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A Further Results on the MPRW and MEPRW Estimators

In this section, we discuss the measurability of the MPRW and MEPRW estimators. For a generic function f
on the domain X, we define §-argmin,c » f = {z € X' : f(z) <infycx f+}. Our results are summarized in the
following two theorems.

Theorem A.1 Under Assumption 3.1, for any n > 1 and § > 0, there erists a Borel measurable function
s — O such that

~ argmingeg PW, i (Jin (W), f16) if this set is nonempty,
0, (w) € .
0- argmingcq PW, i (fin (w), tg)  otherwise.

Theorem A.2 Under Assumption 3.1, for anyn > 1, m > 1 and 6 > 0, there exists a Borel measurable function
Onm : 0 = O such that

B (w) € argmingeg E[PW,, i (in (W), fto,m) | X1:n] if this set is nonempty,
e - argmingcg E[PW,, i (fin (w), flo,m) | X1:n] otherwise.

We also present the asymptotic distribution of the goodness-of-fit statistics as well as the MPRW estimator in
the well-specified setting and establish the rate of convergence. For this we require the well separability of the
model in Assumption A.1 and the non-singularity of D, in Assumption A.2 to take place of the local strong
identifiability in Assumption 3.8.

Assumption A.1 For any € > 0, there exists 6 > 0 so that infgco.|o—g, 0> PW1,1(1t0, , o) > 0.
Assumption A.2 There exists a non-singular D, such that Assumption 3.6 holds true.

Theorem A.3 Suppose that p, = pg, for some 0, in the interior of ©. Under Assumption 3.1-3.8, 3.6-3.7
and A.1-A.2, the goodness-of-fit statistics satisfies

\/ﬁ mf PW1 1 (fin, pto) = inf max / |G (u,t) — (0, Dy(u,t))| dt, asn — +oo.
90 uesi-—1 Ji

Suppose also that the random map 6 — max,ega—1 [ |Gi(u,t) — (0, Dy (u,t))| dt has a unique infimum almost
surely. Then the MPRW estimator of order 1 satisfies

~

Vn(6, — 0,) = argmin max / |G (u,t) — (0, Dy(u,t))| dt, asn — +oo.
gco uesi~t Jp

Both the weak convergence results are valid for the metric induced by the norm || - ||

B Postponed Proofs in Subsection 3.1
This section lays out the detailed proofs for Lemma 3.1, Theorem 3.2 and 3.3.

B.1 Preliminary technical results
For completeness, we collect several preliminary technical results® which will be used in the proofs.

Theorem B.1 (Prokhorov’s theorem) Let Z(R?) denote the collection of all probability measures defined
on R with the Borel o-algebra and {p;}ien is a tight sequence in P (R?). Then every subsequence of {j; }ien
has a subsequence that converges weakly in Z(R%). Moreover, if every weakly convergent subsequence has the
same limit, the whole sequence converges weakly to this limit.

SFor the Prokhorov’s theorem, we only present the results on the Euclidean space. For more results on general
separable metric space, we refer the interested readers to Billingsley (2013).
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Theorem B.2 (Theorem 4.1 in Villani (2008)) Let (X, ) and (Y,v) be two Polish probability spaces; let
a: X >RU{—o0} andb:Y — RU{—o0} be upper semi-continuous such that a and b are absolutely integrable
with respect to the measures p and v respectively. Let ¢ : X x Y — RU {400} be lower semi-continuous, such

that c(x,y) > a(x) + b(y) for all x,y. Then there exists an optimal coupling m € I(u,v) which minimizes the
total cost E[c(X,Y)].

Lemma B.3 (Lemma 4.4 in Villani (2008)) Let X and Y be two Polish spaces. Let P C P(X) and Q C
P (V) be tight subsets of (X)) and P () respectively. Then the set of all transportation plans whose marginals
lie in P and Q respectively, is itself tight in P(X x V).

Theorem B.4 (Theorem 6.9 in Villani (2008)) Let (X,d) be a Polish space and p € [1,+00). The Wasser-
stein distance W, metrizes the weak convergence in P,(X). That is, if {{ui}ien, is a sequence of measures in
Pp(X) and p € Pp(X), then p; = p if and only if Wy(pi, ) — 0.

Definition B.1 (Lower semi-continuity) We say that f : X — R is lower semi-continuous if for any xg € X
and any y < f(xq), there exists a neighborhood U of xo such that f(x) >y for all x in U. In the case of a metric
space, this is equivalent to liminf, ., f(x) > f(zo) for any xo € X.

B.2 Proof of Lemma 3.1
We first show that, for any p € 2,(R?) and v € Z,(R?), the following inequality holds true,

PW, 1 (1,0) < PWy (i) < Wylpv). (6)

Indeed, by the definition of PW,, ;. and PW),, x, the first inequality is trivial. For the second inequality, we derive
from the definition of PW, ;. that

’PWg’k(u,u) = sup WP(ELp,Eyv) = sup  inf / |ET (z —y)||P dr(z,y).
E€Sq,k E€Sq,k mell(p,v) Rd xR4

Since E € Sy, we have |[ET (x — y)|| < ||= — y||. Thus, we have PW;k(u, v) < WP(u,v). Putting these pieces

together yields Eq. (6). For any sequence {y;}ien € Z,(RY) and p € Z,(R?), we conclude from Eq. (6) that

W (pis pt) — 0 implies PWy, g (pi, ) — 0 and PW,, 5 (i, 1) — 0.

The remaining step is to show that PW, ,(ui, ) — 0 implies W, (pi, 1) — 0. Indeed, we first prove that
PW, i (pis i) — 0 implies p1; = p. Let Z; ~ p1;, we have ETZ; ~ E% pi. By the definition of the IPRW distance
(cf. Definition 3) and using the fact that PW, ;. (s, 1) — 0, we have (| E" Z;)||”)sen is uniformly integrable for
all E € Sg . Since Sq 1 is compact, there exists a finite set {E1, Ea, ..., Er} C Sg so that ||z| < 231':1 HE;'—xH
for all z € R%. Therefore, we have

p

I I
20 < Szl ) <1 (e 57 20) < 1 (18T 2P

j=1 j=1

Therefore, we deduce that (||Z;||”)ien is uniformly integrable which implies the tightness of {{;}ien. Using the
Prokhorov’s theorem (cf. Theorem B.1), we obtain that every subsequence of {u;};en has a weakly convergent
subsequence.

The next step is to show that all the weakly convergent subsequences converge to the same probability measure
p. We fix an arbitrary subsequence and for simplicity abbreviate the subscripts and still denote it by {u; }ien.
Let fi; be the limit of any given weakly convergent subsequence (u;;)jen, we need to prove that fi; = p. In
particular, we define the characteristic function for any probability measure v as follows,

D,(2) := /Rd =) dy(z) for all z € RY,

Since pii; = fii, we have @, (z) = ®p,(2) for all z € R Thus, we need to show that D, (2) = ®,(2) for all
z € R This is trivial when z = 04 since Py, (0q) = ©,(04) =1 for all j € N. Otherwise, let r := ||z|| and
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v :=z/||z||, we have

lim &, ()= lim el=) dpi;(r) = lim el (Vo) dpi; ().

J—+oo i j—+oo Jrd j—+oo Jrd

Since ||v]| = 1, we define ' € Sy whose first column is v. Let 7 be a k-dimensional vector whose first coordinate
is r and other coordinates are zero. Then we have r(v,z) = (¥, ETx). Putting these pieces together yields that

lim ®,, (z)= 1l ) B, i, (v).
i P (2) = im ] e i (y)
For such fixed E, we claim that W)( #,uZJ,E#u) — 0 holds true. More specifically, PW,, ;. (pi;, 1) — 0 im-
plies that [WP(E Gttiss Bp)do(E) — 0. Since WP(Ej i, Ejp) is non-negative, it is easy to derive that
W, (B3 #m],E %) = 0 for almost every E. Nonetheless, by the continuity of WE(EZu;,, EZp) with respect to
E, we can obtain that W, (E#;LZ],E#M) - 0 for all fixed E. Indeed, by the proof by contradiction, we as-
sume that Wp(E;uij,E;u) — 0 for some fixed E. Then, there exists a neighborhood S of F (it is ﬁxed) such
that [ V\{g(E;éuij,E;u)dah(E) - 0. This cor.ltradicts I WE(EY i, Ep)do(E) — 0 since the inside term is
non-negative. Thus, we achieve the desired claim.

Using Theorem B.4, we have E;}Mz‘j = E;;u. Since r(v,z) = (7, BT z), we have

lim el(me) dEZ ju;, () :/ el(re) dEGp(x) = / ) dy(x) :/ e dp(x).
Jj—=+0o0 Jpk Rk R4 R4

Putting these pieces together yields that Dy, () = ®,(2) for all z € RY/{0,} and fi; = p for all i € N.

Using the Prokhorov’s theorem again yields that the whole sequence {u;};cny has the limit p in weak sense.

Therefore, PW,, (i, ) — 0 implies p; = p. Since the Wasserstein distances metrize the weak convergence (cf.

Theorem B.4), we conclude that PW,, ; (i, 1) — 0 implies W, (4, 1) — 0. This completes the proof.

B.3 Proof of Theorem 3.2

By Lemma 3.1, we have PW,, ; (i, 1) — 0 if and only if PW,, x (i, 1) — 0 if and only if Wy, (ps, 1) — 0. By
Theorem B.4, we have p; = p if and only if W, (u;, u) — 0. Putting these pieces together yields the desired
result.

B.4 Proof of Theorem 3.3

Fixing E € Sq 1, the mapping x — E Tz is continuous from R? to R*. Since p; = p and v; = v, the continuous
mapping theorem implies that E;ﬁ pi = E%p and E;; vi = E%v. The next step is the key ingredient in the proof
and we hope to show that

WE(E%p, Eyv) < lzlinﬁ{.lof WE(E%pi, EZv;)  for all E € Sq k. (7)

From Theorem B.2, there exists a coupling m; € H(E;ui,E;ui) such that Wg(E;ui,E;Vi) = kaka |z —
y||” dmi(z,y). By the definition of lim inf, there exists a subsequence of {m; };en such that [5, . g [[2—y||P dmi(z,y)
converges to liminf;, o WP (EZpi, EZv;). For the simplicity, we still denote it by {m; };en. By Lemma B.3 and
Prokhorov’s theorem (cf. Theorem B.1), {m}ien is sequentially compact in weak sense. Thus, there exists a
subsequence {7, }jen such that m;, = 7 € & (R* x R¥). Putting these pieces together yields that

lim inf WP (E pi, Ejv;) = / |l — y||P d7(z,y).
Rk xRF

1—+o00

By the definition of the Wasserstein distance, it suffices to show that 7 € H(E;,u, E;u) Indeed, let f: RF R
be a continuous and bounded function, we have

/ f(z)dr(z,y) = lim f(z) dmi, (z,y).
RF xR¥k

J=+00 JRk xRE
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Since m;, € H(E;mj,E;;uij) and Ejp; = Ejp, we have

li dmi. (x,y) = i dE% 1 ) dE7;
Jim [ @ dn, ) = tim [ @) dB @) = [ @) B
Since Ejv; = Ejv, the same argument implies that [pr pu f(y) d7(2,y) = [gn f(y) dELv(y). Putting these

pieces together yields Eq. (7).
For the IPRW distance, we derive from Eq. (7) and the Fatou’s lemma that

PWY (s v) = /S WP (EYyp, ELv) do(E) < liminf WE(E Y piy Eyv;) do(E) = liminf PW? | (i, vi).

1——+o00 Sa.x i——+00
Since PW,, (1, v) and PW,, , (11i, ;) are both nonnegative, we take the p-th root of both sides of the above
inequality and have PW,, ; (p,v) < liminf; o PW,, 1 (1i, Vi)

For the PRW distance, we derive from Eq. (7) and the fact that the supremum of a sequence of lower semi-
continuous mappings is lower semi-continuous that

WZ}Q(M?”) — sup WP(E#ME#V) < hmmfPW (Mial/i)'

E€Sq,k

where the first equality holds true since the Wasserstein distance is nonnegative. Since PW, (u,v) and
PW, k(s, v;) are both nonnegative, we have PW,, (1, v) < liminf; 4o PW, k(s vs).

C Postponed Proofs in Subsection 3.2
In this section, we provide the detailed proofs for Theorem 3.4-3.8.

C.1 Preliminary technical results

To facilitate reading, we collect several preliminary technical results which will be used in the postponed proofs
in subsection 3.2.

Theorem C.1 (Tonelli’s theorem) if (X, A, u) and (Y, B,v) are o-finite measure spaces, while f : X x Y —
[0, +00] is non-negative measurable function, then

/){(/yf(x,y) dy) da:z/y(/xf(x,y) da;) dy:/)(xyf(g;,y) d(z,y).

The following proposition provides the state-of-the-art general bound for the Wasserstein distance between the
true measure and its empirical version in R?. Note that we do not assume any additional structures of the true
measure. Similar results can be found in many classical works, e.g., Fournier and Guillin (2015, Theorem 1), Weed
and Bach (2019, Theorem 1) and Lei (2020, Theorem 3.1). Since p > 1, we present the following results which
directly follows the proof of Lei (2020, Theorem 3.1).

Proposition C.2 Let p, € Z,(R?) and M, := M,(us) < +00. Then we have

Cl]»
EW, (fin, 1)) < BV (fin, 1)) P Sprg 0 @73 G~ (l0g(n)) 5, for all n > 1. 8)

where <, 4 refers to “less than” with a constant depending only on (p,q) and
2 if d=q = 2p,

Cpga=4 1 if “d#2pandq= J%” or “¢g>d=2p”,
0 otherwise.

The following proposition provides a bound for the covering number of Sy 1 in the operator norm of a matrix,
denoted by || - ||op . This is a straightforward consequence of the classical results on the covering number of the
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unit sphere in R¢ in Euclidean norm. For the proof details, we refer the interested readers to Niles-Weed and
Rigollet (2019, Lemma 4). For the background materials on the covering number, we refer the interested readers
to Wainwright (2019, Chapter 5). For the ease of presentation, we provide a formal definition of covering number
of Sq in || - |op as follows.

For any € € (0,1), the e-covering number of Sq 1 in || - ||op is defined by

N
N(dek,ﬁ, || . ||op) = inf {N eN: 3$1,£B2, ..., N € Sd,ka s.t. Sd,k - U B(I’Z,E)} R
i=1

where B(z,7) = {y € Sqi : ||y — z|lop < 7} is the ball of radius r > 0 centered at x € Sy, in the operator norm
of a matrix.

Proposition C.3 There exists a universal constant ¢ > 0 such that for all € € (0,1), the e-covering number of
Sak in || |lop satisfies that N(Sar, ¢, || - lop) < (cVke 1)

The following theorem (Lei, 2020) summarizes the concentration results assuming the Bernstein tail condition
under product measure. Indeed, let {X;};c},) be independent samples from probability measure y; on spaces &X;
and X! be independent copies of X; for all ¢ € [n]. Denote X = (X1,...,X,) and X( )= = (Xy,....X,.... X,)

which is identical to X except for X|. Let f: [/, X; — R be a function such that E[| f(X)|] < +o0, and define
D; = f(X) = f(X{;))

Theorem C.4 Suppose that there exists some a;, M > 0 so that E[|D;|¥ | X_;] < (1/2)02k!M*=2 for all k > 2.
Then the following statement holds,

t2

2030, 02 )+2tM>

P(/(X) — E(f(X)) > 1) < exp (—

The following theorem summarizes the concentration results assuming the Poincaré inequality under product
measure. We denote by ||V, f|| the length of the gradient with respect to the i*" coordinate.

Theorem C.5 (Corollary 4.6 in Ledoux (1999)) Denote by u" the product of 1 on @7 R¢ and p € 2(R?)
satisfies the Poincaré inequality (cf. Definition 3.4). For every function f on @™ R? satisfying E(|f(X)]) < +o0,
and "1 [V f(X)|I? < @? and maxi<;<, | Vi f(X)|| < B8 almost surely. Then the following statement holds true
for X ~ p™ that,

1 ([t
P(X) - B((X)) > 0) < exp (—emin { £, S 1),
where K > 0 only depends on the constant M in the Poincaré inequality.

C.2 Proof of Theorem 3.4

Note that p, € Z4(R?) and M, := My(pi.) < +oo. Fixing E € Sq, we have Ejpu, € 2,(R¥) and My(E%p,) <
M, < +00. Then Proposition C 2 1mphes that

’
$p.q.k

(EDVE (B fin Eju))) " Spgn” @060 (log(n)) ™5 forall n > 1.

Since Wy (Ejfin, Ejps) > 0 for any E € Sq ), and py € Py (R%), Theorem C.1 implies that

E[PWY (i, 11x)] =

/ Wy (B Fin, Epie) do(E)

— [ EVELR. By do(E),

Note that (pq.x = (. Where ¢, 4k is defined in Theorem 3.4. Moreover, p > 1. By the Jensen’s inequality, we
have /

E[PW, i (fin, )] < (B[PWE | (T, 11)]) /7. 9)
Putting these pieces together yields the desired result.
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C.3 Proof of Theorem 3.5

By the definition of PW,, i(fin, t«), we have

E[PWo,k (fin, 11x)] < sup EW, (Elfin, Ejgps)] +E Sup Wo(Eglin, Epi) — EDV,(Effin, Ep)]) | - (10)
d,k d,k

Using the same arguments for proving Theorem 3.4, we have

$p.q.
sup B, (Bl fin, Biits)] Spq @95 G0 (log(n)) ™5 for all n > 1. (11)
E€Sq k

The remaining step is to bound the gap E[supgeg, , Wy (Eflin, i) — E[Wp(ELfin, B4 p)])]. We first claim
that Wy (E%fin, Ejtx) — EDV,(ELfin, E4 )] is sub-exponential with parameters (20n/2=1/?, 2Vn=1/?) for all
E € Sq, if the true measure p, satisfies the projection Bernstein-type tail condition (cf. Definition 3.1). Indeed,
let f(X) = Wp(Ejfin, Ejps), we have

Di = f(X) = f(X{y) € Wy(Bjin, B4i,) < n™'/7 (| B3(X,) — BR(XD)])).
By the triangle inequality and using the projection Bernstein-type tail condition, we have

(2n=YPa)2 kN (2n =1/ PV ) k=2
2

E[|D* | X_i] < 20 /P Bxpyu[|X]M) < 24707 MPo? V> =

This implies that the condition in Theorem C.4 holds true with o; = 2n~'/?¢ and M = 2n~'/?V. Equipped
with Theorem C.4 yields that

t2
* * *
P (W (E#Mna E#M*) - E[WP(E#MTHE#M*)] Z t) S exXp (_80'277,12/17 + 4tVn1/p) .

For the simplicity, let Zg = W (E#,un, E;;u*) -EW, (E#,un, E;jﬁ,u*)]. Then we have E[Zg] = 0and P(Zg > t) <
exp(—t2/(80%n' =2/ + 4tVn~1/P)). This together with the definition of Zz and Wainwright (2019, Theorem 2.2)
yields the desired claim.

We then interpret {Zg}pes, , as an empirical process indexed by E € Sy and claim that there exists a random
variable L satistying E[L] < 4M, () so that |Zy — Zy| < LU — V|op for all U,V € Sy . More specifically, it
follows from the definition that

Zy —Zy = (Wp(U;;ﬁna U;M) - Wp(vﬁﬁn7 V#*,U/)) —E [Wp(U;;ﬁna U;M) - Wp(vﬁﬁn7 V#*,u)] .
Since the Wasserstein distance is nonnegative and satisfies the triangle inequality, we have

W, (U#,Um U;&/u) - Wp(vﬁtﬁna V#*ﬂ) = W (U#Nna U;é,u) - WP(U:%Z‘ZTM V#*,U') + WP(U;ZE/]’VH V;;Z,u) - Wp(vﬁtﬁm V#*H)

Putting these pieces together yields that

iy~ Zy < WUl Vi) + WUt Vi) + E DWp(Ufin. Vi) + Wy(Uppie. Vi )]
Since the Wasserstein distance is symmetrical, we have

Zy — Zy < Wy(Ullin, Viiin) + Wy (Ul pis, Vi) +E [Wp(U;ﬁn, Viitin) + Wy (Ul fix, V;,u*)} .
Therefore, we conclude that

|Zy — Zy| < Wp(U:;é,ana V#Hn) + Wp(U;;é,u*a V#*ﬂ*) +E [WP(U;ﬁna V;;ﬁn) + WP(U;?&#*’ V;l;ﬂ*)] :



Tianyi Lin*, Zeyu Zheng*, Elynn Y. Chen*, Marco Cuturi®”, Michael I. Jordan*

Let X ~ u, we have

|Zv — Zv|

IN

1/p
2 (B(I(U = V)X ) + < ZHU vxp) iE (

:M—‘

n l/p
Z (U — VX||”>
1 n 1/p 1 n 1/p
< U= Vllep 2<E(||X|p>>1/p+<n2|xi|p> +E (naninp)
i=1

i=1

LU = Vlop -

Note that Xi., = (Xi,...,X,) are independent and identically distributed samples according to py. By the
Jensen’s inequality and using the fact that ¢ > p > 1, we have

E[L] < 4(E(|[X|[")'/7 < 4(E(||X||*) "¢ = 4Mq (p).

Thus, by a standard e-net argument, we obtain that

E[ sup Zg] < 1nf { E[L] + 4an1/2_1/p\/10g(N(Sd,k,e, Il llop ) + 2Vn /P log(N(Sak, € || - llop ))}

E€Sq,k

Proposition C.3 shows that there exists a universal constant ¢ > 0 such that
vk
Log(N (Sa.16, - lop ) < dklog () .

Putting these pieces together and choosing € = v/kn~1/? (it is chosen to achieve the tight bound) yields that

Sp.q igf(; e+nt/27P | dklog <ﬁ>+n_1/”dklog <ﬁ>
€ € €

Spg nYEYP\/dE1og(n) +n~YPdklog(n).

E| sup Zg

E€Sa,k

Therefore, we conclude that

E

S (Wy(Byfin, Eyier) ~ B, (E#umE%eu*)])] S n/27HPdKlog(n) + 0~/ Pdk log(n).
d,k

This together with Eq. (10) and Eq. (11) yields the desired inequality.

C.4 Proof of Theorem 3.6

Using the same arguments in Theorem 3.5, we obtain Eq. (10) and Eq. (11). So it suffices to bound the gap
E[supges, , (Wp(ELfin, Ejps) — EW, (E#umE;u*)])} under different condition.

We first claim that W, (EL L, ELps) — EDV,(Ejfin, Ejpu.)] is  sub-exponential with —parameters

(VK /2n=1/?VP) (K/2)n='/P) for all E € Sy if the true measure j, satisfies the projection Poincaré inequality
(cf. Definition 3.2). Indeed, we consider X = (X3,...,X,) and X’ = (X71,..., X)) where X;, X! are independent

samples from EJ .. Let f(X) = Wy (Eyfin, Ejp.), we have E(|f(X)|) < +oo. By the triangle inequality, we
have

1/p
If(X) - F(X) <n”! (ZIIX Xll”) <n T || X — X'|.

This implies that the following statement holds almost surely,

ZHVJ(X)HQ <n~ 75 and max Vi f(X)]] <n~7, almost surely.

1<i<n



On Projection Robust Optimal Transport: Sample Complexity and Model Misspecification

In addition, the probability measure EJ i, € P(R¥) is assumed to satisfy the Poincaré inequality. Equipped
with Theorem C.5 yields that

N N . t t2
P (WP(E;;EIU’TH E;;/.L*) - E[WP(E%E/’[’TH E%/:M*)] Z t) S exp <_K min { n_l/p7 n_2/(2vp) }) )

For the simplicity, let Zr = Wy (ELfin, B} ps) —EDV, (Ejfin, Ej 1x)]. Then we have E[Zp] = 0 and P(Zg > t) <
exp(— K~ min{n'/Pt, n?/(VP)¢2}). This together with the definition of Zx and Wainwright (2019, Theorem 2.2)
yields the desired claim.

Using the same argument in Theorem 3.5, we can interpret {Zg}pes,, as an empirical process indexed by E €
Sa,i and show that there exists a random variable L satisfying E[L] < 4M,(p4) so that |Zy — Zy | < LI|U = V|op
for all U,V € Sy . By a standard e-net argument, we obtain that

Bl sup Z5] < inf {BILI+ VIR0 flog(N(Banc |- lop) + (K/2 o8N S| o)}
d,k

Combining Proposition C.3 and choosing € = vkn~1/? (it is chosen to achieve the tight bound) yields that

E| sup Zg
E€Sq,k

<, o infle+n P |dklog vk +n~YPdklog Vk
~Pd €

€
Spg 1Y@ Jdklog(n) + n/Pdklog(n).

Therefore, we conclude that

E l sup (Wh(E}fin, B i) — E[WP(E;;?”,E;M*)])] Spq YYD Jdklog(n) + n~/Pdklog(n).
E€Sq,k

This together with Eq. (10) and Eq. (11) yields the desired inequality.

C.5 Proof of Theorem 3.7

Since the arguments in this proof hold true for both IPRW and PRW distances, we denote W = PW,, ;. or
W = PW,, for short. Let f(X) = W (fin, t4x), we have

Di = f(X) = f(X{)) < W (fin, i) <n 7P ( sup 1B (Xi) — E;(Xi)H) :

By the triangle inequality, we have

E[|D;i* | X_;] <2"n /P (E sup X% .
EES(L}C,XNE;/J‘

Since the true measure p, satisfies the Bernstein-type tail condition (cf. Definition 3.3), we have

(2n~1/Pa)2 k) (2n PV k2
2

E[|Di|F | X_i] < 28 'n=F/po?plvh—2 =

This implies that the condition in Theorem C.4 holds true with o; = 2n~Y/Po and M = 2n~Y/?V. Equipped
with Theorem C.4 yields the desired inequality.

C.6 Proof of Theorem 3.8

Since the arguments in this proof hold true for both IPRW and PRW distances, we denote W = PW,, , or
W = PW, for short. We consider X = (X1,Xo,...,X,,) and X' = (X{,X5,...,X]) where X;, X/ are
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independent samples from py. Let f(X) = W (fin, pi+), we have E(| f(X)|) < 4+o0. By the triangle inequality, we
have

n l/p
[F(X) = f(X)[ <nP (Z [ X —X{Hp) <n Fr|X - X
i=1

This implies that the following statement holds almost surely,

SIViF(X)P<n 3% and  max |[Vif(X)| <n 5.

i=1 ==
In addition, the true measure i, satisfies the Poincaré inequality (cf. Definition 3.4). Equipped with Theorem C.5
yields the desired inequality.

D Postponed Proofs in Subsection 3.3

In this section, we provide the detailed proofs for Theorem 3.9-3.11 and Theorem A.1-A.2. Our results are
derived analogously to the proof in Bernton et al. (2019) for the estimators based on Wasserstein distance and
the proof in Nadjahi et al. (2019) for the estimators based on sliced-Wasserstein distance.

D.1 Preliminary technical results

To facilitate the reading, we collect several preliminary technical results which will be used in the postponed
proofs in subsection 3.3.

Theorem D.1 (Theorem 2.43 in Aliprantis and Border (2006)) A real-valued lower semi-continuous
function on a compact space attains a minimum value, and the nonempty set of minimizers is compact. Sim-
tlarly, an upper semicontinuous function on a compact set attains a mazimum value, and the nonempty set of
mazimaizers is compact.

Definition D.1 (epiconvergence) Let X be a metric space and {f;}ien be a sequence of real-valued function
from X to R. We say that the sequence {f;}icn epiconverges to a function f : X — br if for each x € X, the
following statement holds true,

ljerinf fi(x;) > f(x) for every sequence {z;};en such that z; — =,
1—>+00

limsup f;(x;) < f(x) for some sequence {z;};en such that z; — x.
1—+o00

Proposition D.2 (Proposition 7.29 in Rockafellar and Wets (2009)) Let X be a metric space and
{fi}ien be a sequence of real-valued function from X to R with a lower semi-continuous function f : X — R.
Then the sequence { fi}ien epiconverges to f if and only if

e _ S c
lllinﬁg(;g}”( fi(z)) > Ilg}f( f(x) for every compact set K C X,

lim sup(sup f;(z)) < sup f(x) for every open set O C X.
i—+oco x€O z€0

Recall that d-argmin,c, f = {z € & : f(z) < infyex f + 0} for a generic function f : & — R. The following
theorem gives asymptotic properties for the infimum and J-argmin of epiconvergent functions and thus a standard
approach to prove the existence and consistency of the estimators.

Theorem D.3 (Theorem 7.31 in Rockafellar and Wets (2009)) Let X be a metric space and {f;}ien be
a sequence of function which epiconverges to a lower semi-continuous function f with inf.cx f € (—o00,+00).
Then we have the following statements,

1. inf ex fi = infoex f if and only if for every § > 0 there exists a compact set B C X and N € N such that
infoep fi <infieex fi +0 for alli > N.
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2. limsup,_, , o (0-argmin,cy fi) C d-argmin,cy f for any 6 > 0 and limsup,_, . (0;-argming,cy fi) C
argmin, ¢ y f whenever d; | 0.

3. Assume that infycx fi — infpex f, there exists a sequence 0; | 0 such that §;- argmin, . f; — argming» f.
Conversely, if argmin,cy f # 0 and if such a sequence exists, then infycx f; — infrcx f.

The following theorem summarizes the well-known Skorokhod’s representation theorem.

Theorem D.4 (Skorokhod’s representation theorem) Let {un}nen be a sequence of probability measures
on a metric space S such that p, converges weakly to some probability measure poo on S as n — 0o. Suppose
also that the support of lso is separable. Then there exist random variables X, defined on a common probability
space (2, F,P) such that the law of Xy, is pn for all n (including n = oo) and such that X, converges to Xoo
almost surely.

The following theorem presents the classical results which lead to a standard approach for proving the measura-
bility of the estimators. Note that the projection proj(D) = {z € X : Iy € Y,s.t.(x,y) € D} foreach D C X x )
and the section D, = {y € Y : (z,y) € D} for each = € proj(D).

Theorem D.5 (Corollary 1 in Brown and Purves (1973)) Let X,) be complete separable metric spaces
and f be a real-valued Borel measurable function defined on a Borel subset D of X x Y. Suppose that for each
x € proj(D), the section D, is o-compact and f(x,-) is lower semi-continuous with respect to the relative topology
on D,. Then

1. The sets G = proj(D) and I = {x € G : Iy € D, s.t. y = argmin_.y, f(x, 2)} are Borel.

2. For each € > 0, there exists a Borel measure function ¢, satisfying, for x € G that,

=infyeq f(z,y), rel,
flx,0e(x)) ¢ <e+infyeq f(z,y), if « ¢ Iand inf,cq f(z,y) # —oo,
< —e1 x ¢ I and infyeq f(z,y) = —occ.

To show that the MEPRW estimator is measurable, we establish the lower semi-continuity of the expectation of
empirical PRW distance in the following lemma.

Lemma D.6 The expected empirical PRW distance is lower semi-continuous in the usual weak topology. If
the sequences {p;}ien, {Vitien C P(RY) satisfying that p; = p € PR?Y) and v; = v € P(R?), we have
E[PWp. i (1, V)] < liminf; 4 oo E[PWp (i, Vim)], where Uy, = (1/m) Z;’;l Oz, fori.i.d. samples Z1., accord-
ing to v and {U; m }ien are defined similarly.

D.2 Proof of Theorem 3.9

We first prove that argming.g PWp i (kix, o) # 0. Indeed, by Assumption 3.2 and Theorem 3.3, the mapping
0 — PWp i (, i) is lower semi-continuous. By Assumption 3.3, the set ©,(7) is bounded for some 7 > 0. By
the definition of inf, there exists 8 € © such that PW, i (s, o) = infoco PW,p i (tix, pto) + 7/2. This implies
that ¢ € ©,(7) and O,(7) is nonempty. By the lower semi-continuity of the mapping 6 — PW,, i (itx, tg), the
set ©,(7) is closed. Putting these pieces together yields that ©,(7) is compact. Therefore, we conclude the
desired result from Theorem D.1.

Then we show that there exists a set £ C Q with P(E) = 1 such that, for all w € E, the sequence of mappings
0 — PW, i (lin(w), o) epiconverges to the mapping 6 — PW, i (p«, o) as n — +o00. Indeed, we only need to
prove that the conditions in Proposition D.2 hold true.

Fix K C © as a compact set. By the lower semi-continuity of the mapping 6 — PW,, ; (fin(w), o) (cf. Assump-
tion 3.2 and Theorem 3.3), Theorem D.1 implies that

glélif( Pwp,k(ﬁn (w)a ﬂ@) = ,PWp,k(//zn (w), PJQ,L)
for some sequence 0,, = 0,,(w) € K. Thus, we have

liminf inf PWp i (fin(w), o) = lim inf PWp, . (tin (), po, ).



Tianyi Lin*, Zeyu Zheng*, Elynn Y. Chen*, Marco Cuturi®”, Michael I. Jordan*

By the definition of liminf, there exists a subsequence of {0, },en such that PW, i (lin(w), pe, ) converges to
liminf,, 4o PW, i (fin(w), ptg, ) along this subsequence. By the compactness of K, this subsequence must have
a convergent subsubsequence. We denote this subsubsequence as {0y, } jen and its limit as € K. Then

lim inf PWy, i (fin (@), po,) = Him PWyp(fin, (@), bo,,)-
Since w € FE where P(E) = 1, Assumption 3.1 and 3.2 imply fi,,(w) = p. and po,, = g
These pieces together with the lower semi-continuity of the PRW distance (cf. Theorem 3.3) yields that
limj o0 PWp i (fin, (W), 19,,,) = PWp k(e wg). Putting these pieces together yields that

S =
ngl}rrolg 012}{( PWp k(,un( ),,U,g) ftl Glglf( PWp,k(M*aﬂ@)'

Fix O C © as an arbitary open set. By the definition of inf, there exists a sequence 0}, = 0;,(w) € O such that

P -_— n
PWop k(s g1 ) — infoco PWy i (pis, o). In addition, infoeo PWp i (fin(w), o) < PWp k(fin(w), pe: ). Thus,

we have

lim sup mf PW,, k(fn (W), o) < limsup PWp i (fin(w), f1o:)

n~>+oo n—-+4oo
< limsup PWy i (in (w), tts) + llmsupPWp k(fhxs oy )
n—-+oo n—-+oo
Since w € E where P(E) = 1, Assumption 3.1 implies limsup,, ., . PWp i (fin(w), ptx) = 0. By the defini-
tion of 0, limsup,, ., PWy x(pix, ptor,) = infoco PWy x(pix, o). Putting these pieces together yields that
limsup,,_, ;o infoco PWp,k(1in (W), o) < infoeo PWip i (ks p16)-

Proposition D.2 guarantees that there exists a set £ C Q with P(E) = 1 such that, for all w € E, the sequence
of mappings 0 — PWp, i(fin(w), tte) epiconverges to the mapping 8 — PW,, k(1. pto) as n — +oo. Then the
second statement of Theorem D.3 implies that

lim sup argmin PW,, k(lin (w), pto) C argmin PWp, i (s, to)- (12)
n—+oo 0eO 0co

The next step is to show that, for every § > 0, there exists a compact set B C © and N € N such that

infge g PWp i (fin(w), pe) < infgee PWp i (1in(w), ug) + d. In what follows, we prove a stronger statement which

states that the above inequality holds true with § = 0. Indeed, by the same reasoning for the open set case in

the proof of epiconvergence, we have

lim sup inf PWp k(fin(w), 1) < Inf PWy i (pix, pio)-

n—+oo 0

By Assumption 3.3 and using previous argument, ©,(7) is nonempty and compact for some 7 > 0. The above
inequality implies that there exists nq(w) > 0 such that, for all n > nq(w), the set {6 € © : PW,, 1, (fin(w), ug) <
infgree PWp ks (e, tor) + 7/2} is nonempty. For any 6 in this set and let n > nq(w), we have

PWpk (e o) < PWp k(s in(w)) + lnf PW;D i (ke f10) +

l\')\*\

By Assumption 3.1, there exists na(w) > 0 such that, for all n > ny(w), we have

PWp,k (fhas Fin (@) < Wy (pia, fin () <

|3

Putting these pieces together yields that, for all n > max{ni(w),na(w)}, we have PW, (i, pg) <
infopee PWp k(pix, fto) + 7. This implies that, for all n > max{ni(w),ns(w)} that,

{660 P00, ) < o PIyaiono) + 5 € 0.0

Therefore, we have infgece PW,y i (lin (W), o) = infgco, (r) PWp,k(lin(w), pg). This together with the compactness
of ©,(7) yields the desired result.
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The first statement of Theorem D.3 implies that

30 PV (in(), o) = Jnf PVt o), a5 m = +oc. (13)

By Assumption 3.2 and Theorem 3.3, the mapping 8 — PW,, i (Lin(w), fe) is lower semi-continuous. Theorem D.1
implies argmingcg PWh i (lin(w), o) are nonempty for all n > max{ni(w),ns(w)}. Together with Eq. (12)
and (13) yields the desired results.

Finally, we remark that these results hold true for d,-argmingcg PW, i (fin, t¢) with &, — 0. For Eq. (12)
and (13), the analogous results can be derived by using the second and third statements of Theorem D.3. To show
that d,-argmingeg PWp i (Jin, tte) is nonempty, we notice it contains the nonempty set argmingcg PWp (i, to)-

D.3 Proof of Theorem 3.10

Following up the same approach used for analyzing Theorem 3.9, it is straightforward to derive that
argmingcg PWy. i (s, t9) # 0. Then we show that there exists a set £ C Q with P(E) = 1 such that, for

all w € B, the sequences 0 +— E[PW,, ¢ (fin(w), Ho,m(n)) | X1:n] epiconverges 0 +— PW,, i (jix, p1g) as n — +oo.
Indeed, it suffices to verify the conditions in Proposition D.2.

Fix K C © as an arbitrary compact set. By Assumption 3.2 and Lemma D.6, the mapping 6 +—

E[PWopk (Fin (W), Ho,m(n)) | X1:n] is lower semi-continuous. Then Theorem D.1 implies that

Jnf E[PWp k(7in (@), lom(n) | X1in] = BIPWp e (fin (@)s Fig, m(m)) | X1:n]

for some sequence 6,, = 0,,(w) € K. Thus, we have

liminf inf B [PW, i (fin (), fig,m(n)) | X1:n] = Liminf E [PW,, i (i (W), He,, m(n)) | X1:n] -

n—+oo e K n——4oo

Following up the same approach used in the proof of Theorem 3.9, there exists a subsequence of {0, }nen, denoted
by {0, }jen with the limit 6 € K, such that

lim inf B[PWp, 1, (1 (w); o, m(m)) | X1:n] = jljl}rlocE[PWp,k(ﬁnj (@), 0, m(n;)) | X1,
> hmlnf]E[PWp,k(ﬁnJ (w)vl’mn.ﬂ - HmsupE[Pwnk(uGW7//~j'\9n,.,m(n]~)) | Xl:n]-]-
J—+oo J j—+oo J 3J
Since w € FE where P(E) = 1, Assumption 3.1 and 3.2 imply f[i,,(w) = ps and po,, = g

These pieces together with the lower semi-continuity of the PRW distance (cf. Theorem 3.3) yields that
liminf;_, 4 PWp,k(ﬁnj(w),,ugnj) > PWyk(tis, ptg). By Assumption 3.4 and using 6,, — 6, we have

limsup; o, E[PWp,k(Menj , ﬁgnj ;m(n;)) | X1:n;] — 0. Putting these pieces together yields that

ngl_;l.{g‘ Olglf( E[pwp,k (/:Zn (W), ﬁ@,m(n)) l Xl:n] > ‘nglf( PWp,k (/,[,*’ MG) .

Fix O C O as an arbitary open set. By the definition of inf, there exists a sequence ¢/, = 6, (w) € O such that
PWp k(s o1 ) — infoco PW,y k (1, pto). In addition, we have

gggE[PWp,k(ﬁn(w)aﬁ@,m(n)) | Xl:n] < E[Pwp,k(ﬂn(w)a ﬁehm(n)) | Xl:n]~

Thus, we have

hmsup incf)E[PWp,k(ﬁn(w)»ﬁé,m(n)) ‘ Xl:n} < hmsupE[Pwp,k(ﬁn(w)aﬁ@;,m(n)) | Xl:n]

n—+oo 0€ n—s+o0o
< lim sup ,PW,DJC(//ZTL(W)? :U/*) + lim sup ,PWPJC(/J‘*? Me’n) + lim SupE[PWP,k(MG;” ﬁ@;,m(n)) | Xl:n]~
n—-+oo n—-+oo n—-+oo
Since w € E where P(E) = 1, Assumption 3.1 implies limsup,,_, . PWpi(fin(w), ps) = 0. By the def-
inition of ¢}, we have limsup,,_, . PWy r(tis, ptor) = infgeo PWp i (ix, tt9). Using Assumption 3.4 and
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lm;_, 4o O, = 0, we have limsup,,_,, . E[PW, (e, o, mn)) | X1:m] = 0. Putting these pieces together
yields that limsup,, ., . infoco E[PWy x(fin(w), Ho,m(n)) | X1:n] < infoco PWy x(pix, po)-

Proposition D.2 guarantees that there exists a set £ C Q with P(E) = 1 such that, for all w € E, the sequence
of mappings 0 — E[PW, k. (in(w), fg,m(n)) | X1:n] epiconverges to the mapping 6 — PWy, r (s, o) as n — +oo.
Then the second statement of Theorem D.3 implies that

lim sup argmin E[PW, 1 (in (), ig,im(n)) | X1n] C argmin PWy it o). (14)
n—+oco €O €O

The next step is to show that, for every § > 0, there exists a compact set B C © and N € N such that
infge g E[PW)p i (Tin (W), fig,mmn)) | X1:n] < infoece E[PW) i (in (W), Ho,m(n)) | X1:m] + 0. In what follows, we prove

a stronger statement which states that the above inequality holds true with § = 0. Indeed, by the same reasoning
for the open set case in the proof of epiconvergence, we have

limn sup inf BPWy(7n (), Fom) | Xia] < 0k PPy (1, 10).

n—+4oc 0€

By Assumption 3.3 and using previous argument, ©,(7) is nonempty and compact for some 7 > 0. The
above inequality implies that there exists nj(w) > 0 such that, for all n > nj(w), the set {§ € © :
E[PWp i (fin (W), o, mn)) | X1:m] < inforee PWp i (pix, por) + 7/3} is nonempty. For any 6 in this set and let
n > ni(w), we have

R -~ PR— ~ . PR— T
PWp,k(N*a M@) < PWp,k(N*a ,un(w>) + E[Pwp,k(ﬂev Me,m(n)) | Xl:n] + 912(2 PWp,k(M*7 MB) + g

By Assumption 3.1, there exists na(w) > 0 such that, for all n > ny(w), we have

. . T
PWop k(e i (W) < Wi (e, fin(w)) < 3
By Assumption 3.4, there exists nz(w) > 0 such that, for all n > n3(w), we have

E[Pwp,k(ﬁe,m(n)aNG) | Xl:n] S E[Wp(ﬁG,m(n)aue) ‘ Xl:n] S

Wl

Putting these pieces together yields that, for all n > max{n;(w),n2(w),n3(w)} that,
PWop k(s p1g) < Gllel(f_) PWop ke (txs o) + T

This implies that, for all n > max{n;(w),n2(w),n3(w)} that,

T

{0 €0: E[Pwp,k(ﬁn(w)v,ﬁ'&m(n)) | Xl:n] < 91/2% ,PWp,k:(,U'*a ,LLG’) + 3} - @*(7')-

Therefore, we have infoee E[PW,y i (fin(w), fig,m(n))| X1:m] = infoco, (r) E[PWp k (fin(w), fig,m(n)) | X1:m]. This to-
gether with the compactness of ©,(7) yields the desired result.

The first statement of Theorem D.3 implies that

elggE[Pka(ﬁn(w)7ﬁ6,m(n)) | Xl:n] — ngg ,PWp,k:(/f'ﬂ ,u/0)7 as n — +00. (15)

By Assumption 3.2 and Lemma D.6, the mapping 6 — E[PW, i (iin(w), g,mn)) | X1:n] is lower semi-
continuous. Theorem D.1 implies argmingeg E[PW, ¢ (fin (W), fo,m(n)) | Xi:m] are nonempty for all n >
max{n; (w),na2(w),ns(w)}. Together with Eq. (14) and (15) yields the desired results.

Finally, we remark that these results hold true for d,-argmingcg E[PW) i (fin(w), g mmn)) | X1:m] with 6, —
0. For Eq. (14) and (15), the analogous results can be derived by using the second and third statements of
Theorem D.3. To show that d,-argmingeg E[PW, & (fin(w), Ho,m(n)) | X1:] is nonempty, we notice it contains

the nonempty set argminge g E[PWp k (1in(w), 10, mn)) | X1:n]-
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D.4 Proof of Theorem 3.11

We first prove that argmingcg PWp k(fin, o) # 0. Indeed, by Assumption 3.2 and Theorem 3.3, the mapping
0 — PW,, k(fin, f0) is lower semi-continuous. By Assumption 3.5, the set ©,,(7) is bounded for some 7,, > 0. By
the definition of inf, there exists 6, € © such that PW,, x(fin, pe ) = infgee PWp i (lin, pto) + 7 /2. This implies
that 0/, € ©,,(7) and ©,,(7) is nonempty. By the lower semi-continuity of the mapping 6 — PW),, k. (fin, i1g), the
set ©,(7) is closed. Putting these pieces together yields that ©,(7) is compact. Therefore, we conclude the
desired result from Theorem D.1.

Then we show that the sequences 6 +— E[PW, (lin, lo,m) | X1:n] epiconverges to 8 — PWp p(fin, o) as
m — +o0o. Indeed, it suffices to verify the conditions in Proposition D.2.

Fix K C © as an arbitrary compact set. By Assumption 3.2 and Lemma D.6, the mapping 6 +—
E[PWp.k(Ein, Bo.m) | X1.n] is lower semi-continuous. Then Theorem D.1 implies that

eigif(E[PWp,k(ﬁnv//I@,M) | X1:n] = E[PWyp i (Fin, Ho,.,m) | X1:n]
for some sequence 6,, € K. Thus, we have

liminf inf E [PWp k(B Bo.m) | X1 n} = liminf E [PW,) ik (Bns oo, m) | X1 n] )

m——+oo e K m—+oo

Following up the same approach used in the proof of Theorem 3.9, there exists a subsequence of {0} mens,
denoted by {0, } jen with the limit 6 € K, such that

};IE_E;EE[PWP k(Hns Ho,m) | X1m] = ]ETOOE[PWP k(l”"”“l’(‘em me) | X1:n]
> liminf E[PW, k(fin, pe,, )] — limsup E[PW, (uem ,,u@m omy) | Xim].
J—rtoo j—+4oo

Assumption 3.1 and 3.2 imply fi,, = . and 1e,,, = Hg- Together with the lower semi-continuity of
the PRW distance yields that liminf; | Wp,k(ﬁm/lemj) > PW,k(fin, pg). By Assumption 3.4 and
using 0, — 0, we have limsup; ,, E[Wp,k(ugmj,ﬁgmj,mj) | X1, = 0. Thus, we conclude that
lim infy, 40 E[Wp,k(ﬁnaﬁem,m) | X1.n] > infpex Piwpyk(ﬁm 10)-

Fix O C © as an arbitary open set. By the definition of inf, there exists a sequence ), € O such that
PWy i (fin, por, ) — infgeo PWp i (lin, pe). In addition, we have

Hilelcf)E[PWp,k(ﬁmﬁﬁ,m) | X1:m] < E[Pwp,k(ﬁmﬁﬁgn,m) | Xi:n].

Thus, we have

limsup inf E[PW, k(fin, o.m) | X1.n] < lim sup E[PW,, & (fin, flor, .m) | X1:n]

m——+oo 0€EO m——+o0o

< limsup PWp,k(ﬁ’l’H ﬂ@;n) + lim SupH":[KPVVch(,UG;L ; ﬁ@;n,m) | Xl:n]-
m——+00 n—+o0

By the definition of ;,, we have limsup,, ., .. PWp i (lin, po;,) = infgeo PWp i (1in, p19). Using Assumption 3.4
and lim;_ o0 0, = 6, we have lim SUD,, s 4 oo E[PWp k(pte: sl m) | X1:n] = 0. Putting these pieces together
ylelds that lim SUPsp— 400 lnfﬂeO E[Pwp,k(un» ﬂG,m) | Xl:n] < inf&GO PWp,k(ﬁna ,U,g).

Proposition D.2 guarantees that the sequence of mappings 6 +— E[PW,, (lin, o,m) | X1:n] epiconverges to the
mapping 6 — PWp, ;(fin, ) as m — +oo. Then the second statement of Theorem D.3 implies that

lim sup argmin E[PW,, k. (in, lio.m) | X1.n] € argmln PWp (T, o). (16)
m——+oo 0cO
The next step is to show that, for every § > 0, there exists a compact set B C © and N € N such that
infoe g E[PWp i (fin, fig.m) | X1:n] < infoco E[PWp .k (Tin, fig.m) | X1.n] + J. In what follows, we prove a stronger
statement which states that the above inequality holds true with § = 0. Indeed, by the same reasoning for the
open set case in the proof of epiconvergence, we have

lim sup 1nf E['PWP k(s Bo.m) | X)) < 1nf PWp7 (T 1)-

n—+oco 0€O
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By Assumption 3.5 and using previous argument, ©,,(7) is nonempty and compact for some 7 > 0. The above

inequality implies that there exists m; > 0 such that, for all m > my, the set {# € © : E[PW, k(fin, flo,m) |
Xi.n] < infgee PWp i (fin, o) + 7/2} is nonempty. For any 6 in this set and let m > m;, we have

[ ~ P ~ . PR ~ ’r
PWp k(s 10) < EPWy 1(Fons 10) | Xca] + 108 PWy (s 10) + .

By Assumption 3.4, there exists mo > 0 such that, for all m > mso, we have

E[Pwp,k(,a&maua) | Xl:n] S E[Wp(ﬁe,nuﬂG) | Xl:n] S

N[ 3

Putting these pieces together yields that PW,, i (1in, po) < infgree PWp i (fin, po) + 7 for all m > max{mq, mo}.
This implies that, for all m > max{mi, ms} that,

T

{00 Py i) | X1a] < il PP o) + 5 b € 04(0),

Therefore, we have infgce E[PWp k. (fin, fio,m)| X1:n] = infgco, () E[PWp k(fin, fig,m)| X1:n]. This together with
the compactness of ©,,(7) yields the desired result.

The first statement of Theorem D.3 implies that

Glg(gE[PWp,k(ﬂn7N9,m) | Xl:n] — Glg(g PWp,k(Mn7,“/0)7 as m — +00. (17)

By Assumption 3.2 and Lemma D.6, the mapping 6 — E[PW),, i (fin, lo.m) | X1:n] is lower semi-continuous.
Theorem D.1 implies argmingcg E[PW,, i (fin, fig,m) | X1:n] are nonempty for all m > max{mi,mo}. Together
with Eq. (16) and Eq. (17) yields the desired results.

Finally, we remark that these results hold true for §,-argming.g E[PW), i (fin, fto,m) | X1:n] with §,, — 0. For
Eq. (16) and (17), the analogous results can be derived by using the second and third statements of Theorem D.3.

To show that 0,-argmingcg E[PW,, i (fin, lo,m) | X1:n] is nonempty, we notice it contains the nonempty set
argminee@ E[Pwp7k(ﬁnaﬁ9,m) | Xl:n]~

D.5 Proof of Lemma D.6

Since v; = v € Z(R?) and R? is separable, the Skorokhod’s representation theorem (cf. Theorem D.4) implies
that there exists m sequences of random variables {{ZF};cn, k € [m]} and m random variables {Z*, k € [m]}
such that the distribution of ZF is v;, the distribution of Z* is v and {ZF};en converges to Z* almost surely for
all k € [m)].

Suppose that 7; ., = (1/m)(>-4-, Ozx) and v, = (1/m)(>_p, Z%), we proceed to the key part of the proof and
show that {7; m, }ien weakly convergés to Up,. Indeed, it suffices to consider the deterministic case where 7; ,, =
(1/m)(3o=; 0.¢) and D = (1/m) (350, 2%) where {{zF};en, k € [m]} and {2*,k € [m]} are all deterministic
such that lim; 4o (maxgepm [|2F — 2%||) = 0. Since the Wasserstein distance metrizes the weak convergence
(cf. Theorem B.4), we only need to show that lim;_, 4 Wa(U; m, Um) = 0. By the definition of the Wasserstein
distance, {;m }ien and Up,, we have W3 (Ui, Um) < maXpepm |28 — 2¥||2. Putting these pieces together yields
that {U; m }ien weakly converges to 7y, almost surely.

Finally, we conclude from the lower semi-continuity of the PRW distance (cf. Theorem 3.3) and the Fatou’s
lemma that

E[PW,p. k(14 V)] < E llim_gnf PWop ke (1is Vi) | < Uminf E[PW,, (i, Uim)]-
11— 1+00

1—+00

This completes the proof.

D.6 Proof of Theorem A.1

Using Assumption 3.2 and Theorem 3.3, the mapping (p, 0) +— PW,, x (1, i19) is lower semi-continuous in P(R?) x
O. It remains to verify that the conditions in Theorem D.5 are satisfied.
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We notice that the empirical measure ji,,(w) depends on w € 2 only through X;., € ®?=1Rd. Thus, we can write
fin(w) = fin(x) as a function in ®7_;R%. Let D = (®7_,R?) x O, it is a Borel subset of (27, R?) x R. Since R?
is a Polish space, R? x ... x R? endowed with the product topology is a Polish space. D, is o-compact for any
x € proj(D) since D, C © and O is o-compact.

Define f(z,0) = PW, k(fin(x), 1), we claim that f is measurable on D and f(z,) is lower semi-continuous
on D,. Indeed, we have shown that the mapping (u,0) — PW, (1, t1g) is lower semi-continuous and thus
measurable in P(R%) x ©. The mapping = + Ji,,(z) is measurable in ®”_;R¢. Since the composition of measurable
functions is measure, f is measurable on D. Moreover, for any z € ®7_;R?, f(x,-) is lower semi-continuous on
D, since the mapping (i, 0) — PW,, (i, tg) is lower semi-continuous on D. Putting these pieces together yields
the desired results.

D.7 Proof of Theorem A.2

Using Assumption 3.2 and Lemma D.6, the mapping (v, 8) — E[PW,, (v, lig,m) | X1.,] is lower semi-continuous in
P(R?) x ©. Then the proof can be done similarly to the proof of Theorem A.1 using this result and Theorem D.5.

E Postponed Proofs in Subsection 3.4

In this section, we provide the detailed proofs for Theorem 3.12 and Theorem A.3. Our derivation is the
refinement of the analysis in Bernton et al. (2019) for minimal Wasserstein estimators.

E.1 Preliminary technical results

To facilitate reading, we collect several preliminary technical results which will be used in the postponed proofs
in subsection 3.4.

Let (X, - |lx) be a normed linear space and 6 — fy be a map from a subset © of R? into X. The statistical
information comes from a sequence { f,, }»en of random elements of X', each of which is assumed to be measurable
with respect to the o-algebra generated by the balls in X'. In some sense f,, should converge to fy, where 0, is
some fixed (but unknown) point in the interior of ©. To avoid the abuse of notation, we use K (z, /) here.

Theorem E.1 (Theorem 4.2 in Pollard (1980)) Suppose the following assumptions hold:
1. infogn || fo — fo,|lx > 0 for every neighborhood N of 0.

2. 0 — fy is norm differentiable with non-singular derivative Dy, at 0,.

3. There exists a random element G, € X for which G, = /n(fn — fo.) = G, in the sense for the metric
induced by the norm | - || x.

Then the limiting distribution of the goodness-of-fit statistic is given by

\/5912(1; [ fr = follx = Inf |G — (0, Do) x.
Let Ky(z,8) ={0: ||x — (0, Dy, }||x < infgco ||z — (0, Dy, )||x + B} and M, is defined by

My = {6 €61 = follx < Jut 15— forllx + m/ Vi)

where 7,, > 0 is any sequence such that P(n,, — 0) = 1 and M,, is nonempty.

Theorem E.2 (Theorem 7.2 in Pollard (1980)) Under the conditions of Theorem E.1, there exists a se-
quence of real number B, | 0 satisfying

P, (M, C 0, + nil/zKl(Gn,ﬁn)) — 1, asn— +oo.

Moreover, for any € > 0, we have P(dy(K1(G},0), K1(Gn, Bn)) < €) — 1 as n — +o0.
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E.2 Proof of Theorem 3.12

First, we show that M,, C A with (inner) probability approaching 1 as n — +o0. Indeed, with inner probability
approaching 1, we have

argmin PW1 1 (Jin, pte) € argmin PWy 1 (fi, tg)-
9o 9co

By the definition of PW; 1, we conclude that any minimizer of Hﬁang ||, will be included in the set of minimizers
of || Fx— Fy||, with inner probability approaching 1. By Assumption 3.8, the minimizer of || F, — Fy|| , is unique and
N is the neighborhood of this minimizer. Putting these pieces together yields that the set infoce PW1 1 (fin, tto)
is contained in the set A; with (inner) probability approaching 1 as n — +oo. By the definition of M, we
achieve the desired result.

Then we make three key claims. First, we claim that M, C ©, with (inner) probability approaching 1 as
n — 400, where 0, is defined by

4y/n|E, — F, M
@n:{ee(a;ue—e*n@g VollFn ”L+”}.

e/
Indeed, for any 6 € N7, we derive from the triangle inequality that
|Eo = Folle = 1B = Fo.ll > | Fo = Fillz = |Fo, = Fullz = 20|F — Ful1-
Using the definition of PW;j ; together with Assumption 3.8, we have
1B = Folle = 1B = Fo, |l > e.ll0 = b.llo — 2| B = Bl (18)

Since M,, € N; with (inner) probability approaching one, Eq. (18) holds true for any # € M,, with (inner)
probability approaching one. Moreover, by the definition of M,,, we have 6 € M, satisfies

|F — Follp < gilléfépwl,l(ﬁmﬂe/) + LT;L <||Fn — Fo, |l + T (19)

vn vn

Combining Eq. (18), Eq. (19) and the definition of ©,,, we conclude that § € ©,, if § € M,, with (inner) probability
approaching 1. This completes the proof the first claim.

Second, we claim that argming ¢, |G — (V(0' = 6.), Dy, )| € N1 NO,, with (inner) probability approaching
1 as n — +o00. Indeed, by the definition of G,,, we have

|G — (V1(8' = 6.), Do,) | = V/nl|F = Fo, = (0 = 6, Dg.) |1

For the simplicity of notation, we let Ry = Fp — Fp, — (0 — 0,, Dy,). By Assumption 3.6, we have ||Ry||r =
0(]|6 — b4«|le)- By the definition of N7, we have |Rgl||r. < (1/2)c.||0 — 6,]le. Therefore, for any 6 € N7, we have

IFy = Fo, = (0= 0., Do) > [|Fy— Follz — |[Rollz

Eq. (18) ~
> F = Fo e+ (1/2)ed|f — bulle — 2[| Fr — Fi[ 1
This implies that, for any 6 € N7 \ ©,,, we have

E —F, —(0— > ||E, — > [, —F, — (0 — .
1 = Fo, =0 = 0 Dol 2 15— Follz 2 inf | [|Fn = Fo, — (0" = 0., Do, )|

This completes the proof of the second claim.

Thirdly, we claim that there is an uniform control over the difference between 6 — /n|| F,, — Fy|| and the convex
map 0 — |Gy, —/n{0 — 0., Dy, )| over the set €, with (inner) probability approaching 1 as n — 4o0c. Indeed,
we define

Lo = sup IVl Fn = Fallr — |G — V(0 — 0., Dy, )| 1|
E n
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By the definition of G,,, we have

JSup [Vnl|Fy = Fp, = {0 = 6., Dy.) = Roll = Vol F = Fo. = (60— 0., Do,) | 1|

— o s VAo -tulle ) = o(valF, - Flu)
[SE92%

Ly

By Assumption 3.7, we have I';, — 0 as ||@ — 0, ]je — 0 with (inner) probability approaching 1 as n — +oo. This
completes the proof of the third claim.

By the definition of G,, and G}, we have |Gy, — G}|lL = ||\/ﬁ(ﬁn — F,) — G,||r- By Assumption 3.7, there

n?’

exists a sequence 7,0 — 0 such that P(||G,, — G% || > 7.}) — 0. By the definition of ', and 7,,, there exists two
sequences 72 — 0 and 72 — 0 such that P(T',, > 72) — 0 and P(n,, > 72) — 0.

Let 8, = max{27},272 + 73}, we have 3, — 0 with (inner) probability approaching 1 as n — +oco. It remains

no

to show that M,, C K(G,, ,) with (inner) probability approaching 1 as n — 4o00. Indeed, we have

3 _ r_ > P — ’ — 2.
B G~ (VRO ), Dy} > nf VAl F— Fyl 7

By the definition of M,,, let 8 € M,,, the above inequality implies

St [[Go = (VA = 6.), Do)z = Vil B = Folly — 72 = 7.
1

Since M,, C ©,, with (inner) probability approaching 1 as n — +o0o, we have

VallFy = Fyllp = |G — (vn(0 = 0.), Do)l — 77-

Putting these pieces together with 3, > 272 + 73 yields that 6 € K(G,, 83,).

Finally, let € > 0, we prove that P(dy(K(G;,0), K(Gn, Bn)) < €) — 1 as n — +o00. Indeed, by the triangle
inequality, 0 € K (G}, 0) implies 0 € K(G,,2||Gy, — G}||L). Therefore, we conclude that K(G},,0) C K(G,, ()
with (inner) probability approaching one as n — 400. On the other hand, 6 € K(G,, B,) implies 0 € K(G?},, 3, +
2||G,,—G% 1) By the definition of 3,,, G,, and G}, we obtain that 5, +2||G,, —G ||, — 0 with (inner) probability
approaching one as n — +o00. By the definition of the Hausdorff metric, we conclude the desired result.

E.3 Proof of Theorem A.3

Different from Theorem 3.12, the proof of Theorem A.3 is relatively straightforward and based on Theorem E.1
and E.2. It is mostly because there exists 6, in the interior of © such that F, = Fy, .

More specifically, we consider fy = Fy and f,, = ﬁn such that
Fylu,t) = /R () duol@), Bl t) = (1/n)l{i € o] : (u, Xa) < 23],

Let X = L(ST™ ! xR) and || - ||x = || - ||z, we can check that (X, | - ||x) is a normed linear space. By the
definition of PW; 1, we have PWi 1(fin, j19) = ||ﬁn — Fy||x. By Assumption 3.1, ﬁn converges to Fy. Moreover,
in well-specified setting, F, = Fj, where 6, is some fixed (but unknown) point in the interior of ©. Now we are
ready to check the conditions of Theorem E.1.

First, Assumption A.1 and PW1 1(fin, te) = Hﬁn — Fp||x imply C1. Furthermore, by the definition of norm
differentiable, Assumption 3.6 and Assumption A.2 imply C2. Finally, Assumption 3.7 and F, = Fp, imply C3.
Therefore, we conclude from Theorem E.1 that

Vi inf PWia (fin, po) = v/n jnf || Fn = Fpll = inf |Gy = (t, Do,

in the sense for the metric induced by the norm ||-||z. This together with the definition of the norm || - ||, implies
the desired result for the goodness-of-fit statistics.
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On the other hand, Theorem E.2 can be applied with specific choice of 7,,. More specifically, we notice that the
estimator 6, is well defined by

0, = axgmin P 1 (7. 1) = swgmnin | F, — Fy 1.
6cO

Let n,, = 0, the set M,, = {én} is a singleton set. This implies that \/ﬁ(é\n —0,) = K1(G4,0) as n — 400 under
its Hausdorff metric topology. Since the random map 6 — max,ega—1 [ |G (u,t) — (0, Dy (u,t))| dt has a unique
infimum almost surely, we have K;(Gy,0) is a singleton set defined by

K1(G4,0) = argmin max / |Gy (u,t) — (0, Dy(u,t))]| dt.
gce ueSil /R

In this case, the Hausdorff metric is simply induced by the norm || - ||. Putting these pieces together yields the
desired result for the MPRW estimator of order 1.

E.4 Minor Technical Issues

We use the notations of Bernton et al. (2019, Theorem B.8) throughout this subsection. Indeed, in page 38-
39 of the recent arvix version of Bernton et al. (2019), the authors prove that m(H,) = infucr, f(Hn,u),
implicitly assuming that the minimizer of the map 6 — /n||F,, — Fy, — (6 — 0., Dy, )||L, is contained in the set
M ={0eN:|0—0,]x < c./2}. However, this result is not obvious. Indeed, it seems difficult to derive such
results from the existing fact that the minimizer of 8 — /n||F,, — Fy||1, is contained in A'. We only have the
uniform control over the difference between 0 — /n||F,, — Fp|| 1, and 8 — /n||F, — Fp, — (0 — 04, Dy, )|, over
the set .S, instead of the whole set. So there is few relationship between the minimizers of these two mappings.
Moreover, the techniques from the proof of Pollard (1980, Theorem 7.2) can not be applicable to fix this issue
here since the proof depends on the assumption that p, = pp, which does not hold under model misspecification
yet.

F Computational Aspects

The computation of the PRW distance is in general computationally intractable when the projection dimension
is k > 2 since this amounts to solving a nonconvex max-min optimization model. Despite several pessimistic
results (Paty and Cuturi, 2019; Niles-Weed and Rigollet, 2019), we adopt the Riemannian optimization tool-
box (Absil et al., 2009) to develop a Riemannian supergradient algorithm and empirically show that our algorithm
can approximate PWs i (fin, Vn) when the projection dimension is k& > 2. Part of results can be found in the
appendix of concurrent work (Lin et al., 2020) and we provide the details for the sake of completeness.

Approximation of W&k- We consider the computation of Wzk between empirical measures. Indeed,
let {z1,72,...,7,} € R? and {y1,v2,...,yn} C R? denote sets of n atoms, and let (r1,79,...,7,) € A" and
(c1,¢2,...,¢n) € A™ denote weight vectors, we define discrete measures fi,, := > ;" 130, and D, := > 7 ¢;dy,.
The computation of PWa i (fin, V) is equivalent to solving a structured max-min optimization model where the
maximization and minimization are performed over the Stiefel manifold St(d, k) := {U € R¥>* | UTU = I,,} and
the transportation polytope II(y, v) := {m € RI*" | r(w) =, c(m) = c} respectively. Formally, we have

ma. T 7 UTCCZ UT 2 s.t. U U=1 , T =r c = c. 20
Uckixs ean;;W Al y;ll ks () () (20)

Eq. (20) is equivalent to the non-convex nonsmooth optimization model as follows,

n n

— UT UT 2 . 21
o5 O ity L T ”

Fixing U € St(d, k), Eq. (21) becomes a classical OT problem which can be either solved by the Sinkhorn
iteration (Cuturi, 2013) or the variant of network simplex method in the POT package (Flamary and Courty,
2017). The key challenge is the maximization over the Stiefel manifold St(d, k) := {U € R™>* | UTU = I,;}.
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Algorithm 1 Riemannian SuperGradient Ascent with Network Simplex Iteration (RSGAN)

1: Input: measures {(2;,7;)}icn) and {(y;,¢;j)}je[n), dimension & and tolerance e.
2: Initialize: U € St(d, k) and 7o > 0.

3: fort=0,1,2,..., 7 — 1 do

4:  Compute 741« OT({ (4,74 iep), {(W5,¢5) Yiem)» Ut)-

5. Compute & 11 < Pry, s¢(2Vr,,, Ut).
6

7

8

Tt4+1
Compute y¢41 < Yo/Vt + 1.
Compute Upy 1 < Retry, (Yer16i41)-

: end for

Eq. (21) is a special instance of the Stiefel manifold optimization problem. The dimension of St(d, k) is equal
to dk — k(k + 1)/2 and the tangent space at the point Z € St(d, k) is defined by TzSt := {¢ € R¥*k .
E'Z +7Z7¢ = 0}). We endow St(d, k) with Riemannian metric inherited from the Euclidean inner product
(X,Y) for any X,Y € TzSt and Z € St(d, k). Then the projection of G € R¥* onto TzSt is given by Absil
et al. (2009, Example 3.6.2): Pr,s:(G) = G — Z(G"Z + ZTG)/2. We make use of the notion of a retraction,
which is the first-order approximation of an exponential mapping on the manifold and which is amenable to
computation (Absil et al., 2009, Definition 4.1.1). For the Stiefel manifold, we have the following definition:

Definition F.1 A retraction on St = St(d, k) is a smooth mapping Retr : TSt — St from the tangent bundle
TSt onto St such that the restriction of Retr onto TzSt, denoted by Retryz, satisfies that (i) Retrz(0) = Z for all
Z € St where 0 denotes the zero element of TSt, and (ii) for any Z € St, it holds that lim¢cr,s¢.¢—0 |Retrz(§) —

(Z +Ollr/llEllF = 0.

Our algorithm uses the retraction based on the QR decomposition as suggested by Liu et al. (2019). More
specifically, Retr} (£) = qr(Z + ) where qr(A) is the Q factor of the QR factorization of A.

We start with a brief overview of the Riemannian supergradient ascent algorithm for nonsmooth Stiefel opti-
mization, denoted by maxyeg(a,r) F(U). A generic Riemannian supergradient ascent algorithm for solving this
problem is given by

Ut+1 — RetI‘Ut (7t+1€t+1) for any £t+1 S SubdiffF(Ut),

where subdiff F(U;) is Riemannian subdifferential of F' at U; and Retr is any retraction on St(d, k). The step
size is set as y1+1 = Y0/t + 1 as suggested by (Li et al., 2019). By the definition of Riemannian subdifferential,
& can be obtained by taking ¢ € OF(U) and by setting & = Pr,s:(£). Thus, it is necessary for us to specify the
subdifferential of f in Eq. (21). We define V; =370 >0 | mi j(2; — y;) (i — y;) T € R¥4 which is symmetry
and derive that

Of(U) = Conv{2VyU | n* € argmin (UU",V,)}, for any U € R¥**
e (u,v)

It remains to solve an OT problem with a given U at each inner loop of the maximization and use the output
7m(U) to obtain a supergradient of f. The network simplex method can exactly solve this LP. To this end, we
summarize the pseudocode of the RSGAN algorithm in Algorithm 1.

Approximation of PW, ;. We recall the definition of the IPRW distance of order 2 as follows,

PW3 (1 v) = W3 (B, Eyv)do (E),

Sa,k

where o is the uniform distribution on Sy 5, and E* is the linear transformation associated with E for any x € R4
by E*(z) = ETx. For any measurable function f and p € 2(R?), we denote fuu as the push-forward of u by
f, so that fau(A) = p(f~(A)) where f~1(A) = {x € R?: f(z) € A} for any Borel set A. We approximate the
integral by selecting a finite set of projections S C Sy and computing the empirical average:

1

—_— WE(E%u, E4v).

Mg,k(“, V) ~ card
S
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The quality of this approximation depends on the sampling of Sg . In this paper, we use random projections
picked uniformly on Sy, which is analogues to the approach proposed by Bonneel et al. (2015) for the case of
k = 1; see Sampling schemes for the details.

Approximation of PW, ;. We recall the definition of the PRW distance of order p with the projection
dimension k£ = 1 as follows,

» _
PW,1(p,v) == sup WE(ulp,ujyr) = sup / |F. u;:y(t)|pdt.
u€Sy, 1 u€Sq,1

where u € S41 is an unit d-dimensional vector, u* is the linear transformation associated with u for any = € R?
by w*(r) = u'z, and Fgl is the quantile function of £. This integral can be estimated using a Monte Carlo
estimate and a linear interpolation of the quantile function. Following up Nadjahi et al. (2019, Appendix 4), we
consider two approximations of this quantity. The first one is given by,

P, (4,v) = sup —Z|F (P, (22)

uESG 1

where {t;}#_ | are uniform and independent samples from [0, 1] and F{ !'is a linear interpolation of Fgl which
denotes either the exact quantile function of a discrete measure £, or an approximation by a Monte Carlo
procedure. The second one is given by

PWya(p,v) = sup ZISk (k)P (23)

UESq,1

where {s;}1 | are uniform and independent samples from ul v and Fg (resp. Fgl) is a linear interpolation of

F¢ (resp. Fg_l) which denotes either the exact cumulative distribution function (resp. quantile function) of a
discrete measure &, or an approximation by a Monte Carlo procedure.

Sampling schemes. We explain the methods that we use to generate the i.i.d. samples from the uniform
distribution on the set of d x k orthogonal matrices, i.e., Sqr = {F € R¥* : ETE = I} and the i.i.d. samples
from multivariate elliptically contoured stable distributions.

To sample from Sq 1, we first construct the (d x k)-dimensional matrix Z by drawing each of its components
from the standard normal distribution A/(0,1) and then perform the QR decomposition of it: £ = qr(Z). By
the definition, E € Sy 1 is an uniform sample.

To sample from multivariate elliptically contoured stable distributions, we follows the approach presented in Nad-
jahi et al. (2019, Appendix 4). Indeed, we recall that if Y € R is a-stable and elliptically contoured, i.e.,
Y € £aS.(X, m), then its joint characteristic function is defined as, for any ¢ € R? that,

E [exp(it'Y)] = exp (—(tTZt)a/2 + itTm) ) (24)

where ¥ is a positive definite matrix (akin to a correlation matrix), m € R? is a location vector (equal to the mean
if it exists) and « € (0,2) controls the thickness of the tail. Elliptically contoured stable distributions are scale
mixtures of multivariate Gaussian distributions (Samoradnitsky, 2017, Proposition 2.5.2) with computationally
intractable densities. Fortunately, it was shown by Nolan (2013) that sampling from multivariate elliptically
contoured stable distributions is possible: let A ~ S,/5(8,7,0) be a one-dimensional positive (a/2)-stable
random variable with 8 = 1, v = 2 cos(ra/4)?/* and § = 0, and G ~ N(0,%). By the definition, Y = vAG +m
satisfies Eq. (24) and Y ~ £aS.(2, m).

Optimization methods. Computing the MPRW and MEPRW estimators are intractable in general. This is
mainly because the PRW distance requires a maximization over infinitely many projections. Formally, we hope
to solve the following minimax optimization model,

1
. AP . —-1 - p
min PWy 1 (1o, 1) = gggggd)i/ [ e () = F! L, (O,
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where {pp : 0 € O} is the model and p, is the data-generating process. Following up the approach presented
in Nadjahi et al. (2019) together with the approximation of PW), 1, we consider using the ADAM optimization
method to minimize the (expected) PRW distance over the set of parameters while applying multiple projected
supergradient ascent to find an approximate projection u which maximizes over S4; at each inner loop. The
ADAM optimization method is associated with the default parameter setting as suggested by Kingma and Ba
(2015). At each inner loop, we run 5 projected supergradient ascent with the learning rate 1073.

. . . . eSS .
Gaussian models. For the MPRW estimator, we consider the approximate PV, ; distance based on Eq. (23).
Indeed, let p denote N'(m,o2I) and 7 denote the empirical probability measures of n samples drawn from the
data-generating process, we define the function fi(m, o2 u) as

1 ~ ~
fl(m7027u) = 72"9_Fui{)(Fu;H(s))'QN(S;uTm7021)v
€S

card(S) ‘

Tm, ¢%T) evaluated

,u) with respect to the mean m, the variance

where S C R and N (s;u " m, 02T) refers to the density function of Gaussian of parameters (u
at s € S. We compute the explicit gradient expression of f;(m, o>
o2 and the projection vector u as follows,

1 - -
Vi fi(m, 0% u) = oZcard(S) Z (|s - F;;zg(Fu;M(s))FN(s; u'm,o?T)(s — uTm)u) ,
seS
1 L
Vo2 fi(m, 0%, u) = Wrd(S) .;S (\5 - Fu;:a(Fu;u(S))\QN(5§UTma o*T)((s —u'm)® - 02)) )
1 - -
Vofilm,o? u) = oZcard(S) Z (|s - FJiﬁ(Fu;M(S))PN(S? u'm,o’T)(s —u' )m) .
seS

For the MEPRW estimator, we consider the approximate PW;l distance based on Eq. (22). Indeed, let g and ¥
denote the empirical probability measures of m samples drawn from N '(m,0?I) and n samples drawn from the
data-generating process, we define the function fo(m, o2 u) as

where {t;}X_ | are uniform and independent samples from [0, 1]. We compute the explicit gradient expression of
f2(m, 02, u) with respect to the mean m, the variance o and the projection vector u as follows,

K
Vinfalm,o? ) = = S |F () — Byl
2 k;l ~ ~
Voo fo(m, 0% u) = =22 > FR(0) — oty (t)m,
1k:1K ] ) ~
Vafalmotu) = == > (1) = Frlo(to)lw m = FZ(0))

Elliptically contoured stable models. When comparing the MEPRW estimator with the MPRW estimator using
elliptically contoured stable models, we also approximate these estimators using the ADAM optimization method
with the default parameter setting.

. . a2 . ~ ~ ..
We consider the approximate PW, ; distance based on Eq. (22). Indeed, let ji and ¥ denote the empirical
probability measures of m samples drawn from £aS.(I,m) and n samples drawn from the data-generating
process, we define the function f3(m,u) as
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Figure 5: Mean values (Top) and mean computational time (Bottom) of the IPRW and PRW distances of order 2 between
empirical measures i, and 7,, as the number of points n varies. Results are averaged over 100 runs.

where {tk}ff:l are uniform and independent samples from [0, 1]. We compute the explicit gradient expression of
f(m, u) with respect to the location parameter m and the projection vector u as follows,

K

2 ~ .
vmf?)(mvu) = _EZ‘F *1ﬁ(tk)—Fu*#lﬁ(tk)|u7

k=1

2 & . N
Vufs(m,u) = *?Z\ngﬁ(tk)*FJ;:a(tk”m

Generative modeling. We use the ADAM optimizer provided Pytorch GPU.

G Experimental Setup

Computing infrastructure. For the experiments on the uniform distribution over hypercube, we implement
in Python 3.7 with Numpy 1.18 on a workstation with an Intel Core i5-9400F (6 cores and 6 threads) and 32GB
memory, equipped with Ubuntu 18.04. For the experiments on MPRW and MEPRW estimators, we implement
in Python 2.7 with Numpy 1.16 and IPython 5.8 on the same machine. These experiments were not conducted
with GPU. For the experiments on neural networks, we implement on the same machine with 2 GPUs (GeForce
GTX 1070 and GeForce GTX 2070).

Convergence and concentration. We conduct the experiment on the uniform distribution over different
hypercubes which are also used in the experiment (Paty and Cuturi, 2019). In particular, we consider yp = v =
U([~v,v]?) which is an uniform distribution over an hypercube and where d and v stand for the dimension and
scale of the distribution respectively. [i, and 7, are empirical distributions corresponding to p and v with n
samples. We evaluate the PRW and IPRW distance in terms of mean values and mean computational times over
100 runs for (d,v) € {(10,1), (10, 3), (30,1), (30, 5), (50,1), (50,5)}. For the PRW distance, we run Algorithm 1
with EMD solver in the POT package (Flamary and Courty, 2017) and terminate the algorithm either when the
maximum number of iterations T' = 30 is reached or when ||U;11 — Uil < 1076, For the IPRW distance, we
draw 100 uniform and independent projections from S;; and compute each Wasserstein distances using EMD
solver in the POT package again.

Model misspecification. We conduct the experiments on three type of data: the mixture of 8, 12 and 25
Gaussian distributions with Gaussian models M; = {N(m,c?I) : m € R? 02 > 0} and elliptically contoured
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Figure 6: Probability density of estimation of centered and rescaled o, on the Gaussian model for different n.

stable models Mz = {€aS.(I,m) : m € R?}. For data-generating process, we fix k centers {(a;, b;)}1<i<k. For
each sample, we first randomly select m from the centers at uniform and then draw the sample from N (2m, 0.01).
For the mixture of 8 and 12 Gaussian distributions, the fixed set of centers are evenly distributed around a unit
circle. For the mixture of 25 Gaussian distributions, the fixed set of centers are 25 grid points in [—2, 2]?.

We use the ADAM optimization method with the default parameter setting to compute the MPRW and MEPRW
estimators. At each inner loop, we run 5 projected supergradient ascent with the learning rate 1072, For the
Gaussian models, we estimate the densities of 52 with a kernel density estimator by computing 100 times MPRW
estimator of order 1. The maximum number of ADAM iterations is set as 20000. To illustrate the consistency of
MPRW and MEPRW estimators, we compute 100 times MPRW and MEPRW estimators of order 2, where the
maximum number of ADAM iterations are set as 20000 and 10000 respectively. We also verify the convergence of
MEPRW to MPRW by computing 100 times these estimators on a fixed set of n = 2000 observations for different
m generated samples from the model. The maximum number of ADAM iterations for MPRW and MEPRW
estimators are set as 20000 and 10000. For the elliptically contoured stable models, we verify the consistency
property of MEPRW and the convergence of MEPRW to MPRW. For the former one, we compute 100 times
MEPRW estimator of order 2 and set the maximum number of ADAM iterations as 10000. For the latter one,
we compute 100 times MPRW and MEPRW estimators of order 2 on a fixed set of n = 100 observations for
different m generated samples from the model. The maximum number of ADAM iterations are set as 20000 and
10000. All of these settings are consistently used on the mixture of 8, 12 and 25 Gaussian distributions.

Generative modeling. The procedure of the max-SW generator is summarized as follows: we first sample
a random variable Z from a fixed distribution on the base space Z, and then transforms Z through a neural
network parametrized by 6. This provides a parametric function Ty : Z — R? which allows us to generate images
from a distribution pg. Our goal is to optimize the neural network parameters § by minimizing the max-SW
distance (Deshpande et al., 2019) between py and data-generating distribution. We use a neural network with the
fully-connected configuration from Deshpande et al. (2018, Appendix D) and train our model with CIFAR107
and IMAGENET2008. The former one consists of 60000 and 10000 images of size 3 x 32 x 32 for training and
testing while the latter one consists of 100000 and 10000 images for training and testing. We use the minimal
expected max-SW estimator of order 2 approximated with 50 projected gradient ascent steps and 10~% learning
rate. We train for 1000 iterations with the ADAM optimizer (Kingma and Ba, 2015) and 10~* learning rate.

H Additional Experimental Results

Convergence and concentration. Figure 5 presents average distances and computational times for (d,v) €
{(10,5), (30,1), (50,1)}, where the shaded areas show the max-min values over 100 runs. We also observe that
the IPRW distance is smaller than the PRW distance for small n, especially so when d and v are large. The two

" Available in https://www.cs.toronto.edu/ kriz/cifar.html
8 Available in https://tiny-imagenet.herokuapp.com/
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Figure 7: Minimal PRW and expected PRW estimations using Gaussian models and n samples from the mixture of 12
Gaussian distributions. Results are averaged over 100 runs and shaded areas represent standard deviation.
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Figure 8: Minimal PRW and expected PRW estimations using Gaussian models and n samples from the mixture of 25
Gaussian distributions. Results are averaged over 100 runs and shaded areas represent standard deviation.

distances are close when n is large, supporting the theoretical results given by Theorem 3.4 and Theorem 3.6 in
practice. The computation of the PRW distance is relatively faster than that of the IPRW distance.

Model misspecification: Gaussian models. Figure 6 shows the distributions centered and rescaled by /n
for a range of moderately large n, based on the two underlying models including the mixture of 12 Gaussian
distributions and the mixture of 25 Gaussian distributions. The left figure supports the convergence rate and the
limiting distribution of the estimator as derived in Theorem 3.12 on the mixture of 12 Gaussian distributions.
The right figure suggests that the limiting distribution is not normal when the underlying model is given by
the mixture of 25 Gaussian distributions. For the latter case, the result is not as anticipated by Theorem 3.12.
This is possibly because we only conduct 5 projected supergradient ascent at each inner loop, which may not be
enough to achieve a good approximate projection u € Sg ;.

Figure 7 and 8 demonstrate the large-sample consistency behavior of MPRW and MEPRW estimators on the
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Figure 9: Minimal expected PRW estimations using elliptically contoured stable models and n samples from the mixture
of 8 Gaussian distributions (top), 12 Gaussian distributions (middle) and 25 Gaussian distributions (bottom), and m
samples generated from the model. Results are averaged over 100 runs and shaded areas represent standard deviation.

mixture of 12 and 25 Gaussian distributions, which are expected since Assumption 3.1-3.3 are mild. The MEPRW
estimator also converges to the MPRW estimator on the mixture of 12 Gaussian distributions, confirming Theo-
rem 3.11. One exception in these experiments is the failure of convergence of MEPRW to MPRW on the mixture
of 25 Gaussian distributions. Apparently, the results from Theorem 3.11 do not hold in this experiment setting.
This is likely due to the violation of Assumption 3.5 that is necessary for Theorem 3.11 to hold.

Model misspecification: Elliptically contoured stable models. Figure 9 (a) illustrates the consistency
of the MEPRW estimator m,, ,,,, approximated with 5 projected supergradient ascent, the same way as for the
Gaussian models. Figure 9 (b) confirms the convergence of my,, ,, to the MPRW estimator m,,, where we fix
n = 100 observations and compute the mean squared error between these two estimators (using 5 projected
supergradient ascent) for different values of m. Note that the MPRW estimator is approximated with the
MEPRW obtained for a large enough value of m: m,, = m,, 191. To this end, our results on elliptically contoured
stable models confirm Theorem 3.9, Theorem 3.10 and Theorem 3.11 in practice.

Generative modeling. Figure 10 presents the mean test loss on CIFAR10 over 10 runs, where the shaded
areas show the max-min values over the runs. Here the minimal expected max-SW estimator of order 2 is
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Figure 10: Mean test loss for different value of (n, m) on CIFARI10.

approximated with 20 projected gradient ascent steps and 10~* learning rate. We trained for 1000 iterations
with the ADAM optimizer (Kingma and Ba, 2015) and 10~% learning rate. We also train the NNs with (n,m) €
{(100,20), (1000, 40), (5000, 60), (10000, 100) } where n is the number of training samples and m is the number of
generated samples and compute the testing losses using the trained models on the testing dataset (n = 10000)
with m = 250 generated samples. We compare these testing losses to that of a NN trained using n = 60000 (i.e.,
the training dataset) and m = 200 in Figure 10. Again, our results confirm Theorem 3.10 in practice.



