1(X

⋆
0 )ij>0}∑n

i=1 1{
∑2

j=1(X
⋆
0 )ij>0} xs + xa > 0∑n

i=1(Y
⋆
0 )i1{

∑2
j=1(X

⋆
0 )ij≤0}∑n

i=1 1{
∑2

j=1(X
⋆
0 )ij≤0} xs + xa ≤ 0

(16)

ρ1(x
s, xa | X⋆

1 , Y
⋆
1 ) =(1 + e−β̂0−xsβ̂1−xaβ̂2)−1 where β̂ = argmax{L(β|X⋆

1 , Y
⋆
1 )} (17)

mf̃e
(ρe|X⋆

e , Y
⋆
e ) =Eµ [|f(Xs, ga(ρe−1, X

a))− ρe(X
s, Xa | X⋆

e , Y
⋆
e )|] (18)

ga(ρ, xa) =(1− ρ)(xa + 3) + ρ(xa − 3) (19)

For simplicity, we shall view the latent variables as having no effect on the true risk score f , which corresponds
to the scenario where (if no interventions are made), it is possible with the data we observe to fully specify f .
For the purpose of the counterexample it is reasonable to do this as model performance only requires mf̃e

, which
has no dependence on latent covariates.

We also state, that due to the omission of latent covariates, Xe(0) = (Xs
e (0), X

a
e (0)) ∼ N2(0, I2), which is then

used to generate (through the statistical program R) an initial training data set at epoch 0, of size n = 100,
which is summarised below:

index (X⋆
0)·1 (X⋆

0)·2 Y⋆
0

1 1.185 1.272 1
2 0.881 -0.995 0
3 0.122 -0.956 0

...
98 -0.826 1.779 1
99 0.853 0.151 1
100 0.177 0.805 1

This training data can then inputted into ρ0 to give the following function:

ρ0(x
s, xa | X⋆

0 , Y
⋆
0 ) =

{
0.733 xs + xa > 0

0.200 xs + xa ≤ 0
(20)

When intervening on any covariates at epoch 1 the function given in equation (20) will be used to produce X1(1)
and subsequently Y1.
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We now consider E(X⋆
0 ,Y

⋆
0 )

[
mf̃0

(ρ0|X⋆
0 , Y

⋆
0 )

]
, which we approximate using a Monte Carlo estimate with 1000

samples. However, mf̃0
(ρ0|X⋆

0 , Y
⋆
0 ) also requires approximation, and so a Monte Carlo estimate with the same

number of samples is also used for this function. The procedure is as follows:

1. For i from 1 to 1000:

(a) Obtain a training data set , (X⋆
0 , Y

⋆
0 )i, by taking n samples of (X0(0), Y0).

(b) Use this training data set to obtain a (ρ0)i of the form given in equation (20).
(c) For j from 1 to 1000:

i. Sample (xs, xa)j ∼ X0(0).
(d) mf̃0

(ρ0|(X⋆
0 , Y

⋆
0 )i) ≈ 1

1000

∑1000
j=1 |f((xs, xa)j)− ρ0((x

s, xa)j | (X⋆
0 , Y

⋆
0 )i)|

2. E(X⋆
0 ,Y

⋆
0 )

[
mf̃0

(ρ0|X⋆
0 , Y

⋆
0 )

]
≈ 1

1000

∑1000
j=1 mf̃0

(ρ0|(X⋆
0 , Y

⋆
0 )i)

With this in mind, we give the following approximation: E(X⋆
0 ,Y

⋆
0 )

[
mf̃0

(ρ0|X⋆
0 , Y

⋆
0 )

]
≈ 0.124.

If we assert that interventions never take place, then we can use the same procedure described above to ob-
tain E(X⋆

0 ,Y
⋆
0 )

[
mf̃0

(ρ1|X⋆
0 , Y

⋆
0 )

]
≈ 0.056. So here we can clearly see that in the setting where interventions are

never made, E(X⋆
0 ,Y

⋆
0 )

[
mf̃0

(ρ0|X⋆
0 , Y

⋆
0 )

]
> E(X⋆

0 ,Y
⋆
0 )

[
mf̃0

(ρ1|X⋆
0 , Y

⋆
0 )

]
, and so the model closer to the truth is

the logistic regression model at epoch 1. If agents were allowed to make interventions (based on (20)) how-
ever, we would consider E(X⋆

1 ,Y
⋆
1 )

[
mf̃1

(ρ1|X⋆
1 , Y

⋆
1 )

]
≈ 0.197 instead. Now, since E(X⋆

0 ,Y
⋆
0 )

[
mf̃0

(ρ0|X⋆
0 , Y

⋆
0 )

]
<

E(X⋆
1 ,Y

⋆
1 )

[
mf̃1

(ρ1|X⋆
1 , Y

⋆
1 )

]
, we would come to the incorrect conclusion that the model closer to the truth is the

model used at epoch 1. Consequently we can state that, given the setup provided in section 3.1,

E(X⋆
0 ,Y

⋆
0 )

[
mf̃0

(ρ0|X⋆
0 , Y

⋆
0 )

]
> E(X⋆

0 ,Y
⋆
0 )

[
mf̃0

(ρ1|X⋆
0 , Y

⋆
0 )

]
≠⇒

E(X⋆
0 ,Y

⋆
0 )

[
mf̃0

(ρ0|X⋆
0 , Y

⋆
0 )

]
> E(X⋆

1 ,Y
⋆
1 )

[
mf̃1

(ρ1|X⋆
1 , Y

⋆
1 )

]
(21)

Additionally, we show that for this example:

E(X⋆
0 ,Y

⋆
0 )

[
mf̃0

(ρ0|X⋆
0 , Y

⋆
0 )

]
> E(X⋆

0 ,Y
⋆
0 )

[
mf̃0

(ρ1|X⋆
0 , Y

⋆
0 )

]
≠⇒

E(X⋆
0 ,Y

⋆
0 )

[
mf̃0

(ρ0|X⋆
0 , Y

⋆
0 )

]
> E(X⋆

1 ,Y
⋆
1 )

[
mf̃0

(ρ1|X⋆
1 , Y

⋆
1 )

]
(22)

as E(X⋆
1 ,Y

⋆
1 )

[
mf̃0

(ρ1|X⋆
1 , Y

⋆
1 )

]
≈ 0.215 > 0.124 ≈ E(X⋆

0 ,Y
⋆
0 )

[
mf̃0

(ρ0|X⋆
0 , Y

⋆
0 )

]
. This statement is given here

because for f̃0, and therefore mf̃0
, it is possible to gain estimates through a holdout test data set. Whilst

the comparison is not between a risk score (ρe) and the function it is trying to estimate (f̃e), the effect of
deteriorating performance as epochs increase is still captured. Going further, it is assumed that if stakeholders
were implementing naive model updating, they would assume that ρe is estimating f̃0 for all epochs as the belief
is that interventions do not effect the model. Therefore, comparison with f̃0 will heighten the impression to
stakeholders that using an updated model structure is causing performance to deteriorate, especially for epoch
0 to epoch 1, where for this comparison ρ0 is actually estimating f̃0.

We expect from a stakeholders view that comparison (using estimates) between the two models at successive
epochs usually leads to the inequality mf̃0

(ρe−1 | X⋆
e−1, Y

⋆
e−1) < mf̃0

(ρe | X⋆
e , Y

⋆
e ), and therefore the conclusion

is that the new model leads to worse performance. We advise that a conclusion is only reached after further
comparison is done between mf̃0

(ρe−1 | X⋆
e , Y

⋆
e ) and mf̃0

(ρe | X⋆
e , Y

⋆
e ), as this gives an indication whether the

drop in performance is due to the model structure or the intervention effect.

Finally, we advise caution when considering the effect of latent variables when estimating mf̃0
(ρe|X⋆

e , Y
⋆
e ). This

is due to that fact that when holdout test data is used to obtain an estimate, it is an estimate of f rather than
an estimate of f̃0. If the latent variables have a small influence on f than f ≈ f̃0 and we can make inferences
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as shown above, but if latent variables have a large influence on f then our comparison is not based on mf̃0
but

instead on mf . This creates a problem as now how well we perceive our model’s performance can be determined
largely by how well a model arbitrarily captures the latent covariate information using just the set and actionable
covariates. It therefore becomes substantially more difficult to determine whether the cause of a models poor
performance is due to the model, the intervention effect or insufficient data. As a general rule however, large
values of mf̃0

(ρ0|X⋆
0 , Y

⋆
0 ) should indicate that either the initial model is very poor or that there is insufficient

data, but in either case careful consideration of what could possibly influence the underlying mechanism should
be made before a risk score is built and given to agents, to ensure that latent variables affect the model as little
as possible.

9.3 Proof of theorem 1

If h′(z0) ≤ −1 then the single fixed point of h is unstable and ρe cannot converge to it unless it was always equal
to z0. There can be no other z with h(z) = z0 since h′(z) < 0 by assumption.

Since ρe ∈ [0, 1] and h′(z) < 0, ρe must tend toward a stable oscillation between two values, or converge to a
single value.

If the bounds on partial derivatives hold, then from the triangle and Cauchy-Schwarz inequalities, for z ∈ R

|h′(z)| ≤ EXL

 pa∑
i

|δg
a

i δf
a

i |+
pL∑
i

|δg
ℓ

i δf
ℓ

i |


=

pa∑
i

|δg
a

i |EXℓ

[
|δf

a

i |
]
+

pℓ∑
i

EXℓ

[
|δg

ℓ

i δf
ℓ

i |
]

≤

√√√√ pa∑
i

(δg
a

i )2
pa∑
i

EXℓ

[
δf

a

i

]2

+

√√√√ pℓ∑
i

EXℓ

[(
δg

ℓ

i

)2
] pℓ∑

i

EXℓ

[(
δf

ℓ

i

)2
]

≤
√
k1k3 +

√
k2k4 < 1 (23)

so the map h : ρe → ρe+1 is a contraction, and the convergence of the recurrence ρe → ρe+1 follows from the
Banach fixed-point theorem, as long as ρe ∈ R for some value of e.

9.4 Counterexample showing failure of naive updating to generally solve constrained
optimisation problem

For this counterexample, we do not need to consider latent covariates, and will assume they do not exist.

Under the setting in section 2.2, if ρn converges to ρ∞(xs, xa) for some xs, xa under naive updating, then we
have

ρ∞(xs, xa) = h(ρ∞(xs, xa) = f(g(ρ∞(xs, xa), xa), xs) (24)
Suppose xs and xa each have dimension 1, and consider the example:

f(xa, xs) = logit(xa + xs) =
1

1 + exp (−(xa + xs))

g(ρ, xa) = xa − log(1 + ρ)

ca(x) = x

For a given function ρ, the objective and cost are, respectively

obj{ρ} = E
{
(1 + (1 + ρ) exp(−(Xs +Xa)))−1

}
cost{ρ} = E {log(1 + ρ)} (25)
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Using an oracle predictor of Y |X, as in the previous section, ρn converges to the fixed point of the recursion
z → f(g(z, xa), xs), which is

ρ∞(xs, xa) =
1

2

(√
(ex+y + 1)

2
+ 4ex+y −

(
ex+y + 1

))
(26)

To see why this is not optimal, suppose Xa, Xs have a discrete distribution taking either of the values (0,−1),
(0, 1) with probability 1/2. Then

cost{ρ∞} =
log(2)

2
≈ 0.346

obj{ρ∞} =
1 + e

1 + e+
√
1 + 6e+ e2

≈ 0.428

However, consider some ρ0 with ρ0(0,−1) = 0, ρ0(0, 1) = 1. Now

cost{ρ0} =
log(2)

2
= cost{ρ∞}

obj{ρ0} =
1

2

(
1

1 + e
+

e

2 + e

)
≈ 0.423 < obj{ρ∞} (27)

9.5 Simple example of updating leading to oscillation

Define g(ρ, xa) as above, and instead define

f(xa, xs) = logit (−k(xa + xs)) (28)

As usual, we presume that to estimate ρ, we regress Y on Xs
0 , Xa

0 , and we do it accurately enough to presume
ρ is an oracle. Now

h(x) =
1

1 + (1 + x)k exp (−k(xs + xa))

h′(x) = −k
ek(x

s+xa)(1 + x)k−1(
ek(xs+xa) + (1 + x)k

)2 (29)

Consider a setting when xs = xa = 0 and k = 8. Now h(0) = 1/2 > 0 and h(1/5) ≈ 0.189 < 1/5. For x ∈ (0, 1)
we have h′(x) < 0, so the equation h(x) = x has a single solution in (0, 1/5). But on (0, 1/5), we have h′(x) < −1.
So if x0 is the unique root of h(x)− x on x ∈ (0, 1) then h′(x0) < 0

Now as long as ρ0(x
s, xa) is not exactly the value of x for which h(x) = x, if we update ρn using h, it can never

converge as the fixed point of the map h is unstable.

Conceptually, although no intervention changes xa very much, the function f is very sensitive to small changes
in xa when k = 8, so a small change in xa will necessarily cause a larger change in f(xa, xs) when ρ is near the
fixed point of h.

10 Comparison of solution/avoidance strategies

We briefly compare advantages and disadvantages of the general strategies identified in section 4 to avoid or
overcome problems associated with naive updating.

Any of the three strategies can be used to avoid the naive updating problem if they enable an unbiased estimate
of

E
[
fe

(
xs, xa, Xℓ

)]
(30)

to be obtained, where the expectation is over Xℓ either before or after intervention. The expectation (30) can
be recognised as the quantity for which ρe is treated as an estimator. More frequent covariate observation as
per section 4.1 allows this by enabling observation of Xe(1), so such an unbiased estimate may be obtained by
regression of Ye on observed Xe(1). The strategy in section 4.2 defines a hold-out subset of samples X⋆

e , Y ⋆
e for
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which X⋆
e (1) = X⋆

e (0), so an unbiased estimate of (30) can be obtained by regression of Y ⋆
e on (observed) X⋆

e (0)
will work. Finally, the strategy in section 4.3 specifies gae and gℓe, so an unbiased estimate of (30) can be made
by regressing Ye on XS

e (0), gae (ρe, Xa
e (0)).

Although all three solutions avoid the problems of naive updating, they ‘solve’ somewhat different problems and
require different experimental designs. The class of strategies described in section 4.1 (a range of modelling ap-
proaches generally requiring more frequent covariate observation) can solve the constrained optimisation problem
in section 2.3 over ρ. The strategy described in section 4.2 (retention of a ‘hold-out’ set on which no interventions
are made) simply enables unbiased observation of fe. The strategy described in section 4.3 (explicit control of
interventions ga, gℓ) solves the constrained optimisation problem over ga, gℓ.

However, solutions may be quantitatively compared with an aim of recommending which (if any) might be most
appropriate in a given circumstance. If possible, the strategy in section 4.1 should be used if possible, as it
enables the greatest flexibility in approach. The strategy in 4.3 should be used alternatively or additionally if
appropriate.

The strategy in section 4.2 is advisable as a general approach if covariates cannot be observed more frequently
and interventions cannot be controlled (that is, neither of the other strategies are actionable).

10.1 Illustration of solutions

We consider how each strategy may appear in the context of the setting described in Supplementary section 7.

The strategy in section 4.1 would comprise re-observing covariates in February (t = 1) after interventions are
made. Under this closer observation (allowing inference of ga and E(f)), ρe could be set so as to optimise
healthcare provision.

The strategy in section 4.2 would require nomination a random sample of the population on which scores would
not be calculated, and hence on which no intervention could be made on the basis of a risk score. This would
enable observation of ‘native’ covariate effects on risk.

The strategy in section 4.3 would implement specific interventions: for instance, ‘if ρe > 50%, stop drug X’.
Interventions could then be tuned to optimise healthcare provision.

11 Open problems

We propose the following short list of open problems in this area.

1. Determine a framework to modulate both gℓ and ga with the aim of solving the constrained optimisation
problem in section 2.3.

2. Determine the dynamics and consequences of other model-updating strategies. What happens if training
data is aggregated at each step, rather than only the most recent data being used?

3. Derive results of successive adjuvancy in more general circumstances.

4. How do the dynamics of the model change when assumptions differ? Can f , gℓ and ga be extended to be
random-valued, and possibly agglomerated into a single intervention function?

5. How can assumptions be changed to approximate more general machine learning settings?
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