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Abstract

Machine learning is increasingly being used
to generate prediction models for use in a
number of real-world settings, from credit
risk assessment to clinical decision support.
Recent discussions have highlighted poten-
tial problems in the updating of a predictive
score for a binary outcome when an exist-
ing predictive score forms part of the stan-
dard workflow, driving interventions. In this
setting, the existing score induces an ad-
ditional causative pathway which leads to
miscalibration when the original score is re-
placed. We propose a general causal frame-
work to describe and address this problem,
and demonstrate an equivalent formulation
as a partially observed Markov decision pro-
cess. We use this model to demonstrate the
impact of such ‘naive updating’ when per-
formed repeatedly. Namely, we show that
successive predictive scores may converge to
a point where they predict their own effect,
or may eventually tend toward a stable oscil-
lation between two values, and we argue that
neither outcome is desirable. Furthermore,
we demonstrate that even if model-fitting
procedures improve, actual performance may
worsen. We complement these findings with a
discussion of several potential routes to over-
come these issues.

Proceedings of the 24th International Conference on Artifi-
cial Intelligence and Statistics (AISTATS) 2021, San Diego,
California, USA. PMLR: Volume 130. Copyright 2021 by
the author(s).

1 Introduction

A common machine learning task concerns the predic-
tion of an outcome Y given a known set of predictors
X [Friedman et al., 2001]. Usually, the intent is to
anticipate the value of Y in situations in which only
X is known. Often, the ultimate goal is to avoid or en-
courage certain values of Y , with interventions guided
by the predictions provided by the algorithm.

We focus on the standard setting, often seen in health-
care, where X is first observed and used to make pre-
dictions about Y , then interventions occur before out-
comes are observed. This setting can lead to predic-
tion scores being ‘victims of their own success’ [Lenert
et al., 2019, Sperrin et al., 2019]. Interventions driven
by the score can change the distribution of the data
and outcomes, leading to a decay in observed perfor-
mance, particularly if the intervention is successful.
Analysis of this effect requires consideration of the
causal processes governing X, Y , and the potential
interventions driven by the score [Sperrin et al., 2019].
Predictive scores are often implemented by direct dis-
semination to agents that are capable of modifying
these causal processes [Rahimian et al., 2018, Hyland
et al., 2020], which leads to vulnerability to this prob-
lem. This problem also exists if predictions influence
discrete actions; initial progress for this has been made
using bandits [Shi et al., 2020]. The phenomenon in
which a predictive model influences its own effect has
been called ‘performative prediction’ [Perdomo et al.,
2020], and is of interest in model fairness [Liu et al.,
2018, Elzayn et al., 2019], in that actions taken in re-
sponse to a model may pervert fairness metrics under
which the model was designed.

This problem is particularly critical in settings where
existing predictive scores are to be replaced by an up-
dated version. In many real-world contexts, the under-
lying phenomena represented by the predictive model
will change over time [Wallace et al., 2014]; statistical
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procedures for prediction may also improve (particu-
larly for complex tasks); and researchers may wish to
include further predictors or increase the scope of pre-
dictive scores. In general, we may expect that most
predictive algorithms will need to be updated or re-
placed over time. Up-to-date models should generally
be trained on the most recent available data which,
as described above, will be contaminated by interven-
tions based on existing scores. Should a new predic-
tive model be fitted to new observations of X and Y ,
it will consequently also model the impact of the exist-
ing score. Removal of the existing score will introduce
bias into predictions made by the new score, as will
insertion of the new score in place of the old. We term
such an operation a ‘naive model replacement’.

Our main aim is to introduce a general causal frame-
work under which this phenomenon can be quantita-
tively studied. We use this framework to draw atten-
tion to the hazards of naive model replacement, espe-
cially when it occurs repeatedly. We introduce these
hazards in the context of a generalised ultimate aim of
the model, formulated as a constrained optimisation
problem in which the occurrence of undesirable values
of Y is to be minimised with limited intervention.

A simple parable of this phenomenon concerns
yearly influenza vaccinations. In a vaccination-naive
population, risk assessments for influenza motivate
widespread vaccination. However, in a later ‘epoch’,
the risk may appear much lower, and could naively
suggest vaccination is no longer required introducing
risks to public health1. More generally, updated risk
scores for clinical outcomes may be biased due to the
interventions motivated by the scores themselves. As
a second example, consider risk scores used to predict
future emergency hospital admissions Y , on the basis
of covariates X [Rahimian et al., 2018]. Suppose that
prescription of some drug D ∈ X confers increased
risk, and this is established by the risk score. Should
such risk scores be distributed at time t = 0 to agents
able to modify these factors (e.g., doctors), they may
intervene by taking patients off D thereby reducing
emergency admission risk E[Y ] at a time t = 1. If a
new score is naively fitted to X at t = 0 and Y at
t = 1, it would underestimate the danger of D.

Section 2 describes the problem in terms of causal ef-
fects. We develop this into a full model specification
in Section 2.2, along with a description of the con-
strained optimisation problem the model/intervention
pair aims to solve in 2.3. In Section 3, we analyse the
short and long-term effects of repeated naive replace-
ment and show that they are generally undesirable. In
Section 4, we discuss three classes of solutions: more

1See for example https://www.who.int/news-room/
spotlight/ten-threats-to-global-health-in-2019

complex modelling, routine maintenance of a ‘hold-
out’ set, and controlled interventions. In Section 5 we
describe a reformulation of the model as control theory
problem. Finally, in Section 6, we discuss limitations
and implications of our approach. Our supplementary
material contains relevant examples and proofs, an ex-
position of the problem in a real-world example, and
a list of open problems in this setting.

2 Model

2.1 Overview

Assume that we are attempting to predict an outcome
Y given a known set of covariates X. For simplicity,
we assume Y is a binary (e.g. admission versus non
admission to an Intensive Care Unit) and model it as
a Bernoulli random variable. If Y = 1 is considered
to be a negative outcome, often the eventual aim is to
reduce P(Y = 1|X) = E[Y |X]; we will discuss this in
Section 2.2 once we have defined terms formally. For
the moment, we assume the causal structure shown
in Figure 1. We denote by ρ0(X) an initial predictive
model for E[Y |X], fitted to observations of (X,Y ) gen-
erated under the causal structure in Figure 1A. During
deployment, we compute ρ0(X) for all members of a
population and disseminate it to agents who can inter-
vene on X (e.g. doctors) based on those predictions,
aiming to prevent Y = 1. Replacing or updating ρ0,
will typically involve fitting a new predictive model
ρ1(X) to new observations of (X,Y ). It is clear that
while ρ0(X) is an estimator of E[Y |X], the new pre-
dictive function ρ1(X) is instead an estimator of

E [Y |X, do [ρ0(X)]] (1)

where do [ρ0(X)] indicates the action ‘compute and
disseminate ρ0(X)’. Although ρ0(X) is determined by
X, the computation do [ρ0(X)] makes ρ0 actionable.
This opens a second causal pathway from X to Y ,
affecting the setting in which ρ1 is fitted (Figure 1B). If
the initial score ρ0(X) is universally disseminated, the
distribution of Y given X (without the do [ρ0(X)]) now
becomes a counterfactual which we cannot observe.

X Y

ρ1	(fit)

ρ0(X)

A B

X Y

ρ0	(fit)

Figure 1: Causal structure under which ρ0 (panel A)
and ρ1 (panel B) are fitted. Dashed lines indicate a
model-fitting process.
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2.2 General notation and assumptions

Here, we use a causal model to illustrate poten-
tial emergent behaviour resulting from repeated naive
model updating, expanding out the ‘do’-operator used
in section 2.1. We do not aim to cover the complexities
of all real-world applications, yet our simplified setup
is sufficient to demonstrate the dangers arising in this
context.

As ρ0 is deployed and drives interventions, covariate
values X may change, as may the dependence of Y on
X. Here, we partition X into three sets:

Xs: Fixed or ‘set’ covariates; dim(Xs) = ps,

Xa: Actionable covariates; dim(Xa) = pa,

Xℓ: Latent covariates; dim(Xℓ) = pℓ. (2)

Although Xℓ may influence the causal mechanism be-
tween X and Y and may be intervened on, we assume
it is unobserved. Hence, only Xs and Xa are known
when evaluating a risk score, and Xs cannot be inter-
vened on (e.g. ‘Age’). We also define two sets of time
indicators t, e (time, epoch):

t ∈ {0, 1} :


t = 0: predictive score is computed
t = 1: Y observed, after possible

intervention

e ∈ N :

{
e = 0: no predictive score is used
e > 0: model from epoch e− 1 is used.

We assume that values of X depend on t and e using
the notation Xe(t) = (Xs

e (t), X
a
e (t), X

ℓ
e(t)) ∈ Ωs×Ωa×

Ωℓ = Ω. As Y is only observed at t = 1, Y at epoch
e is denoted as Ye. At each epoch, we assume that
values of Xe(t) across individuals in the population
are iid with probability measure µe. We introduce the
following functions

fe(x
s, xa, xℓ) = E

[
Ye|Xe(1) = (xs, xa, xℓ)

]
= Causal mechanism determining
probability of Ye = 1 given Xe(1)

gae (ρ, x
a) ∈ {g : [0, 1]× Ωa → Ωa}

= Intervention process on Xa in
response to a predictive score ρ

updating Xa
e (0) → Xa

e (1)

gℓe(ρ, x
ℓ) ∈ {g : [0, 1]× Ωℓ → Ωℓ}

= Intervention process on Xℓ in
response to a predictive score ρ

updating Xℓ
e(0) → Xℓ

e(1)

ρe(x
s, xa) ∈ {ρe : Ωs × Ωa → [0, 1]}

= Predictive score trained at epoch

e, evaluated at observed covariates.

Our main model is based on the following assumptions

1. ∀e Xs
e (0) = Xs

e (1): ‘set’ covariates do not change
from t = 0 to t = 1

2. Xa
0 (0) = Xa

0 (1), Xℓ
0(0) = Xℓ

0(1): ‘actionable’ and
‘latent’ covariates do not change at epoch 0

3. Xℓ
e(t) is unobserved, but may be modified from

t = 0 to t = 1 in response to ρe−1

4. Values of Xe(0) are independent across epochs,
i.e. we do not track the same subjects over time.

5. At epoch e, the predictive score uses only Xa
e (0),

Xs
e (0) and Ye as training data; previous epochs

are ignored and Xa
e (1), Xs

e (1) are not observed.

6. ∀e E[Ye|Xe] = E[Ye|Xe(1)]: Ye depends only on
Xe(1); that is, after any potential interventions.

Besides these core assumptions, for the applications in
this work, we variably assume some of the following

7. fe, gae , gℓe and µe remain fixed across epochs2,
so values {Xs

· } are iid, as are {Xa
· } and {Xℓ

· }
(within an epoch they may be correlated). Where
we make this assumption, we will omit the epoch
subscript for clarity. We also use the shorthand
Xℓ ≡ Xℓ

e(0)|(Xs
e (0), X

a
e (0)) = (xs, xa)

8. We allow ρe to be an arbitrary function, but gen-
erally presume it is an estimator of

ρe(x
s, xa) ≈ E [Ye|Xs

e (0) = xs, Xa
e (0) = xa]

= EXℓ

[
fe

(
xs, gae (ρe−1, x

a), gℓe(ρe−1, X
ℓ)
)]

≜ f̃e(x
s, xa) (3)

noting that f̃e depends on e even if fe does not.

9. The function fe is C1 in all arguments, and co-
variates are coded such that increases in covariate
values increase risk

10. gℓe, gae are C1 in all arguments, and a higher value
of ρ means a larger intervention is made (we as-
sume gℓe and gae to be deterministic, but random
valued functions may more accurately capture the
uncertainty linked to real-world interventions).

This extended causal model is shown in Figure 2. To
aid interpretation, a real-world example is described
using this notation in Supplementary Section 7.

2In practice, we may assume fe changes slightly between
epochs, but that this change is negligible.
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2.3 Aim of predictive score

The aim of the predictive score is generally to estimate
E[Ye|Xe(0)] accurately, presuming that we take Xe(0)
to be identically distributed over the population con-
cerned. However, if action is to be taken on the score,
we may presume the ultimate goal is to minimise E[Ye],
i.e. minimising

E [Ye] = EXe(0) [Ye|Xe(1)]

= EXe(0)

[
fe(X

s, gae (ρ,X
a
e (0)), g

ℓ
e(ρ,X

ℓ
e(0)))

]
(4)

However, we presume that we cannot afford to maxi-
mally intervene in all cases. Suppose the cost of low-
ering Xa and Xℓ by x is ca(Xa, x) and cℓ(Xℓ, x), re-
spectively. The total intervention must then satisfy

EXe(0)

[
ca
(
Xa

e (0), X
a
e (0)− gae (ρ,X

a
e (0))

)
+

cℓ
(
Xℓ

e(0), X
ℓ
e(0)− gℓe(ρ,X

ℓ
e(0))

)]
≤ C (5)

for a known constant C, representing maximum cost.
Thus we want to minimise (4) subject to (5). We have
allowed fe, µe, gae , gℓe and ρe to vary across epochs. Of
these, we can consider fe and µe to vary as a conse-
quence of underlying processes, and gae , gℓe and ρe to
be (somewhat) under our control. Depending on the
problem, we may either consider gae and gℓe as fixed,
and choose an optimal function ρe; or consider ρe as
fixed, and choose optimal functions gae , gℓe. If both
are optimised, this corresponds to a general problem
of resource allocation; see Supplementary Section 9.1.

3 Naive model updating

We consider a ‘naive’ process in which a new score ρe
is fitted in each epoch, and then used as a drop-in re-
placement of an existing score ρe−1. We show that this
procedure does not generally solve the constrained op-
timisation problem in Section 2.3, can lead to ‘worse’
performance of ‘better’ models, and may lead to wide
oscillation of predictions for fixed inputs across epochs.

3.1 Worse performance of better models

Here, we show that naive updating can lead to a loss
in observed performance — even when the procedure
to infer ρe is more accurate. We adopt assumptions 1–
10, taking the approximation in equation (3) to be im-
perfect. Although most model elements are conserved
across epochs (assumption 7), we presume that the
procedure used to infer ρe changes, leading to better
estimators of the function f̃e.

At epoch e, the training data is denoted by (X⋆
e , Y

⋆
e )

and consists of n samples of (Xe(0), Ye), with the

latent covariate information removed. In the absence
of interventions, we assert that model performance
will improve over epochs. Since performance under
non-intervention is equivalent to performance at
epoch 0, this can be stated as:

E(X⋆
0 ,Y

⋆
0 )

[
mf̃0

(ρe|X⋆
0 , Y

⋆
0 )

]
>

E(X⋆
0 ,Y

⋆
0 )

[
mf̃0

(ρe+1|X⋆
0 , Y

⋆
0 )

]
, (6)
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Figure 2: This figure shows a causal diagram. An
‘epoch’ is a new model fitting cycle. Covariates for
a sample at the start of an epoch are modelled by
X ·

e(0). We presume {Xs
e (0), e ≥ 0} are independent

(as are Xa
· (0) and Xℓ

· (0)). We start with a sample at
t = 0, e = 0. The values Xs

0(0), Xa
0 (0) are observed

and sent to analysts (arrow 1). No predictive score is
present and no interventions are made based on it, so
values remain the same to t = 1 (arrows 2). E[Y0] de-
pends only on covariates at t = 1, through f0 (arrows
3). Y0 is observed and sent to analysts (arrow 4) who
decide a function ρ0, which is retained into epoch 1 (ar-
row 5). We start epoch 1 with a new independent sam-
ple. At t = 0, we observe Xs

1(0), Xa
1 (0) and send them

to analysts (arrow 6) who compute ρ0 (X
s
1(0), X

a
1 (0))

which is used to inform interventions ga1 , gℓ1 (arrow 7)
to change values Xa

e (0), X
ℓ
e(0) to Xa

e (1), X
ℓ
e(1) respec-

tively (arrows 8). Xs
e (0) is not interventionable and

becomes Xs
e (1) (arrow 9). E[Y1] is determined by co-

variates at t = 1 (arrows 10). Analysts use the values
of Xs

1(0), Xa
1 (0) (arrows 11), and Y1 (arrow 12) to de-

cide a ρ1, which is retained (arrow 13) for epoch 2.
Subsequent epochs proceed similarly to epoch 1.
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where mf̃ (ρ|X,Y ) denotes a metric for closeness of ρ
to f̃ , given observed data (X,Y )3. However, if inter-
ventions are in place, the improvement in equation (6),
does not imply that the actual performance improves
across epochs, that is:

E(X⋆
e ,Y

⋆
e )

[
mf̃e

(ρe|X⋆
e , Y

⋆
e )

]
̸>

E(X⋆
e+1,Y

⋆
e+1)

[
mf̃e+1

(ρe+1|X⋆
e+1, Y

⋆
e+1)

]
. (7)

This is proved by counterexample, see Supplementary
Section 9.2. A critical consequence of this artefact is
that stakeholders may decide not to update an existing
score, even if an apparently better one is available.4

3.2 Dynamics of repeated naive updating

Here, we analyse the dynamics of repeated naive model
updating. For this purpose, we make assumptions 1-10
and assume that ρe is an oracle: the ‘≈’ in equation (3)
is replaced by an ‘=’.

At epoch 0, there are no interventions, hence the risk
of observing Y = 1 is E[Y0|X0(0) = (xs, xa, xℓ)] =
f(xs, xa, xℓ). The score ρ0 is therefore defined as

ρ0(x
s, xa) = EXℓ [f(xs, xa, Xℓ)], (8)

where Xℓ is denoted as in assumption 7. In subsequent
epochs, ρe is used to modify xa and xℓ via ga and gℓ,
leading to the following recursive relation:

ρ0(x
s, xa) = EXℓ [f(xs, xa, Xℓ)]

ρe(x
s, xa) = EXℓ [f(xs, ga(ρe−1(x

s, xa), xa),

gℓ(ρe−1(x
s, xa), Xℓ))]

≜ h(ρe−1(x
s, xa)) (9)

We briefly explore the dynamics of this recursion. Let
z ∈ [0, 1] be arbitrary and denote by S the substitu-
tion (xs, xa, xl) =

(
xs, ga(z, xa), gℓ(z,Xℓ)

)
. Recalling

definitions of ps, pa from (2), we set (for i across the
dimensions of (xa, xℓ))

δg
a

i =
∂[ga(z, xa)]i

∂z
δg

ℓ

i =
∂[gℓ(z, xℓ)]i

∂z

δf
a

i = (∇f |S)ps+i δf
ℓ

i = (∇f |S)ps+pa+i

recalling assumptions 9,10 to assert that these partial
derivatives exist. Assumptions 9 and 10 further imply

3In practice, mf̃e
is unknown but (assuming latent co-

variates have a small influence on f) estimates of mf̃0
can

be calculated through a holdout test data set.
4We note that practically (if a holdout test data set was

used) the conclusions on performance made by stakehold-
ers would be based on a risk score’s closeness to f̃0 instead
of f̃e, but the results are the same, which we show in Sup-
plementary Section 9.2.

δf
ℓ

i > 0, δf
a

i > 0 and δg
a

i < 0, δg
ℓ

i < 0 respectively, so

h′(z) = EXℓ

 pa∑
i

δg
a

i δf
a

i +

pℓ∑
i

δg
ℓ

i δf
ℓ

i

 < 0 (10)

and thus the recursion ρe+1 = h(ρe) has exactly one
fixed point. Call this z0, so z0 = h(z0). We now note
Theorem 1. If h′(z0) ≤ −1 then the recursion does
not converge unless ρ0 = z0, and will tend toward
a stable oscillation between two values. If for some
(possibly unbounded) interval R we have ρe ∈ R for
some e and for all z ∈ R, h(z) ∈ R and

pa∑
i

(
δg

a

i

)2

≤ k1,

pℓ∑
i

EXℓ

[(
δg

ℓ

i

)2
]
≤ k2 (11)

pa∑
i

EXℓ

[
|δf

a

i |
]2

≤ k3,

pℓ∑
i

EXℓ

[(
δf

ℓ

i

)2
]
≤ k4 (12)

where
√
k1k3 +

√
k2k4 < 1, then

|ρe(xs, xa)− ρe+1(x
s, xa)|→ 0

as e → ∞.

This is proved in Supplementary Appendix 9.3. Alter-
native conditions for convergence (‘performative sta-
bility’) are proved in Perdomo et al. [2020].

Condition (11) states that, on average, interventions
make only small change to xa and xℓ in response to
small changes in ρ. Condition (12) states that, on av-
erage, the actual risk changes little with small changes
in covariates. These conditions are sufficient but not
necessary. Since h′(z) < 0, successive estimates of
ρe will oscillate around their limit. In general, a re-
quirement for general convergence of ρe restricts the
type of interventions which can be in place. A sim-
ple scenario in which ρe cannot converge is provided
in Supplementary Section 9.5, and we illustrate an ex-
ample showing convergence and divergence of ρe in
Figure 3. We produced a simple web app illustrat-
ing this problem at https://ajl-apps.shinyapps.
io/universal_replacement/

We may hope that naive updating, when it converges,
may solve the optimisation problem in Section 2.3. It
does not, and we give a specific counterexample in
Supplementary Section 9.4. Finally, we note that the
dynamics above also model a related setting, where
samples are tracked across epochs and interventions
are permanent (Supplementary Section 8). In sum-
mary, naive updating can readily lead to wide oscilla-
tion of successive risk estimates, and even if ρe does
converge, the limit does not generally correspond to
an optimal outcome in terms of minimising incidence
of Y .
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4 Strategies to avoid this problem

Naive updating is an appropriate method for updating
risk scores if no interventions are being made (that is,
ga(ρ, xa) = xa and gℓ(ρ, xℓ) = xℓ), as may be the
case if a risk score is used for prognosis only, rather
than to guide actions5. It may also be appropriate if
we do not aim to solve the constrained optimisation
problem in Section 2.3, and are only concerned with
accuracy of the model: in that case, under at least
the conditions of Theorem 1, naive updating will lead
to estimates ρe(x

s, xa) converging as e → ∞ to a set-
ting in which ρe accurately estimates its own effect:
conceptually, ρe(x

s, xa) estimates the probability of
Y after interventions have been made on the basis of
ρe(x

s, xa) itself [Perdomo et al., 2020]. Naive updating
is otherwise generally not advisable, although a range
of alternative modelling strategies do not lead to the
same problems.

We demonstrate three general strategies for avoiding
the naive updating problem below. We describe how
each of these accomplishes this and compare their ad-
vantages in Supplementary section 10. We describe
how an implementation of each strategy may look in
the context of a toy example in supplementary sec-
tion 10.1.

4.1 More complex modelling and more data

An obvious way to avoid the problem is to model the
setting completely, including the effect of any inter-
ventions. Methods of this type would include explicit
causal modelling, as used in related problems [Sper-
rin et al., 2018], or counterfactual inference, which
has been suggested as a direct approach to the prob-
lem [Sperrin et al., 2019]. These approaches would
require knowledge or accurate inference of gℓ and ga,
or observation of covariates at several points in each
epoch [Sperrin et al., 2018].

A second approach is to consider data from previ-
ous epochs alongside the current data when fitting
ρe. Such data can be used as a prior on the fit-
ted model [Alaa and van der Schaar, 2018] and could
be used to infer model elements: µe, gℓ, ga, and
f . If accurate data were available, oscillatory effects
could even be detected and avoided. A difficulty with
this approach in a realistic setting is in distinguishing
whether inaccuracies in older models are due to drift in
the underlying system [Quionero-Candela et al., 2009]
(in our case, f and µe) or due to the effects of inter-
vention. Indeed, the problems with naive updating can

5EUROscore2 [Nashef et al., 2012] (a risk predictor for
cardiac surgery) can be used in this way, by giving patients
prognostic estimates but without being used to recommend
for or against surgery

be seen as treating model inaccuracies as though they
are due to the first effect, when they are in fact due
to the second. Definitive assertion of the cause of in-
accuracies will, again, generally require more frequent
observation of covariates.

Figure 3: Example showing convergence and diver-
gence of ρe across epochs. We disregard xℓ, gℓ in
this example. We choose f(xs, xa) = logit(xs, xa)
(top left). We choose ga with the rationale that
we intervene by lowering Xa(0) when ρe > 1/2,
but allow Xa(0) to increase when ρe < 1/2 (that
is, resources for intervention are redistributed rather
than introduced), and assume that we can inter-
vene more effectively when Xa(0) is high ( strictly,
ga(ρ, xa) = 1

2

(
(3− 2ρ)xa + (1− 2ρ)

√
1 + (xa)2

)
, top

right panel). Bottom panel shows whether ρe(x
s, xa)

converges or diverges, and how long it takes (num.
epochs until ∆e ≜ |ρe − ρe−1|< 0.01 or (|∆e|> 0.05 ∪
|∆e − ∆e−1|< 0.01); |e|≤ 10). Insets show cobweb
plots for relevant recursions, and plots of ρe.

4.2 Hold out set

A straightforward and potentially practical means to
avoid the problems associated with naive updating is
to retain a set of samples in each epoch for which ρe is
not calculated, and hence cannot guide intervention.
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For such samples, Xe(0) = Xe(1), so a regression of Y
on Xe(0) restricted to these ‘held out’ samples can be
used as an unbiased estimate for fe. If the hold out set
is randomly selected, this would emulate a clinical trial
which enables us to assess the effect of predictive scores
(and their associated interventions) across epochs.

A problem with this approach is that any benefit of the
risk score-guided intervention is lost for individuals in
the hold-out set. Careful consideration of the ethical
consequences of this strategy is therefore required.

4.3 Control interventions

A radically different option is the direct specification of
the interventions gℓe and gae in each epoch, considering
ρe, µe constant, and fe to change only slightly with
e. This enables directly addressing the constrained
optimisation problem in Section 2.3.

If Xℓ can be disregarded, and we may regard fe−1 as
an unbiased estimate of fe6, then we may take a simple
inductive approach:

1. At the end of epoch 0, infer f0 and µ0. Given
some fixed functions ρ, ca, find a function ga1
which solves the constrained optimisation prob-
lem in section 2.3 assuming f1 = f0, ρ1 = ρ0.
Implement this intervention.

2. At the end of epoch e > 0, regress Ye on

Xe(1) =
(
Xs

e (0), g
a
e

(
ρ(Xs

e (0), X
a
e (0)), X

a
e (0)

))
to attain an unbiased estimate of fe. Now solve
the constrained optimisation problem to optimise
gae+1, assuming fe+1 = fe and ρe+1 = ρe

Thus in each epoch an unbiased update of fe can be
made, and the constrained optimisation problem can
be directly solved. If Xℓ is present, the problem is
more complex. We suggest this general case as an
open problem (see Supplementary Section 11).

A problem with this approach in a medical setting
is that specification of gae may cause the procedure
to be subject to medical device regulation [MHRA,
2019]. Implications of these regulatory processes map
to our potential solutions; for example, countries in
the EU [EU Council, 2014] have only developed regu-
latory processes to the point of accommodating static
risk scores, and by extension currently treat updated
scores as new tools. In these cases a separate evalu-
ation exercise, such as testing on a hold-out, is nec-
essary to demonstrate efficacy prior to dissemination,

6This assumption underlies the fundamental point of a
risk score

which would also remedy the problems of naive up-
dating (although costs of repeated formal evaluations
of effectiveness, and the ethics of a hold-out, may be
a concern). However, the US FDA have proposed an
alternative ‘total-life-cycle’ approach [USFDA et al.,
2019] which allows for model updating (contingent
on defining a performance monitoring mechanism),
which, given the problems of naive updating, is po-
tentially seriously flawed.

5 Formulation as control-theoretic/
reinforcement learning problem

Control theory [Bertsekas, 1995] and its modern in-
carnation, reinforcement learning [Sutton and Barto,
2018], study temporal problems where multiple actions
are available at each time step. The aim of the field is
to come up with an optimal policy either from the start
or, in the partially observable case, a mechanism that
quickly converges to the optimal policy. In the latter
the regret is considered to be how much utility is lost
compared to using the optimal policy from the start.
The methods underlying this, like dynamic program-
ming, are used in a variety of fields such as; playing
go [Silver et al., 2018], in dynamic treatment strat-
egy [Alaa and van der Schaar, 2018] and mechanical
and electrical engineering. Here we use the formulation
of a Partially Observable Markov Decision Processes
(POMDP) [Yuksel, 2017], and adopt the notation from
[Wang et al., 2019] whereby we consider the POMDP
as a 7-Tuple (S,A, T ,R,Ω,Z, γ):

• S,A and Ω are spaces of states, actions and ob-
servations.

• T is the transition kernel that describes the evo-
lution given state and action, e.g. se+1 ∼ T (· |
se, ae) (i.e. a set of conditional transition proba-
bilities between states and actions).

• Z is a kernel for the observation given the state,
e.g. oe+1 ∼ Z(· | se, ae)7.

• re represents our reward for being in state s and
taking action a at time (or equivalently epoch) e,
and is sampled from R - i.e. re ∼ R(se, ae)

• γ is a discount factor that down-weighs future re-
wards if 0 < γ < 1.

A solution candidate is a policy

ae ∼ π
(
{os, rs, as}e−1

s=1

)
7Note that here future observations depend on current

states and actions and not on future states and actions
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which aims to maximise

E
M∑
e=1

γe−1r(se, ae)

where M represents the maximum number of
time/epoch steps. Other reward/utility parametrisa-
tions are possible e.g. to include a final pay off or in-
finite time horizon pay off. Several options for reward
function construction are detailed in [Liu et al., 2014,
Yu et al., 2019, Wirth et al., 2017]. The beauty of this
framework is the flexibility: aspects such as optimisa-
tion under uncertainty can be included by including
parameters of reward, transition and observation pro-
cesses into the (unobserved) state variable.

We cast the above in this framework:

se = (Xe(0), Xe(1), Ye)

ae = ρe

oe = ((Xs
e (0), X

a
e (0)), Ye)

re = P
(
Ȳe+1 | se, ae

)
with Ȳ corresponding to the rate of events in total
population.

The transition kernel from se to se+1 consists of; sam-
pling Xe+1(0) (note that this sampling is indepen-
dent of se), intervening using this sample with ρe to
form Xe+1(1), and then using these values to sam-
ple Ye+1 from the resulting conditional distribution.
Finally we note that given Assumption 5 our policy
ae ∼ π(oe, re, ae) as previous epochs are ignored. In-
deed, this assumption also implies that se+1, oe+1 and
re only depend on the previous state through ae = ρe.
In the control view point it is also easy to formulate
the longitudinal problem (this corresponds to setting
Xe+1(0) = Xe(1)).

The description above allows use of methods of the
field such as Q-learning, (approximate dynamic pro-
gramming), PDE-based approaches such as the Hamil-
ton Jacobi Bellman equation and many more. These
methods create a policy which maps historical obser-
vations to an action (for the problem at hand a risk
score function). Most rigorous methods require a low
dimensional state space [Powell, 2007].

6 Discussion

In this work, we elaborate on the issue raised by
Lenert and Sperrin [Lenert et al., 2019, Sperrin et al.,
2019] and propose a framework for quantitatively mod-
elling its effects, with a particular focus on a model
which is updated repeatedly. We demonstrate some
consequences of ignoring this problem, and note that

they occur even in highly idealised circumstances. Al-
though the problem can generally be avoided by more
complex and complete modelling, we consider that this
is often impractical: a full consideration of the set-
ting in which a model will eventually be used is not
generally considered until the model is to be imple-
mented [Lipton and Steinhardt, 2018].

The formulation of the constrained optimisation prob-
lem in section 2.3 makes it clear that for fixed gℓ, ga,
the best possible ρe is not necessarily the oracle esti-
mator in equation 3. However, many machine learn-
ing models tend to focus on accurate prediction of out-
comes [Nashef et al., 2012], rather than directly solving
problems of the type in section 2.3; hence, the naive
updating setting considers a ρe which does exactly this.
In the naive updating setting, we are assuming an an-
alyst who ignores this effect.

The model presented here is not a full description
of modern predictive scoring systems; however, it is
extensible in various ways (some detailed in Supple-
mentary Section 11). In particular, gℓ and ga could
be random-valued rather than deterministic. We also
note that we assume a covariate value after interven-
tion confers the same contribution to risk of Y as it
does when it takes the same value ‘naturally’, which
may not be realistic.

We assume we are ‘starting over’ with new samples
at the beginning of each epoch, and for naive updat-
ing, we assume that covariate values are identically
distributed. The basis for this assumption is that we
generally expect interventions to be zero-sum: that is,
the risk score guides a redistribution of intervention
rather than introduction of interventions, so the to-
tal effect on the sample population remains roughly
the same in each epoch. In this assumption, we dif-
fer from that in the analysis by Lenert et al. [2019].
We can alternatively interpret this assumption as tak-
ing all interventions as being short-term and having
‘worn off’ by the start of the next epoch. The prob-
lem raised here also exists for the more general setting
when interventions have long term effects and we con-
sider longitudinal effects.

An important consideration in model updating is ‘sta-
bility’ of successive predictions: in our setting, whether
successive values of ρe converge. Colloquially, we can
take ’stability’ to mean that if the underlying sys-
tem being modelled does not change, then updating
a model will leave it unchanged; the model predicts its
own effect. General conditions for stability are con-
sidered in Perdomo et al. [2020] , who differentiate
between stability in which ρ optimises a loss given its
own effect, and ‘performative optimality’, in which ρ
globally optimises a loss. Although we highlight that
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stability does not generally guarantee that the model is
getting the best outcome (according to the constrained
optimisation problem in section 2.3), we note that sta-
bility has real-world advantages: in particular, trust in
a model will generally be better if it appears to be sta-
ble.

In the setting where models change at each epoch, if
mf̃e

is known at the current epoch e, we note a fair
comparison of models is one which compares models
built using the training data available at the current
epoch8. If mf̃e

is not known, then a holdout set for test
data must be used so a fair comparison can be made
using an estimate of mf̃0

(assuming f̃0 ≈ f). This is
because at epoch e we only have access to (Xe(0), Ye)
and not Xe(1), and so we are not able to properly
gain insight to the behaviour of f̃e needed to provide
an estimate of mf̃e

. An attempt to estimate mf̃e
using

(Xe(0), Ye) implicitly assumes that Ye directly depends
on Xe(0), and as a result ρe would appear much closer
to f̃e than is the case. Put simply, by implement-
ing naive model updating not only may performance
severely worsen (even if better models were used), but
in not providing a holdout test set stakeholders may
not even be able to recognise that performance is wors-
ening as the number of epochs increase.

In essence, we provide a causal framework within
which to understand a crucial issue in regulation of
machine learning and AI-based tools in health and
further afield, demonstrating that approaches which
incorporate naive updating are unlikely to be fit for
purpose. Moreover, even where solutions are available
to address the bias introduced by updating on ‘real-
world’ data in which outcomes represent (at least in
part) the effects of an algorithm, these restrict the po-
tential of ‘online’ and frequently updated solutions.
We hope that our work will foster discussion of this
interesting problem, which is becoming increasingly
pertinent as machine-learning based predictive scores
become widely used to guide decision making, and pol-
icymakers act to address how to regulate these tools
to ensure safety and effectiveness.
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