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A Further Results on the MPRW and MEPRW Estimators

In this section, we discuss the measurability of the MPRW and MEPRW estimators. For a generic function f
on the domain X , we define δ-argminx∈X f = {x ∈ X : f(x) ≤ infx∈X f + δ}. Our results are summarized in the
following two theorems.

Theorem A.1 Under Assumption 3.1, for any n ≥ 1 and δ > 0, there exists a Borel measurable function
θ̂n : Ω→ Θ such that

θ̂n(ω) ∈
{

argminθ∈Θ PWp,k(µ̂n(ω), µθ) if this set is nonempty,
δ- argminθ∈Θ PWp,k(µ̂n(ω), µθ) otherwise.

Theorem A.2 Under Assumption 3.1, for any n ≥ 1, m ≥ 1 and δ > 0, there exists a Borel measurable function
θ̂n,m : Ω→ Θ such that

θ̂n,m(ω) ∈
{

argminθ∈Θ E[PWp,k(µ̂n(ω), µ̂θ,m) | X1:n] if this set is nonempty,
δ- argminθ∈Θ E[PWp,k(µ̂n(ω), µ̂θ,m) | X1:n] otherwise.

We also present the asymptotic distribution of the goodness-of-fit statistics as well as the MPRW estimator in
the well-specified setting and establish the rate of convergence. For this we require the well separability of the
model in Assumption A.1 and the non-singularity of D? in Assumption A.2 to take place of the local strong
identifiability in Assumption 3.8.

Assumption A.1 For any ε > 0, there exists δ > 0 so that infθ∈Θ:‖θ−θ?‖Θ≥ε PW1,1(µθ? , µθ) > δ.

Assumption A.2 There exists a non-singular D? such that Assumption 3.6 holds true.

Theorem A.3 Suppose that µ? = µθ? for some θ? in the interior of Θ. Under Assumption 3.1-3.3, 3.6-3.7
and A.1-A.2, the goodness-of-fit statistics satisfies

√
n inf
θ∈Θ
PW1,1(µ̂n, µθ)⇒ inf

θ∈Θ
max
u∈Sd−1

∫
R
|G?(u, t)− 〈θ,D?(u, t)〉| dt, as n→ +∞.

Suppose also that the random map θ → maxu∈Sd−1

∫
R |G?(u, t) − 〈θ,D?(u, t)〉| dt has a unique infimum almost

surely. Then the MPRW estimator of order 1 satisfies

√
n(θ̂n − θ?)⇒ argmin

θ∈Θ
max
u∈Sd−1

∫
R
|G?(u, t)− 〈θ,D?(u, t)〉| dt, as n→ +∞.

Both the weak convergence results are valid for the metric induced by the norm ‖ · ‖L.

B Postponed Proofs in Subsection 3.1

This section lays out the detailed proofs for Lemma 3.1, Theorem 3.2 and 3.3.

B.1 Preliminary technical results

For completeness, we collect several preliminary technical results6 which will be used in the proofs.

Theorem B.1 (Prokhorov’s theorem) Let P(Rd) denote the collection of all probability measures defined
on Rd with the Borel σ-algebra and {µi}i∈N is a tight sequence in P(Rd). Then every subsequence of {µi}i∈N
has a subsequence that converges weakly in P(Rd). Moreover, if every weakly convergent subsequence has the
same limit, the whole sequence converges weakly to this limit.

6For the Prokhorov’s theorem, we only present the results on the Euclidean space. For more results on general
separable metric space, we refer the interested readers to Billingsley (2013).
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Theorem B.2 (Theorem 4.1 in Villani (2008)) Let (X , µ) and (Y, ν) be two Polish probability spaces; let
a : X → R ∪ {−∞} and b : Y → R ∪ {−∞} be upper semi-continuous such that a and b are absolutely integrable
with respect to the measures µ and ν respectively. Let c : X × Y → R ∪ {+∞} be lower semi-continuous, such
that c(x, y) ≥ a(x) + b(y) for all x, y. Then there exists an optimal coupling π ∈ Π(µ, ν) which minimizes the
total cost E[c(X,Y )].

Lemma B.3 (Lemma 4.4 in Villani (2008)) Let X and Y be two Polish spaces. Let P ⊆ P(X ) and Q ⊆
P(Y) be tight subsets of P(X ) and P(Y) respectively. Then the set of all transportation plans whose marginals
lie in P and Q respectively, is itself tight in P(X × Y).

Theorem B.4 (Theorem 6.9 in Villani (2008)) Let (X , d) be a Polish space and p ∈ [1,+∞). The Wasser-
stein distance Wp metrizes the weak convergence in Pp(X ). That is, if {µi}i∈Nn is a sequence of measures in
Pp(X ) and µ ∈Pp(X ), then µi ⇒ µ if and only if Wp(µi, µ)→ 0.

Definition B.1 (Lower semi-continuity) We say that f : X → R is lower semi-continuous if for any x0 ∈ X
and any y < f(x0), there exists a neighborhood U of x0 such that f(x) > y for all x in U . In the case of a metric
space, this is equivalent to lim infx→x0

f(x) ≥ f(x0) for any x0 ∈ X .

B.2 Proof of Lemma 3.1

We first show that, for any µ ∈Pp(Rd) and ν ∈Pp(Rd), the following inequality holds true,

PWp,k(µ, ν) ≤ PWp,k(µ, ν) ≤ Wp(µ, ν). (6)

Indeed, by the definition of PWp,k and PWp,k, the first inequality is trivial. For the second inequality, we derive

from the definition of PWp,k that

PWp

p,k(µ, ν) = sup
E∈Sd,k

Wp
p (E?#µ,E

?
#ν) = sup

E∈Sd,k
inf

π∈Π(µ,ν)

∫
Rd×Rd

‖E>(x− y)‖p dπ(x, y).

Since E ∈ Sd,k, we have ‖E>(x− y)‖ ≤ ‖x− y‖. Thus, we have PWp

p,k(µ, ν) ≤ Wp
p (µ, ν). Putting these pieces

together yields Eq. (6). For any sequence {µi}i∈N ⊆ Pp(Rd) and µ ∈ Pp(Rd), we conclude from Eq. (6) that
Wp(µi, µ)→ 0 implies PWp,k(µi, µ)→ 0 and PWp,k(µi, µ)→ 0.

The remaining step is to show that PWp,k(µi, µ) → 0 implies Wp(µi, µ) → 0. Indeed, we first prove that

PWp,k(µi, µ)→ 0 implies µi ⇒ µ. Let Zi ∼ µi, we have E>Zi ∼ E?#µi. By the definition of the IPRW distance

(cf. Definition 3) and using the fact that PWp,k(µi, µ)→ 0, we have (‖E>Zi)‖p)i∈N is uniformly integrable for

all E ∈ Sd,k. Since Sd,k is compact, there exists a finite set {E1, E2, . . . , EI} ⊆ Sd,k so that ‖x‖ ≤
∑I
j=1 ‖E>j x‖

for all x ∈ Rd. Therefore, we have

‖Zi‖p ≤

 I∑
j=1

‖E>j Zi‖

p

≤ Ip
(

max
1≤j≤I

‖E>j Zi‖p
)
≤ Ip

 I∑
j=1

‖E>j Zi‖p
 .

Therefore, we deduce that (‖Zi‖p)i∈N is uniformly integrable which implies the tightness of {µi}i∈N. Using the
Prokhorov’s theorem (cf. Theorem B.1), we obtain that every subsequence of {µi}i∈N has a weakly convergent
subsequence.

The next step is to show that all the weakly convergent subsequences converge to the same probability measure
µ. We fix an arbitrary subsequence and for simplicity abbreviate the subscripts and still denote it by {µi}i∈N.
Let µ̃i be the limit of any given weakly convergent subsequence (µij )j∈N, we need to prove that µ̃i = µ. In
particular, we define the characteristic function for any probability measure ν as follows,

Φν(z) :=

∫
Rd
ei〈z,x〉 dν(x) for all z ∈ Rd.

Since µij ⇒ µ̃i, we have Φµij (z) → Φµ̃i(z) for all z ∈ Rd. Thus, we need to show that Φµij (z) → Φµ(z) for all

z ∈ Rd. This is trivial when z = 0d since Φµij (0d) = Φµ(0d) = 1 for all j ∈ N. Otherwise, let r := ‖z‖ and
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v := z/‖z‖, we have

lim
j→+∞

Φµij (z) = lim
j→+∞

∫
Rd
ei〈z,x〉 dµij (x) = lim

j→+∞

∫
Rd
eir〈v,x〉 dµij (x).

Since ‖v‖ = 1, we define Ē ∈ Sd,k whose first column is v. Let r̄ be a k-dimensional vector whose first coordinate
is r and other coordinates are zero. Then we have r〈v, x〉 = 〈r̄, Ē>x〉. Putting these pieces together yields that

lim
j→+∞

Φµij (z) = lim
j→+∞

∫
Rk
ei〈r̄,y〉 dĒ?#µij (y).

For such fixed Ē, we claim that Wp(Ē
?
#µij , Ē

?
#µ) → 0 holds true. More specifically, PWp,k(µij , µ) → 0 im-

plies that
∫
Wp
p (E?#µij , E

?
#µ)dσ(E) → 0. Since Wp

p (E?#µij , E
?
#µ) is non-negative, it is easy to derive that

Wp(Ē
?
#µij , Ē

?
#µ) 9 0 for almost every E. Nonetheless, by the continuity of Wp

p (E?#µij , E
?
#µ) with respect to

E, we can obtain that Wp(Ē
?
#µij , Ē

?
#µ) 9 0 for all fixed E. Indeed, by the proof by contradiction, we as-

sume that Wp(E
?
#µij , E

?
#µ) 9 0 for some fixed E. Then, there exists a neighborhood S of E (it is fixed) such

that
∫
S
Wp
p (E?#µij , E

?
#µ)dσ(E) 9 0. This contradicts

∫
Wp
p (E?#µij , E

?
#µ)dσ(E) → 0 since the inside term is

non-negative. Thus, we achieve the desired claim.

Using Theorem B.4, we have Ē?#µij ⇒ Ē?#µ. Since r〈v, x〉 = 〈r̄, Ē>x〉, we have

lim
j→+∞

∫
Rk
ei〈r̄,x〉 dĒ?#µij (x) =

∫
Rk
ei〈r̄,x〉 dĒ?#µ(x) =

∫
Rd
eir〈v,x〉 dµ(x) =

∫
Rd
ei〈z,x〉 dµ(x).

Putting these pieces together yields that Φµij (z) → Φµ(z) for all z ∈ Rd/{0d} and µ̃i = µ for all i ∈ N.

Using the Prokhorov’s theorem again yields that the whole sequence {µi}i∈N has the limit µ in weak sense.
Therefore, PWp,k(µi, µ)→ 0 implies µi ⇒ µ. Since the Wasserstein distances metrize the weak convergence (cf.
Theorem B.4), we conclude that PWp,k(µi, µ)→ 0 implies Wp(µi, µ)→ 0. This completes the proof.

B.3 Proof of Theorem 3.2

By Lemma 3.1, we have PWp,k(µi, µ) → 0 if and only if PWp,k(µi, µ) → 0 if and only if Wp(µi, µ) → 0. By
Theorem B.4, we have µi ⇒ µ if and only if Wp(µi, µ) → 0. Putting these pieces together yields the desired
result.

B.4 Proof of Theorem 3.3

Fixing E ∈ Sd,k, the mapping x 7→ E>x is continuous from Rd to Rk. Since µi ⇒ µ and νi ⇒ ν, the continuous
mapping theorem implies that E?#µi ⇒ E?#µ and E?#νi ⇒ E?#ν. The next step is the key ingredient in the proof
and we hope to show that

Wp
p (E?#µ,E

?
#ν) ≤ lim inf

i→+∞
Wp
p (E?#µi, E

?
#νi) for all E ∈ Sd,k. (7)

From Theorem B.2, there exists a coupling πi ∈ Π(E?#µi, E
?
#νi) such that Wp

p (E?#µi, E
?
#νi) =

∫
Rk×Rk ‖x −

y‖p dπi(x, y). By the definition of lim inf, there exists a subsequence of {πi}i∈N such that
∫
Rk×Rk ‖x−y‖

p dπi(x, y)
converges to lim infi→+∞Wp

p (E?#µi, E
?
#νi). For the simplicity, we still denote it by {πi}i∈N. By Lemma B.3 and

Prokhorov’s theorem (cf. Theorem B.1), {πi}i∈N is sequentially compact in weak sense. Thus, there exists a
subsequence {πij}j∈N such that πij ⇒ π̃ ∈P(Rk × Rk). Putting these pieces together yields that

lim inf
i→+∞

Wp
p (E?#µi, E

?
#νi) =

∫
Rk×Rk

‖x− y‖p dπ̃(x, y).

By the definition of the Wasserstein distance, it suffices to show that π̃ ∈ Π(E?#µ,E
?
#ν). Indeed, let f : Rk → R

be a continuous and bounded function, we have∫
Rk×Rk

f(x) dπ̃(x, y) = lim
j→+∞

∫
Rk×Rk

f(x) dπij (x, y).
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Since πij ∈ Π(E?#µij , E
?
#νij ) and E?#µi ⇒ E?#µ, we have

lim
j→+∞

∫
Rk×Rk

f(x) dπij (x, y) = lim
j→+∞

∫
Rk
f(x) dE?#µij (x) =

∫
Rk
f(x) dE?#µ(x).

Since E?#νi ⇒ E?#ν, the same argument implies that
∫
Rk×Rk f(y) dπ̃(x, y) =

∫
Rk f(y) dE?#ν(y). Putting these

pieces together yields Eq. (7).

For the IPRW distance, we derive from Eq. (7) and the Fatou’s lemma that

PWp
p,k(µ, ν) =

∫
Sd,k
Wp
p (E?#µ,E

?
#ν) dσ(E) ≤ lim inf

i→+∞

∫
Sd,k
Wp
p (E?#µi, E

?
#νi) dσ(E) = lim inf

i→+∞
PWp

p,k(µi, νi).

Since PWp,k(µ, ν) and PWp,k(µi, νi) are both nonnegative, we take the p-th root of both sides of the above
inequality and have PWp,k(µ, ν) ≤ lim infi→+∞ PWp,k(µi, νi).

For the PRW distance, we derive from Eq. (7) and the fact that the supremum of a sequence of lower semi-
continuous mappings is lower semi-continuous that

PWp

p,k(µ, ν) = sup
E∈Sd,k

Wp
p (E?#µ,E

?
#ν) ≤ lim inf

i→+∞
PWp

p,k(µi, νi).

where the first equality holds true since the Wasserstein distance is nonnegative. Since PWp,k(µ, ν) and
PWp,k(µi, νi) are both nonnegative, we have PWp,k(µ, ν) ≤ lim infi→+∞ PWp,k(µi, νi).

C Postponed Proofs in Subsection 3.2

In this section, we provide the detailed proofs for Theorem 3.4-3.8.

C.1 Preliminary technical results

To facilitate reading, we collect several preliminary technical results which will be used in the postponed proofs
in subsection 3.2.

Theorem C.1 (Tonelli’s theorem) if (X , A, µ) and (Y, B, ν) are σ-finite measure spaces, while f : X ×Y →
[0,+∞] is non-negative measurable function, then∫

X

(∫
Y
f(x, y) dy

)
dx =

∫
Y

(∫
X
f(x, y) dx

)
dy =

∫
X×Y

f(x, y) d(x, y).

The following proposition provides the state-of-the-art general bound for the Wasserstein distance between the
true measure and its empirical version in Rd. Note that we do not assume any additional structures of the true
measure. Similar results can be found in many classical works, e.g., Fournier and Guillin (2015, Theorem 1), Weed
and Bach (2019, Theorem 1) and Lei (2020, Theorem 3.1). Since p ≥ 1, we present the following results which
directly follows the proof of Lei (2020, Theorem 3.1).

Proposition C.2 Let µ? ∈Pq(Rd) and Mq := Mq(µ?) < +∞. Then we have

E[Wp(µ̂n, µ?)] ≤ (E[Wp
p (µ̂n, µ?)])

1/p .p,q n
−[ 1

(2p)∨d∧( 1
p−

1
q )](log(n))

ζ′p,q,d
p , for all n ≥ 1. (8)

where .p,q refers to “less than” with a constant depending only on (p, q) and

ζ ′p,q,d =


2 if d = q = 2p,

1 if “d 6= 2p and q = dp
d−p” or “q > d = 2p”,

0 otherwise.

The following proposition provides a bound for the covering number of Sd,k in the operator norm of a matrix,
denoted by ‖ · ‖op . This is a straightforward consequence of the classical results on the covering number of the
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unit sphere in Rd in Euclidean norm. For the proof details, we refer the interested readers to Niles-Weed and
Rigollet (2019, Lemma 4). For the background materials on the covering number, we refer the interested readers
to Wainwright (2019, Chapter 5). For the ease of presentation, we provide a formal definition of covering number
of Sd,k in ‖ · ‖op as follows.

For any ε ∈ (0, 1), the ε-covering number of Sd,k in ‖ · ‖op is defined by

N(Sd,k, ε, ‖ · ‖op ) = inf

{
N ∈ N : ∃x1, x2, . . . , xN ∈ Sd,k, s.t. Sd,k ⊆

N⋃
i=1

B(xi, ε)

}
,

where B(x, r) = {y ∈ Sd,k : ‖y − x‖op ≤ r} is the ball of radius r > 0 centered at x ∈ Sd,k in the operator norm
of a matrix.

Proposition C.3 There exists a universal constant c > 0 such that for all ε ∈ (0, 1), the ε-covering number of
Sd,k in ‖ · ‖op satisfies that N(Sd,k, ε, ‖ · ‖op ) ≤ (c

√
kε−1)dk.

The following theorem (Lei, 2020) summarizes the concentration results assuming the Bernstein tail condition
under product measure. Indeed, let {Xi}i∈[n] be independent samples from probability measure µi on spaces Xi
and X ′i be independent copies of Xi for all i ∈ [n]. Denote X = (X1, . . . , Xn) and X ′(i) = (X1, . . . , X

′
i, . . . , Xn)

which is identical to X except for X ′i. Let f :
∏n
i=1 Xi → R be a function such that E[|f(X)|] < +∞, and define

Di = f(X)− f(X ′(i)).

Theorem C.4 Suppose that there exists some σi,M > 0 so that E[|Di|k | X−i] ≤ (1/2)σ2
i k!Mk−2 for all k ≥ 2.

Then the following statement holds,

P(f(X)− E(f(X)) > t) ≤ exp

(
− t2

2(
∑n
i=1 σ

2
i ) + 2tM

)
.

The following theorem summarizes the concentration results assuming the Poincaré inequality under product
measure. We denote by ‖∇if‖ the length of the gradient with respect to the ith coordinate.

Theorem C.5 (Corollary 4.6 in Ledoux (1999)) Denote by µn the product of µ on ⊗ni=1Rd and µ ∈P(Rd)
satisfies the Poincaré inequality (cf. Definition 3.4). For every function f on ⊗ni=1Rd satisfying E(|f(X)|) < +∞,
and

∑n
i=1 ‖∇if(X)‖2 ≤ α2 and max1≤i≤n ‖∇if(X)‖ ≤ β almost surely. Then the following statement holds true

for X ∼ µn that,

P(f(X)− E(f(X)) > t) ≤ exp

(
− 1

K
min

{
t

β
,
t2

α2

})
,

where K > 0 only depends on the constant M in the Poincaré inequality.

C.2 Proof of Theorem 3.4

Note that µ? ∈Pq(Rd) and Mq := Mq(µ?) < +∞. Fixing E ∈ Sd,k, we have E?#µ? ∈Pq(Rk) and Mq(E
?
#µ?) ≤

Mq < +∞. Then Proposition C.2 implies that

(
E[Wp

p (E?#µ̂n, E
?
#µ?)]

)1/p
.p,q n

−[ 1
(2p)∨k∧( 1

p−
1
q )](log(n))

ζ′p,q,k
p for all n ≥ 1.

Since Wp(E
?
#µ̂n, E

?
#µ?) ≥ 0 for any E ∈ Sd,k and µ? ∈Pq(Rd), Theorem C.1 implies that

E[PWp
p,k(µ̂n, µ?)] = E

[∫
Sd,k
Wp
p (E?#µ̂n, E

?
#µ?) dσ(E)

]
=

∫
Sd,k

E[Wp
p (E?#µ̂n, E

?
#µ?)] dσ(E).

Note that ζp,q,k = ζ ′p,q,k where ζp,q,k is defined in Theorem 3.4. Moreover, p ≥ 1. By the Jensen’s inequality, we
have

E[PWp,k(µ̂n, µ?)] ≤ (E[PWp
p,k(µ̂n, µ?)])

1/p. (9)

Putting these pieces together yields the desired result.
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C.3 Proof of Theorem 3.5

By the definition of PWp,k(µ̂n, µ?), we have

E[PWp,k(µ̂n, µ?)] ≤ sup
E∈Sd,k

E[Wp(E
?
#µ̂n, E

?
#µ?)] + E

[
sup

E∈Sd,k

(
Wp(E

?
#µ̂n, E

?
#µ?)− E[Wp(E

?
#µ̂n, E

?
#µ?)]

)]
. (10)

Using the same arguments for proving Theorem 3.4, we have

sup
E∈Sd,k

E[Wp(E
?
#µ̂n, E

?
#µ?)] .p,q n

−[ 1
(2p)∨k∧( 1

p−
1
q )](log(n))

ζp,q,k
p for all n ≥ 1. (11)

The remaining step is to bound the gap E[supE∈Sd,k(Wp(E
?
#µ̂n, E

?
#µ?)− E[Wp(E

?
#µ̂n, E

?
#µ?)])]. We first claim

that Wp(E
?
#µ̂n, E

?
#µ?)− E[Wp(E

?
#µ̂n, E

?
#µ?)] is sub-exponential with parameters (2σn1/2−1/p, 2V n−1/p) for all

E ∈ Sd,k if the true measure µ? satisfies the projection Bernstein-type tail condition (cf. Definition 3.1). Indeed,
let f(X) =Wp(E

?
#µ̂n, E

?
#µ?), we have

Di = f(X)− f(X ′(i)) ≤ Wp(E
?
#µ̂n, E

?
#µ̂
′
n) ≤ n−1/p

(
‖E?#(Xi)− E?#(X ′i)‖

)
.

By the triangle inequality and using the projection Bernstein-type tail condition, we have

E[|Di|k | X−i] ≤ 2kn−k/p(EX∼E?#µ[|X|k]) ≤ 2k−1n−k/pσ2k!V k−2 =
(2n−1/pσ)2k!(2n−1/pV )k−2

2
.

This implies that the condition in Theorem C.4 holds true with σi = 2n−1/pσ and M = 2n−1/pV . Equipped
with Theorem C.4 yields that

P
(
Wp(E

?
#µ̂n, E

?
#µ?)− E[Wp(E

?
#µ̂n, E

?
#µ?)] ≥ t

)
≤ exp

(
− t2

8σ2n1−2/p + 4tV n−1/p

)
.

For the simplicity, let ZE =Wp(E
?
#µ̂n, E

?
#µ?)−E[Wp(E

?
#µ̂n, E

?
#µ?)]. Then we have E[ZE ] = 0 and P(ZE ≥ t) ≤

exp(−t2/(8σ2n1−2/p+4tV n−1/p)). This together with the definition of ZE and Wainwright (2019, Theorem 2.2)
yields the desired claim.

We then interpret {ZE}E∈Sd,k as an empirical process indexed by E ∈ Sd,k and claim that there exists a random
variable L satisfying E[L] ≤ 4Mq(µ?) so that |ZU − ZV | ≤ L‖U − V ‖op for all U, V ∈ Sd,k. More specifically, it
follows from the definition that

ZU − ZV =
(
Wp(U

?
#µ̂n, U

?
#µ)−Wp(V

?
#µ̂n, V

?
#µ)

)
− E

[
Wp(U

?
#µ̂n, U

?
#µ)−Wp(V

?
#µ̂n, V

?
#µ)

]
.

Since the Wasserstein distance is nonnegative and satisfies the triangle inequality, we have

Wp(U
?
#µ̂n, U

?
#µ)−Wp(V

?
#µ̂n, V

?
#µ) = Wp(U

?
#µ̂n, U

?
#µ)−Wp(U

?
#µ̂n, V

?
#µ) +Wp(U

?
#µ̂n, V

?
#µ)−Wp(V

?
#µ̂n, V

?
#µ)

≤ Wp(U
?
#µ, V

?
#µ) +Wp(U

?
#µ̂n, V

?
#µ̂n)

Putting these pieces together yields that

ZU − ZV ≤ Wp(U
?
#µ̂n, V

?
#µ̂n) +Wp(U

?
#µ?, V

?
#µ?) + E

[
Wp(U

?
#µ̂n, V

?
#µ̂n) +Wp(U

?
#µ?, V

?
#µ?)

]
.

Since the Wasserstein distance is symmetrical, we have

ZV − ZU ≤ Wp(U
?
#µ̂n, V

?
#µ̂n) +Wp(U

?
#µ?, V

?
#µ?) + E

[
Wp(U

?
#µ̂n, V

?
#µ̂n) +Wp(U

?
#µ?, V

?
#µ?)

]
.

Therefore, we conclude that

|ZU − ZV | ≤ Wp(U
?
#µ̂n, V

?
#µ̂n) +Wp(U

?
#µ?, V

?
#µ?) + E

[
Wp(U

?
#µ̂n, V

?
#µ̂n) +Wp(U

?
#µ?, V

?
#µ?)

]
.
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Let X ∼ µ, we have

|ZU − ZV | ≤ 2 (E(‖(U − V )X‖p))1/p
+

(
1

n

n∑
i=1

‖(U − V )Xi‖p
)1/p

+ E

( 1

n

n∑
i=1

‖(U − V )Xi‖p
)1/p


≤ ‖U − V ‖op

2(E(‖X‖p))1/p +

(
1

n

n∑
i=1

‖Xi‖p
)1/p

+ E

( 1

n

n∑
i=1

‖Xi‖p
)1/p


:= L‖U − V ‖op .

Note that X1:n = (X1, . . . , Xn) are independent and identically distributed samples according to µ?. By the
Jensen’s inequality and using the fact that q > p ≥ 1, we have

E[L] ≤ 4(E(‖X‖p))1/p ≤ 4(E(‖X‖q))1/q = 4Mq(µ?).

Thus, by a standard ε-net argument, we obtain that

E[ sup
E∈Sd,k

ZE ] ≤ inf
ε>0

{
εE[L] + 4σn1/2−1/p

√
log(N(Sd,k, ε, ‖ · ‖op )) + 2V n−1/p log(N(Sd,k, ε, ‖ · ‖op ))

}
Proposition C.3 shows that there exists a universal constant c > 0 such that

log(N(Sd,k, ε, ‖ · ‖op )) ≤ dk log

(
c
√
k

ε

)
.

Putting these pieces together and choosing ε =
√
kn−1/p (it is chosen to achieve the tight bound) yields that

E

[
sup

E∈Sd,k
ZE

]
.p,q inf

ε>0

ε+ n1/2−1/p

√√√√dk log

(√
k

ε

)
+ n−1/pdk log

(√
k

ε

)
.p,q n1/2−1/p

√
dk log(n) + n−1/pdk log(n).

Therefore, we conclude that

E

[
sup

E∈Sd,k

(
Wp(E

?
#µ̂n, E

?
#µ?)− E[Wp(E

?
#µ̂n, E

?
#µ?)]

)]
.p,q n

1/2−1/p
√
dk log(n) + n−1/pdk log(n).

This together with Eq. (10) and Eq. (11) yields the desired inequality.

C.4 Proof of Theorem 3.6

Using the same arguments in Theorem 3.5, we obtain Eq. (10) and Eq. (11). So it suffices to bound the gap
E[supE∈Sd,k(Wp(E

?
#µ̂n, E

?
#µ?)− E[Wp(E

?
#µ̂n, E

?
#µ?)])] under different condition.

We first claim that Wp(E
?
#µ̂n, E

?
#µ?) − E[Wp(E

?
#µ̂n, E

?
#µ?)] is sub-exponential with parameters

(
√
K/2n−1/(2∨p), (K/2)n−1/p) for all E ∈ Sd,k if the true measure µ? satisfies the projection Poincaré inequality

(cf. Definition 3.2). Indeed, we consider X = (X1, . . . , Xn) and X ′ = (X ′1, . . . , X
′
n) where Xi, X

′
i are independent

samples from E?#µ?. Let f(X) = Wp(E
?
#µ̂n, E

?
#µ?), we have E(|f(X)|) < +∞. By the triangle inequality, we

have

|f(X)− f(X ′)| ≤ n−1/p

(
n∑
i=1

‖Xi −X ′i‖p
)1/p

≤ n−
1

2∨p ‖X −X ′‖.

This implies that the following statement holds almost surely,

n∑
i=1

‖∇if(X)‖2 ≤ n−
2

2∨p and max
1≤i≤n

‖∇if(X)‖ ≤ n−
1
p , almost surely.
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In addition, the probability measure E?#µ? ∈ P(Rk) is assumed to satisfy the Poincaré inequality. Equipped
with Theorem C.5 yields that

P
(
Wp(E

?
#µ̂n, E

?
#µ?)− E[Wp(E

?
#µ̂n, E

?
#µ?)] ≥ t

)
≤ exp

(
− 1

K
min

{
t

n−1/p
,

t2

n−2/(2∨p)

})
,

For the simplicity, let ZE =Wp(E
?
#µ̂n, E

?
#µ?)−E[Wp(E

?
#µ̂n, E

?
#µ?)]. Then we have E[ZE ] = 0 and P(ZE ≥ t) ≤

exp(−K−1 min{n1/pt, n2/(2∨p)t2}). This together with the definition of ZE and Wainwright (2019, Theorem 2.2)
yields the desired claim.

Using the same argument in Theorem 3.5, we can interpret {ZE}E∈Sd,k as an empirical process indexed by E ∈
Sd,k and show that there exists a random variable L satisfying E[L] ≤ 4Mq(µ?) so that |ZU −ZV | ≤ L‖U −V ‖op

for all U, V ∈ Sd,k. By a standard ε-net argument, we obtain that

E[ sup
E∈Sd,k

ZE ] ≤ inf
ε>0

{
εE[L] +

√
2Kn−1/(2∨p)

√
log(N(Sd,k, ε, ‖ · ‖op )) + (K/2)n−1/p log(N(Sd,k, ε, ‖ · ‖op ))

}
.

Combining Proposition C.3 and choosing ε =
√
kn−1/p (it is chosen to achieve the tight bound) yields that

E

[
sup

E∈Sd,k
ZE

]
.p,q inf

ε>0

ε+ n−1/(2∨p)

√√√√dk log

(√
k

ε

)
+ n−1/pdk log

(√
k

ε

)
.p,q n−1/(2∨p)

√
dk log(n) + n−1/pdk log(n).

Therefore, we conclude that

E

[
sup

E∈Sd,k

(
Wp(E

?
#µ̂n, E

?
#µ?)− E[Wp(E

?
#µ̂n, E

?
#µ?)]

)]
.p,q n

−1/(2∨p)
√
dk log(n) + n−1/pdk log(n).

This together with Eq. (10) and Eq. (11) yields the desired inequality.

C.5 Proof of Theorem 3.7

Since the arguments in this proof hold true for both IPRW and PRW distances, we denote W = PWp,k or

W = PWp,k for short. Let f(X) = W (µ̂n, µ?), we have

Di = f(X)− f(X ′(i)) ≤W (µ̂n, µ̂
′
n) ≤ n−1/p

(
sup

E∈Sd,k
‖E?#(Xi)− E?#(X ′i)‖

)
.

By the triangle inequality, we have

E
[
|Di|k | X−i

]
≤ 2kn−k/p

(
E

[
sup

E∈Sd,k,X∼E?#µ
|X|k

])
.

Since the true measure µ? satisfies the Bernstein-type tail condition (cf. Definition 3.3), we have

E
[
|Di|k | X−i

]
≤ 2k−1n−k/pσ2k!V k−2 =

(2n−1/pσ)2k!(2n−1/pV )k−2

2

This implies that the condition in Theorem C.4 holds true with σi = 2n−1/pσ and M = 2n−1/pV . Equipped
with Theorem C.4 yields the desired inequality.

C.6 Proof of Theorem 3.8

Since the arguments in this proof hold true for both IPRW and PRW distances, we denote W = PWp,k or

W = PWp,k for short. We consider X = (X1, X2, . . . , Xn) and X ′ = (X ′1, X
′
2, . . . , X

′
n) where Xi, X

′
i are
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independent samples from µ?. Let f(X) = W (µ̂n, µ?), we have E(|f(X)|) < +∞. By the triangle inequality, we
have

|f(X)− f(X ′)| ≤ n−1/p

(
n∑
i=1

‖Xi −X ′i‖p
)1/p

≤ n−
1

2∨p ‖X −X ′‖.

This implies that the following statement holds almost surely,

n∑
i=1

‖∇if(X)‖2 ≤ n−
2

2∨p and max
1≤i≤n

‖∇if(X)‖ ≤ n−
1
p .

In addition, the true measure µ? satisfies the Poincaré inequality (cf. Definition 3.4). Equipped with Theorem C.5
yields the desired inequality.

D Postponed Proofs in Subsection 3.3

In this section, we provide the detailed proofs for Theorem 3.9-3.11 and Theorem A.1-A.2. Our results are
derived analogously to the proof in Bernton et al. (2019) for the estimators based on Wasserstein distance and
the proof in Nadjahi et al. (2019) for the estimators based on sliced-Wasserstein distance.

D.1 Preliminary technical results

To facilitate the reading, we collect several preliminary technical results which will be used in the postponed
proofs in subsection 3.3.

Theorem D.1 (Theorem 2.43 in Aliprantis and Border (2006)) A real-valued lower semi-continuous
function on a compact space attains a minimum value, and the nonempty set of minimizers is compact. Sim-
ilarly, an upper semicontinuous function on a compact set attains a maximum value, and the nonempty set of
maximizers is compact.

Definition D.1 (epiconvergence) Let X be a metric space and {fi}i∈N be a sequence of real-valued function
from X to R. We say that the sequence {fi}i∈N epiconverges to a function f : X → br if for each x ∈ X , the
following statement holds true,

lim inf
i→+∞

fi(xi) ≥ f(x) for every sequence {xi}i∈N such that xi → x,

lim sup
i→+∞

fi(xi) ≤ f(x) for some sequence {xi}i∈N such that xi → x.

Proposition D.2 (Proposition 7.29 in Rockafellar and Wets (2009)) Let X be a metric space and
{fi}i∈N be a sequence of real-valued function from X to R with a lower semi-continuous function f : X → R.
Then the sequence {fi}i∈N epiconverges to f if and only if

lim inf
i→+∞

( inf
x∈K

fi(x)) ≥ inf
x∈K

f(x) for every compact set K ⊆ X ,

lim sup
i→+∞

(sup
x∈O

fi(x)) ≤ sup
x∈O

f(x) for every open set O ⊆ X .

Recall that δ-argminx∈X f = {x ∈ X : f(x) ≤ infx∈X f + δ} for a generic function f : X → R. The following
theorem gives asymptotic properties for the infimum and δ-argmin of epiconvergent functions and thus a standard
approach to prove the existence and consistency of the estimators.

Theorem D.3 (Theorem 7.31 in Rockafellar and Wets (2009)) Let X be a metric space and {fi}i∈N be
a sequence of function which epiconverges to a lower semi-continuous function f with infx∈X f ∈ (−∞,+∞).
Then we have the following statements,

1. infx∈X fi → infx∈X f if and only if for every δ > 0 there exists a compact set B ⊆ X and N ∈ N such that
infx∈B fi ≤ infx∈X fi + δ for all i ≥ N .
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2. lim supi→+∞(δ- argminx∈X fi) ⊆ δ- argminx∈X f for any δ ≥ 0 and lim supi→+∞(δi- argminx∈X fi) ⊆
argminx∈X f whenever δi ↓ 0.

3. Assume that infx∈X fi → infx∈X f , there exists a sequence δi ↓ 0 such that δi- argminx∈X fi → argminx∈X f .
Conversely, if argminx∈X f 6= ∅ and if such a sequence exists, then infx∈X fi → infx∈X f .

The following theorem summarizes the well-known Skorokhod’s representation theorem.

Theorem D.4 (Skorokhod’s representation theorem) Let {µn}n∈N be a sequence of probability measures
on a metric space S such that µn converges weakly to some probability measure µ∞ on S as n → ∞. Suppose
also that the support of µ∞ is separable. Then there exist random variables Xn defined on a common probability
space (Ω,F ,P) such that the law of Xn is µn for all n (including n = ∞) and such that Xn converges to X∞
almost surely.

The following theorem presents the classical results which lead to a standard approach for proving the measura-
bility of the estimators. Note that the projection proj(D) = {x ∈ X : ∃y ∈ Y, s.t.(x, y) ∈ D} for each D ⊆ X ×Y
and the section Dx = {y ∈ Y : (x, y) ∈ D} for each x ∈ proj(D).

Theorem D.5 (Corollary 1 in Brown and Purves (1973)) Let X ,Y be complete separable metric spaces
and f be a real-valued Borel measurable function defined on a Borel subset D of X × Y. Suppose that for each
x ∈ proj(D), the section Dx is σ-compact and f(x, ·) is lower semi-continuous with respect to the relative topology
on Dx. Then

1. The sets G = proj(D) and I = {x ∈ G : ∃y ∈ Dx s.t. y = argminz∈Y f(x, z)} are Borel.

2. For each ε > 0, there exists a Borel measure function ϕε satisfying, for x ∈ G that,

f(x, ϕε(x))

 = infy∈G f(x, y), x ∈ I,
≤ ε+ infy∈G f(x, y), if x /∈ I and infy∈G f(x, y) 6= −∞,
≤ −ε−1, x /∈ I and infy∈G f(x, y) = −∞.

To show that the MEPRW estimator is measurable, we establish the lower semi-continuity of the expectation of
empirical PRW distance in the following lemma.

Lemma D.6 The expected empirical PRW distance is lower semi-continuous in the usual weak topology. If
the sequences {µi}i∈N, {νi}i∈N ⊆ P(Rd) satisfying that µi ⇒ µ ∈ P(Rd) and νi ⇒ ν ∈ P(Rd), we have
E[PWp,k(µ, ν̂m)] ≤ lim infi→+∞ E[PWp,k(µi, ν̂i,m)], where ν̂m = (1/m)

∑m
j=1 δZj for i.i.d. samples Z1:m accord-

ing to ν and {ν̂i,m}i∈N are defined similarly.

D.2 Proof of Theorem 3.9

We first prove that argminθ∈Θ PWp,k(µ?, µθ) 6= ∅. Indeed, by Assumption 3.2 and Theorem 3.3, the mapping
θ 7→ PWp,k(µ?, µθ) is lower semi-continuous. By Assumption 3.3, the set Θ?(τ) is bounded for some τ > 0. By
the definition of inf, there exists θ′ ∈ Θ such that PWp,k(µ?, µθ′) = infθ∈Θ PWp,k(µ?, µθ) + τ/2. This implies
that θ′ ∈ Θ?(τ) and Θ?(τ) is nonempty. By the lower semi-continuity of the mapping θ 7→ PWp,k(µ?, µθ), the
set Θ?(τ) is closed. Putting these pieces together yields that Θ?(τ) is compact. Therefore, we conclude the
desired result from Theorem D.1.

Then we show that there exists a set E ⊆ Ω with P(E) = 1 such that, for all ω ∈ E, the sequence of mappings
θ 7→ PWp,k(µ̂n(ω), µθ) epiconverges to the mapping θ 7→ PWp,k(µ?, µθ) as n → +∞. Indeed, we only need to
prove that the conditions in Proposition D.2 hold true.

Fix K ⊆ Θ as a compact set. By the lower semi-continuity of the mapping θ 7→ PWp,k(µ̂n(ω), µθ) (cf. Assump-
tion 3.2 and Theorem 3.3), Theorem D.1 implies that

inf
θ∈K
PWp,k(µ̂n(ω), µθ) = PWp,k(µ̂n(ω), µθn)

for some sequence θn = θn(ω) ∈ K. Thus, we have

lim inf
n→+∞

inf
θ∈K
PWp,k(µ̂n(ω), µθ) = lim inf

n→+∞
PWp,k(µ̂n(ω), µθn).
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By the definition of lim inf, there exists a subsequence of {θn}n∈N such that PWp,k(µ̂n(ω), µθn) converges to
lim infn→+∞ PWp,k(µ̂n(ω), µθn) along this subsequence. By the compactness of K, this subsequence must have
a convergent subsubsequence. We denote this subsubsequence as {θnj}j∈N and its limit as θ̄ ∈ K. Then

lim inf
n→+∞

PWp,k(µ̂n(ω), µθn) = lim
j→+∞

PWp,k(µ̂nj (ω), µθnj ).

Since ω ∈ E where P(E) = 1, Assumption 3.1 and 3.2 imply µ̂nj (ω) ⇒ µ? and µθnj ⇒ µθ̄.

These pieces together with the lower semi-continuity of the PRW distance (cf. Theorem 3.3) yields that
limj→+∞ PWp,k(µ̂nj (ω), µθnj ) ≥ PWp,k(µ?, µθ̄). Putting these pieces together yields that

lim inf
n→+∞

inf
θ∈K
PWp,k(µ̂n(ω), µθ) ≥ inf

θ∈K
PWp,k(µ?, µθ).

Fix O ⊆ Θ as an arbitary open set. By the definition of inf, there exists a sequence θ′n = θ′n(ω) ∈ O such that
PWp,k(µ?, µθ′n) → infθ∈O PWp,k(µ?, µθ). In addition, infθ∈O PWp,k(µ̂n(ω), µθ) ≤ PWp,k(µ̂n(ω), µθ′n). Thus,
we have

lim sup
n→+∞

inf
θ∈O
PWp,k(µ̂n(ω), µθ) ≤ lim sup

n→+∞
PWp,k(µ̂n(ω), µθ′n)

≤ lim sup
n→+∞

PWp,k(µ̂n(ω), µ?) + lim sup
n→+∞

PWp,k(µ?, µθ′n).

Since ω ∈ E where P(E) = 1, Assumption 3.1 implies lim supn→+∞ PWp,k(µ̂n(ω), µ?) = 0. By the defini-

tion of θ′n, lim supn→+∞ PWp,k(µ?, µθ′n) = infθ∈O PWp,k(µ?, µθ). Putting these pieces together yields that

lim supn→+∞ infθ∈O PWp,k(µ̂n(ω), µθ) ≤ infθ∈O PWp,k(µ?, µθ).

Proposition D.2 guarantees that there exists a set E ⊆ Ω with P(E) = 1 such that, for all ω ∈ E, the sequence
of mappings θ 7→ PWp,k(µ̂n(ω), µθ) epiconverges to the mapping θ 7→ PWp,k(µ?, µθ) as n → +∞. Then the
second statement of Theorem D.3 implies that

lim sup
n→+∞

argmin
θ∈Θ

PWp,k(µ̂n(ω), µθ) ⊆ argmin
θ∈Θ

PWp,k(µ?, µθ). (12)

The next step is to show that, for every δ > 0, there exists a compact set B ⊆ Θ and N ∈ N such that
infθ∈B PWp,k(µ̂n(ω), µθ) ≤ infθ∈Θ PWp,k(µ̂n(ω), µθ) + δ. In what follows, we prove a stronger statement which
states that the above inequality holds true with δ = 0. Indeed, by the same reasoning for the open set case in
the proof of epiconvergence, we have

lim sup
n→+∞

inf
θ∈Θ
PWp,k(µ̂n(ω), µθ) ≤ inf

θ∈Θ
PWp,k(µ?, µθ).

By Assumption 3.3 and using previous argument, Θ?(τ) is nonempty and compact for some τ > 0. The above
inequality implies that there exists n1(ω) > 0 such that, for all n ≥ n1(ω), the set {θ ∈ Θ : PWp,k(µ̂n(ω), µθ) ≤
infθ′∈Θ PWp,k(µ?, µθ′) + τ/2} is nonempty. For any θ in this set and let n ≥ n1(ω), we have

PWp,k(µ?, µθ) ≤ PWp,k(µ?, µ̂n(ω)) + inf
θ∈Θ
PWp,k(µ?, µθ) +

τ

2
.

By Assumption 3.1, there exists n2(ω) > 0 such that, for all n ≥ n2(ω), we have

PWp,k(µ?, µ̂n(ω)) ≤ Wp(µ?, µ̂n(ω)) ≤ τ

2
.

Putting these pieces together yields that, for all n ≥ max{n1(ω), n2(ω)}, we have PWp,k(µ?, µθ) ≤
infθ∈Θ PWp,k(µ?, µθ) + τ . This implies that, for all n ≥ max{n1(ω), n2(ω)} that,{

θ ∈ Θ : PWp,k(µ̂n(ω), µθ) ≤ inf
θ′∈Θ
PWp,k(µ?, µθ′) +

τ

2

}
⊆ Θ?(τ).

Therefore, we have infθ∈Θ PWp,k(µ̂n(ω), µθ) = infθ∈Θ?(τ) PWp,k(µ̂n(ω), µθ). This together with the compactness
of Θ?(τ) yields the desired result.
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The first statement of Theorem D.3 implies that

inf
θ∈Θ
PWp,k(µ̂n(ω), µθ)→ inf

θ∈Θ
PWp,k(µ?, µθ), as n→ +∞. (13)

By Assumption 3.2 and Theorem 3.3, the mapping θ 7→ PWp,k(µ̂n(ω), µθ) is lower semi-continuous. Theorem D.1
implies argminθ∈Θ PWp,k(µ̂n(ω), µθ) are nonempty for all n ≥ max{n1(ω), n2(ω)}. Together with Eq. (12)
and (13) yields the desired results.

Finally, we remark that these results hold true for δn-argminθ∈Θ PWp,k(µ̂n, µθ) with δn → 0. For Eq. (12)
and (13), the analogous results can be derived by using the second and third statements of Theorem D.3. To show
that δn-argminθ∈Θ PWp,k(µ̂n, µθ) is nonempty, we notice it contains the nonempty set argminθ∈Θ PWp,k(µ̂n, µθ).

D.3 Proof of Theorem 3.10

Following up the same approach used for analyzing Theorem 3.9, it is straightforward to derive that
argminθ∈Θ PWp,k(µ?, µθ) 6= ∅. Then we show that there exists a set E ⊆ Ω with P(E) = 1 such that, for
all ω ∈ E, the sequences θ 7→ E[PWp,k(µ̂n(ω), µ̂θ,m(n)) | X1:n] epiconverges θ 7→ PWp,k(µ?, µθ) as n → +∞.
Indeed, it suffices to verify the conditions in Proposition D.2.

Fix K ⊆ Θ as an arbitrary compact set. By Assumption 3.2 and Lemma D.6, the mapping θ 7→
E[PWp,k(µ̂n(ω), µ̂θ,m(n)) | X1:n] is lower semi-continuous. Then Theorem D.1 implies that

inf
θ∈K

E[PWp,k(µ̂n(ω), µ̂θ,m(n)) | X1:n] = E[PWp,k(µ̂n(ω), µ̂θn,m(n)) | X1:n]

for some sequence θn = θn(ω) ∈ K. Thus, we have

lim inf
n→+∞

inf
θ∈K

E
[
PWp,k(µ̂n(ω), µ̂θ,m(n)) | X1:n

]
= lim inf

n→+∞
E
[
PWp,k(µ̂n(ω), µ̂θn,m(n)) | X1:n

]
.

Following up the same approach used in the proof of Theorem 3.9, there exists a subsequence of {θn}n∈N, denoted
by {θnj}j∈N with the limit θ̄ ∈ K, such that

lim inf
n→+∞

E[PWp,k(µ̂n(ω), µ̂θn,m(n)) | X1:n] = lim
j→+∞

E[PWp,k(µ̂nj (ω), µ̂θnj ,m(nj)) | X1:nj ]

≥ lim inf
j→+∞

E[PWp,k(µ̂nj (ω), µθnj )]− lim sup
j→+∞

E[PWp,k(µθnj , µ̂θnj ,m(nj)) | X1:nj ].

Since ω ∈ E where P(E) = 1, Assumption 3.1 and 3.2 imply µ̂nj (ω) ⇒ µ? and µθnj ⇒ µθ̄.

These pieces together with the lower semi-continuity of the PRW distance (cf. Theorem 3.3) yields that
lim infj→+∞ PWp,k(µ̂nj (ω), µθnj ) ≥ PWp,k(µ?, µθ̄). By Assumption 3.4 and using θnj → θ̄, we have

lim supj→+∞ E[PWp,k(µθnj , µ̂θnj ,m(nj)) | X1:nj ]→ 0. Putting these pieces together yields that

lim inf
n→+∞

inf
θ∈K

E[PWp,k(µ̂n(ω), µ̂θ,m(n)) | X1:n] ≥ inf
θ∈K
PWp,k(µ?, µθ).

Fix O ⊆ Θ as an arbitary open set. By the definition of inf, there exists a sequence θ′n = θ′n(ω) ∈ O such that
PWp,k(µ?, µθ′n)→ infθ∈O PWp,k(µ?, µθ). In addition, we have

inf
θ∈O

E[PWp,k(µ̂n(ω), µ̂θ,m(n)) | X1:n] ≤ E[PWp,k(µ̂n(ω), µ̂θ′n,m(n)) | X1:n].

Thus, we have

lim sup
n→+∞

inf
θ∈O

E[PWp,k(µ̂n(ω), µ̂θ,m(n)) | X1:n] ≤ lim sup
n→+∞

E[PWp,k(µ̂n(ω), µ̂θ′n,m(n)) | X1:n]

≤ lim sup
n→+∞

PWp,k(µ̂n(ω), µ?) + lim sup
n→+∞

PWp,k(µ?, µθ′n) + lim sup
n→+∞

E[PWp,k(µθ′n , µ̂θ′n,m(n)) | X1:n].

Since ω ∈ E where P(E) = 1, Assumption 3.1 implies lim supn→+∞ PWp,k(µ̂n(ω), µ?) = 0. By the def-

inition of θ′n, we have lim supn→+∞ PWp,k(µ?, µθ′n) = infθ∈O PWp,k(µ?, µθ). Using Assumption 3.4 and
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limj→+∞ θmj = θ̄, we have lim supn→+∞ E[PWp,k(µθ′n , µ̂θ′n,m(n)) | X1:n] = 0. Putting these pieces together

yields that lim supn→+∞ infθ∈O E[PWp,k(µ̂n(ω), µ̂θ,m(n)) | X1:n] ≤ infθ∈O PWp,k(µ?, µθ).

Proposition D.2 guarantees that there exists a set E ⊆ Ω with P(E) = 1 such that, for all ω ∈ E, the sequence
of mappings θ 7→ E[PWp,k(µ̂n(ω), µ̂θ,m(n)) | X1:n] epiconverges to the mapping θ 7→ PWp,k(µ?, µθ) as n→ +∞.
Then the second statement of Theorem D.3 implies that

lim sup
n→+∞

argmin
θ∈Θ

E[PWp,k(µ̂n(ω), µ̂θ,m(n)) | X1:n] ⊆ argmin
θ∈Θ

PWp,k(µ?, µθ). (14)

The next step is to show that, for every δ > 0, there exists a compact set B ⊆ Θ and N ∈ N such that
infθ∈B E[PWp,k(µ̂n(ω), µ̂θ,m(n)) | X1:n] ≤ infθ∈Θ E[PWp,k(µ̂n(ω), µ̂θ,m(n)) | X1:n] + δ. In what follows, we prove
a stronger statement which states that the above inequality holds true with δ = 0. Indeed, by the same reasoning
for the open set case in the proof of epiconvergence, we have

lim sup
n→+∞

inf
θ∈Θ

E[PWp,k(µ̂n(ω), µ̂θ,m(n)) | X1:n] ≤ inf
θ∈Θ
PWp,k(µ?, µθ).

By Assumption 3.3 and using previous argument, Θ?(τ) is nonempty and compact for some τ > 0. The
above inequality implies that there exists n1(ω) > 0 such that, for all n ≥ n1(ω), the set {θ ∈ Θ :
E[PWp,k(µ̂n(ω), µ̂θ,m(n)) | X1:n] ≤ infθ′∈Θ PWp,k(µ?, µθ′) + τ/3} is nonempty. For any θ in this set and let
n ≥ n1(ω), we have

PWp,k(µ?, µθ) ≤ PWp,k(µ?, µ̂n(ω)) + E[PWp,k(µθ, µ̂θ,m(n)) | X1:n] + inf
θ∈Θ
PWp,k(µ?, µθ) +

τ

3
.

By Assumption 3.1, there exists n2(ω) > 0 such that, for all n ≥ n2(ω), we have

PWp,k(µ?, µ̂n(ω)) ≤ Wp(µ?, µ̂n(ω)) ≤ τ

3
.

By Assumption 3.4, there exists n3(ω) > 0 such that, for all n ≥ n3(ω), we have

E[PWp,k(µ̂θ,m(n), µθ) | X1:n] ≤ E[Wp(µ̂θ,m(n), µθ) | X1:n] ≤ τ

3
.

Putting these pieces together yields that, for all n ≥ max{n1(ω), n2(ω), n3(ω)} that,

PWp,k(µ?, µθ) ≤ inf
θ∈Θ
PWp,k(µ?, µθ) + τ.

This implies that, for all n ≥ max{n1(ω), n2(ω), n3(ω)} that,{
θ ∈ Θ : E[PWp,k(µ̂n(ω), µ̂θ,m(n)) | X1:n] ≤ inf

θ′∈Θ
PWp,k(µ?, µθ′) +

τ

3

}
⊆ Θ?(τ).

Therefore, we have infθ∈Θ E[PWp,k(µ̂n(ω), µ̂θ,m(n))|X1:n] = infθ∈Θ?(τ) E[PWp,k(µ̂n(ω), µ̂θ,m(n))|X1:n]. This to-
gether with the compactness of Θ?(τ) yields the desired result.

The first statement of Theorem D.3 implies that

inf
θ∈Θ

E[PWp,k(µ̂n(ω), µ̂θ,m(n)) | X1:n]→ inf
θ∈Θ
PWp,k(µ?, µθ), as n→ +∞. (15)

By Assumption 3.2 and Lemma D.6, the mapping θ 7→ E[PWp,k(µ̂n(ω), µ̂θ,m(n)) | X1:n] is lower semi-

continuous. Theorem D.1 implies argminθ∈Θ E[PWp,k(µ̂n(ω), µ̂θ,m(n)) | X1:n] are nonempty for all n ≥
max{n1(ω), n2(ω), n3(ω)}. Together with Eq. (14) and (15) yields the desired results.

Finally, we remark that these results hold true for δn-argminθ∈Θ E[PWp,k(µ̂n(ω), µ̂θ,m(n)) | X1:n] with δn →
0. For Eq. (14) and (15), the analogous results can be derived by using the second and third statements of
Theorem D.3. To show that δn-argminθ∈Θ E[PWp,k(µ̂n(ω), µ̂θ,m(n)) | X1:n] is nonempty, we notice it contains

the nonempty set argminθ∈Θ E[PWp,k(µ̂n(ω), µ̂θ,m(n)) | X1:n].
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D.4 Proof of Theorem 3.11

We first prove that argminθ∈Θ PWp,k(µ̂n, µθ) 6= ∅. Indeed, by Assumption 3.2 and Theorem 3.3, the mapping
θ 7→ PWp,k(µ̂n, µθ) is lower semi-continuous. By Assumption 3.5, the set Θn(τ) is bounded for some τn > 0. By
the definition of inf, there exists θ′n ∈ Θ such that PWp,k(µ̂n, µθ′n) = infθ∈Θ PWp,k(µ̂n, µθ) + τn/2. This implies

that θ′n ∈ Θn(τ) and Θn(τ) is nonempty. By the lower semi-continuity of the mapping θ 7→ PWp,k(µ̂n, µθ), the
set Θn(τ) is closed. Putting these pieces together yields that Θn(τ) is compact. Therefore, we conclude the
desired result from Theorem D.1.

Then we show that the sequences θ 7→ E[PWp,k(µ̂n, µ̂θ,m) | X1:n] epiconverges to θ 7→ PWp,k(µ̂n, µθ) as
m→ +∞. Indeed, it suffices to verify the conditions in Proposition D.2.

Fix K ⊆ Θ as an arbitrary compact set. By Assumption 3.2 and Lemma D.6, the mapping θ 7→
E[PWp,k(µ̂n, µ̂θ,m) | X1:n] is lower semi-continuous. Then Theorem D.1 implies that

inf
θ∈K

E[PWp,k(µ̂n, µ̂θ,m) | X1:n] = E[PWp,k(µ̂n, µ̂θm,m) | X1:n]

for some sequence θm ∈ K. Thus, we have

lim inf
m→+∞

inf
θ∈K

E
[
PWp,k(µ̂n, µ̂θ,m) | X1:n

]
= lim inf
m→+∞

E
[
PWp,k(µ̂n, µ̂θm,m) | X1:n

]
.

Following up the same approach used in the proof of Theorem 3.9, there exists a subsequence of {θm}m∈N,
denoted by {θmj}j∈N with the limit θ̄ ∈ K, such that

lim inf
m→+∞

E[PWp,k(µ̂n, µ̂θm,m) | X1:n] = lim
j→+∞

E[PWp,k(µ̂n, µ̂θmj ,mj ) | X1:n]

≥ lim inf
j→+∞

E[PWp,k(µ̂n, µθmj )]− lim sup
j→+∞

E[PWp,k(µθmj , µ̂θmj ,mj ) | X1:n].

Assumption 3.1 and 3.2 imply µ̂mj ⇒ µ? and µθmj ⇒ µθ̄. Together with the lower semi-continuity of

the PRW distance yields that lim infj→+∞ PWp,k(µ̂n, µθmj ) ≥ PWp,k(µ̂n, µθ̄). By Assumption 3.4 and

using θmj → θ̄, we have lim supj→+∞ E[PWp,k(µθmj , µ̂θmj ,mj ) | X1:n] = 0. Thus, we conclude that

lim infm→+∞ E[PWp,k(µ̂n, µ̂θm,m) | X1:n] ≥ infθ∈K PWp,k(µ̂n, µθ).

Fix O ⊆ Θ as an arbitary open set. By the definition of inf, there exists a sequence θ′m ∈ O such that
PWp,k(µ̂n, µθ′m)→ infθ∈O PWp,k(µ̂n, µθ). In addition, we have

inf
θ∈O

E[PWp,k(µ̂n, µ̂θ,m) | X1:n] ≤ E[PWp,k(µ̂n, µ̂θ′m,m) | X1:n].

Thus, we have

lim sup
m→+∞

inf
θ∈O

E[PWp,k(µ̂n, µ̂θ,m) | X1:n] ≤ lim sup
m→+∞

E[PWp,k(µ̂n, µ̂θ′m,m) | X1:n]

≤ lim sup
m→+∞

PWp,k(µ̂n, µθ′m) + lim sup
n→+∞

E[PWp,k(µθ′n , µ̂θ′m,m) | X1:n].

By the definition of θ′m, we have lim supm→+∞ PWp,k(µ̂n, µθ′m) = infθ∈O PWp,k(µ̂n, µθ). Using Assumption 3.4

and limj→+∞ θmj = θ̄, we have lim supm→+∞ E[PWp,k(µθ′m , µ̂θ′m,m) | X1:n] = 0. Putting these pieces together

yields that lim supm→+∞ infθ∈O E[PWp,k(µ̂n, µ̂θ,m) | X1:n] ≤ infθ∈O PWp,k(µ̂n, µθ).

Proposition D.2 guarantees that the sequence of mappings θ 7→ E[PWp,k(µ̂n, µ̂θ,m) | X1:n] epiconverges to the
mapping θ 7→ PWp,k(µ̂n, µθ) as m→ +∞. Then the second statement of Theorem D.3 implies that

lim sup
m→+∞

argmin
θ∈Θ

E[PWp,k(µ̂n, µ̂θ,m) | X1:n] ⊆ argmin
θ∈Θ

PWp,k(µ̂n, µθ). (16)

The next step is to show that, for every δ > 0, there exists a compact set B ⊆ Θ and N ∈ N such that
infθ∈B E[PWp,k(µ̂n, µ̂θ,m) | X1:n] ≤ infθ∈Θ E[PWp,k(µ̂n, µ̂θ,m) | X1:n] + δ. In what follows, we prove a stronger
statement which states that the above inequality holds true with δ = 0. Indeed, by the same reasoning for the
open set case in the proof of epiconvergence, we have

lim sup
n→+∞

inf
θ∈Θ

E[PWp,k(µ̂n, µ̂θ,m) | X1:n] ≤ inf
θ∈Θ
PWp,k(µ̂n, µθ).
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By Assumption 3.5 and using previous argument, Θn(τ) is nonempty and compact for some τ > 0. The above
inequality implies that there exists m1 > 0 such that, for all m ≥ m1, the set {θ ∈ Θ : E[PWp,k(µ̂n, µ̂θ,m) |
X1:n] ≤ infθ∈Θ PWp,k(µ̂n, µθ) + τ/2} is nonempty. For any θ in this set and let m ≥ m1, we have

PWp,k(µ̂n, µθ) ≤ E[PWp,k(µ̂θ,m, µθ) | X1:n] + inf
θ∈Θ
PWp,k(µ̂n, µθ) +

τ

2
.

By Assumption 3.4, there exists m2 > 0 such that, for all m ≥ m2, we have

E[PWp,k(µ̂θ,m, µθ) | X1:n] ≤ E[Wp(µ̂θ,m, µθ) | X1:n] ≤ τ

2
.

Putting these pieces together yields that PWp,k(µ̂n, µθ) ≤ infθ′∈Θ PWp,k(µ̂n, µθ′) + τ for all m ≥ max{m1,m2}.
This implies that, for all m ≥ max{m1,m2} that,{

θ ∈ Θ : E[PWp,k(µ̂n, µ̂θ,m) | X1:n] ≤ inf
θ′∈Θ
PWp,k(µ̂n, µθ′) +

τ

2

}
⊆ Θn(τ).

Therefore, we have infθ∈Θ E[PWp,k(µ̂n, µ̂θ,m)|X1:n] = infθ∈Θn(τ) E[PWp,k(µ̂n, µ̂θ,m)|X1:n]. This together with
the compactness of Θn(τ) yields the desired result.

The first statement of Theorem D.3 implies that

inf
θ∈Θ

E[PWp,k(µ̂n, µ̂θ,m) | X1:n]→ inf
θ∈Θ
PWp,k(µ̂n, µθ), as m→ +∞. (17)

By Assumption 3.2 and Lemma D.6, the mapping θ 7→ E[PWp,k(µ̂n, µ̂θ,m) | X1:n] is lower semi-continuous.
Theorem D.1 implies argminθ∈Θ E[PWp,k(µ̂n, µ̂θ,m) | X1:n] are nonempty for all m ≥ max{m1,m2}. Together
with Eq. (16) and Eq. (17) yields the desired results.

Finally, we remark that these results hold true for δn-argminθ∈Θ E[PWp,k(µ̂n, µ̂θ,m) | X1:n] with δn → 0. For
Eq. (16) and (17), the analogous results can be derived by using the second and third statements of Theorem D.3.
To show that δn-argminθ∈Θ E[PWp,k(µ̂n, µ̂θ,m) | X1:n] is nonempty, we notice it contains the nonempty set
argminθ∈Θ E[PWp,k(µ̂n, µ̂θ,m) | X1:n].

D.5 Proof of Lemma D.6

Since νi ⇒ ν ∈P(Rd) and Rd is separable, the Skorokhod’s representation theorem (cf. Theorem D.4) implies
that there exists m sequences of random variables {{Zki }i∈N, k ∈ [m]} and m random variables {Zk, k ∈ [m]}
such that the distribution of Zki is νi, the distribution of Zk is ν and {Zki }i∈N converges to Zk almost surely for
all k ∈ [m].

Suppose that ν̂i,m = (1/m)(
∑m
k=1 δZki ) and ν̂m = (1/m)(

∑m
k=1 Z

k), we proceed to the key part of the proof and

show that {ν̂i,m}i∈N weakly converges to ν̂m. Indeed, it suffices to consider the deterministic case where ν̂i,m =
(1/m)(

∑m
k=1 δzki ) and ν̂m = (1/m)(

∑m
k=1 z

k) where {{zki }i∈N, k ∈ [m]} and {zk, k ∈ [m]} are all deterministic

such that limi→+∞
(
maxk∈[m] ‖zki − zk‖

)
= 0. Since the Wasserstein distance metrizes the weak convergence

(cf. Theorem B.4), we only need to show that limi→+∞W2(ν̂i,m, ν̂m) = 0. By the definition of the Wasserstein
distance, {ν̂i,m}i∈N and ν̂m, we have W2

2 (ν̂i,m, ν̂m) ≤ maxk∈[m] ‖zki − zk‖2. Putting these pieces together yields
that {ν̂i,m}i∈N weakly converges to ν̂m almost surely.

Finally, we conclude from the lower semi-continuity of the PRW distance (cf. Theorem 3.3) and the Fatou’s
lemma that

E[PWp,k(µ, ν̂m)] ≤ E
[
lim inf
i→+∞

PWp,k(µi, ν̂i,m)

]
≤ lim inf

i→+∞
E[PWp,k(µi, ν̂i,m)].

This completes the proof.

D.6 Proof of Theorem A.1

Using Assumption 3.2 and Theorem 3.3, the mapping (µ, θ) 7→ PWp,k(µ, µθ) is lower semi-continuous in P(Rd)×
Θ. It remains to verify that the conditions in Theorem D.5 are satisfied.
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We notice that the empirical measure µ̂n(ω) depends on ω ∈ Ω only through X1:n ∈ ⊗ni=1Rd. Thus, we can write
µ̂n(ω) = µ̂n(x) as a function in ⊗ni=1Rd. Let D = (⊗ni=1Rd)×Θ, it is a Borel subset of (⊗ni=1Rd)×R. Since Rd
is a Polish space, Rd × . . .× Rd endowed with the product topology is a Polish space. Dx is σ-compact for any
x ∈ proj(D) since Dx ⊆ Θ and Θ is σ-compact.

Define f(x, θ) = PWp,k(µ̂n(x), µθ), we claim that f is measurable on D and f(x, ·) is lower semi-continuous
on Dx. Indeed, we have shown that the mapping (µ, θ) 7→ PWp,k(µ, µθ) is lower semi-continuous and thus
measurable in P(Rd)×Θ. The mapping x 7→ µ̂n(x) is measurable in ⊗ni=1Rd. Since the composition of measurable
functions is measure, f is measurable on D. Moreover, for any x ∈ ⊗ni=1Rd, f(x, ·) is lower semi-continuous on
Dx since the mapping (µ, θ) 7→ PWp,k(µ, µθ) is lower semi-continuous on D. Putting these pieces together yields
the desired results.

D.7 Proof of Theorem A.2

Using Assumption 3.2 and Lemma D.6, the mapping (ν, θ) 7→ E[PWp,k(ν, µ̂θ,m) | X1:n] is lower semi-continuous in
P(Rd)×Θ. Then the proof can be done similarly to the proof of Theorem A.1 using this result and Theorem D.5.

E Postponed Proofs in Subsection 3.4

In this section, we provide the detailed proofs for Theorem 3.12 and Theorem A.3. Our derivation is the
refinement of the analysis in Bernton et al. (2019) for minimal Wasserstein estimators.

E.1 Preliminary technical results

To facilitate reading, we collect several preliminary technical results which will be used in the postponed proofs
in subsection 3.4.

Let (X , ‖ · ‖X) be a normed linear space and θ 7→ fθ be a map from a subset Θ of Rd into X . The statistical
information comes from a sequence {fn}n∈N of random elements of X , each of which is assumed to be measurable
with respect to the σ-algebra generated by the balls in X . In some sense fn should converge to fθ? where θ? is
some fixed (but unknown) point in the interior of Θ. To avoid the abuse of notation, we use K1(x, β) here.

Theorem E.1 (Theorem 4.2 in Pollard (1980)) Suppose the following assumptions hold:

1. infθ/∈N ‖fθ − fθ?‖X > 0 for every neighborhood N of θ?.

2. θ 7→ fθ is norm differentiable with non-singular derivative Dθ? at θ?.

3. There exists a random element G? ∈ X for which Gn :=
√
n(fn − fθ?) ⇒ G? in the sense for the metric

induced by the norm ‖ · ‖X .

Then the limiting distribution of the goodness-of-fit statistic is given by

√
n inf
θ∈Θ
‖fn − fθ‖X ⇒ inf

θ∈Θ
‖G? − 〈θ,Dθ?〉‖X .

Let K1(x, β) = {θ : ‖x− 〈θ,Dθ?〉‖X ≤ infθ′∈Θ ‖x− 〈θ′, Dθ?〉‖X + β} and Mn is defined by

Mn =

{
θ ∈ Θ : ‖fn − fθ‖X ≤ inf

θ′∈Θ
‖fn − fθ′‖X + ηn/

√
n

}
,

where ηn > 0 is any sequence such that P(ηn → 0) = 1 and Mn is nonempty.

Theorem E.2 (Theorem 7.2 in Pollard (1980)) Under the conditions of Theorem E.1, there exists a se-
quence of real number βn ↓ 0 satisfying

P?(Mn ⊆ θ? + n−1/2K1(Gn, βn))→ 1, as n→ +∞.

Moreover, for any ε > 0, we have P(dH(K1(G?n, 0),K1(Gn, βn)) < ε)→ 1 as n→ +∞.
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E.2 Proof of Theorem 3.12

First, we show that Mn ⊆ N1 with (inner) probability approaching 1 as n→ +∞. Indeed, with inner probability
approaching 1, we have

argmin
θ∈Θ

PW1,1(µ̂n, µθ) ⊆ argmin
θ∈Θ

PW1,1(µ?, µθ).

By the definition of PW1,1, we conclude that any minimizer of ‖F̂n−Fθ‖L will be included in the set of minimizers
of ‖F?−Fθ‖L with inner probability approaching 1. By Assumption 3.8, the minimizer of ‖F?−Fθ‖L is unique and
N1 is the neighborhood of this minimizer. Putting these pieces together yields that the set infθ∈Θ PW1,1(µ̂n, µθ)
is contained in the set N1 with (inner) probability approaching 1 as n → +∞. By the definition of Mn, we
achieve the desired result.

Then we make three key claims. First, we claim that Mn ⊆ Θn with (inner) probability approaching 1 as
n→ +∞, where Θn is defined by

Θn =

{
θ ∈ Θ : ‖θ − θ?‖Θ ≤

4
√
n‖F̂n − F?‖L + 2ηn

c?
√
n

}
.

Indeed, for any θ ∈ N1, we derive from the triangle inequality that

‖F̂n − Fθ‖L − ‖F̂n − Fθ?‖L ≥ ‖Fθ − F?‖L − ‖Fθ? − F?‖L − 2‖F̂n − F?‖L.

Using the definition of PW1,1 together with Assumption 3.8, we have

‖F̂n − Fθ‖L − ‖F̂n − Fθ?‖L ≥ c?‖θ − θ?‖Θ − 2‖F̂n − F?‖L. (18)

Since Mn ⊆ N1 with (inner) probability approaching one, Eq. (18) holds true for any θ ∈ Mn with (inner)
probability approaching one. Moreover, by the definition of Mn, we have θ ∈Mn satisfies

‖F̂n − Fθ‖L ≤ inf
θ′∈Θ
PW1,1(µ̂n, µθ′) +

ηn√
n
≤ ‖F̂n − Fθ?‖L +

ηn√
n

(19)

Combining Eq. (18), Eq. (19) and the definition of Θn, we conclude that θ ∈ Θn if θ ∈Mn with (inner) probability
approaching 1. This completes the proof the first claim.

Second, we claim that argminθ′∈N1
‖Gn − 〈

√
n(θ′ − θ?), Dθ?〉‖L ⊆ N1 ∩Θn with (inner) probability approaching

1 as n→ +∞. Indeed, by the definition of Gn, we have

‖Gn − 〈
√
n(θ′ − θ?), Dθ?〉‖L =

√
n‖F̂n − Fθ? − 〈θ − θ?, Dθ?〉‖L.

For the simplicity of notation, we let Rθ = Fθ − Fθ? − 〈θ − θ?, Dθ?〉. By Assumption 3.6, we have ‖Rθ‖L =
o(‖θ − θ?‖Θ). By the definition of N1, we have ‖Rθ‖L ≤ (1/2)c?‖θ − θ?‖Θ. Therefore, for any θ ∈ N1, we have

‖F̂n − Fθ? − 〈θ − θ?, Dθ?〉‖L ≥ ‖F̂n − Fθ‖L − ‖Rθ‖L
Eq. (18)

≥ ‖F̂n − Fθ?‖L + (1/2)c?‖θ − θ?‖Θ − 2‖F̂n − F?‖L.

This implies that, for any θ ∈ N1 \Θn, we have

‖F̂n − Fθ? − 〈θ − θ?, Dθ?〉‖L ≥ ‖F̂n − Fθ?‖L ≥ inf
θ′∈N1∩Θn

‖F̂n − Fθ? − 〈θ′ − θ?, Dθ?〉‖L.

This completes the proof of the second claim.

Thirdly, we claim that there is an uniform control over the difference between θ 7→
√
n‖F̂n−Fθ‖L and the convex

map θ 7→ ‖Gn −
√
n〈θ− θ?, Dθ?〉‖L over the set Ωn with (inner) probability approaching 1 as n→ +∞. Indeed,

we define

Γn = sup
θ∈Ωn

|
√
n‖F̂n − Fθ‖L − ‖Gn −

√
n〈θ − θ?, Dθ?〉‖L|.
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By the definition of Gn, we have

Γn = sup
θ∈Ωn

|
√
n‖F̂n − Fθ? − 〈θ − θ?, Dθ?〉 −Rθ‖L −

√
n‖F̂n − Fθ? − 〈θ − θ?, Dθ?〉‖L|

= o

(
sup
θ∈Ωn

√
n‖θ − θ?‖Θ

)
= o(

√
n‖F̂n − F?‖L)

By Assumption 3.7, we have Γn → 0 as ‖θ− θ?‖Θ → 0 with (inner) probability approaching 1 as n→ +∞. This
completes the proof of the third claim.

By the definition of Gn and G?n, we have ‖Gn − G?n‖L = ‖
√
n(F̂n − F?) − G?‖L. By Assumption 3.7, there

exists a sequence τ1
n → 0 such that P(‖Gn −G?n‖L > τ1

n) → 0. By the definition of Γn and ηn, there exists two
sequences τ2

n → 0 and τ3
n → 0 such that P(Γn > τ2

n)→ 0 and P(ηn > τ3
n)→ 0.

Let βn = max{2τ1
n, 2τ

2
n + τ3

n}, we have βn → 0 with (inner) probability approaching 1 as n → +∞. It remains
to show that Mn ⊆ K(Gn, βn) with (inner) probability approaching 1 as n→ +∞. Indeed, we have

inf
θ′∈N1

‖Gn − 〈
√
n(θ′ − θ?), Dθ?〉‖L ≥ inf

θ′∈N1

√
n‖F̂n − Fθ′‖L − τ2

n.

By the definition of Mn, let θ ∈Mn, the above inequality implies

inf
θ′∈N1

‖Gn − 〈
√
n(θ′ − θ?), Dθ?〉‖L ≥

√
n‖F̂n − Fθ‖L − τ2

n − τ3
n.

Since Mn ⊆ Θn with (inner) probability approaching 1 as n→ +∞, we have

√
n‖F̂n − Fθ‖L ≥ ‖Gn − 〈

√
n(θ − θ?), Dθ?〉‖L − τ2

n.

Putting these pieces together with βn ≥ 2τ2
n + τ3

n yields that θ ∈ K(Gn, βn).

Finally, let ε > 0, we prove that P(dH(K(G?n, 0),K(Gn, βn)) < ε) → 1 as n → +∞. Indeed, by the triangle
inequality, θ ∈ K(G?n, 0) implies θ ∈ K(Gn, 2‖Gn −G?n‖L). Therefore, we conclude that K(G?n, 0) ⊆ K(Gn, βn)
with (inner) probability approaching one as n→ +∞. On the other hand, θ ∈ K(Gn, βn) implies θ ∈ K(G?n, βn+
2‖Gn−G?n‖L). By the definition of βn, Gn and G?n, we obtain that βn+2‖Gn−G?n‖L → 0 with (inner) probability
approaching one as n→ +∞. By the definition of the Hausdorff metric, we conclude the desired result.

E.3 Proof of Theorem A.3

Different from Theorem 3.12, the proof of Theorem A.3 is relatively straightforward and based on Theorem E.1
and E.2. It is mostly because there exists θ? in the interior of Θ such that F? = Fθ? .

More specifically, we consider fθ = Fθ and fn = F̂n such that

Fθ(u, t) =

∫
Rd

1(−∞,t](〈u, x〉) dµθ(x), F̂n(u, t) = (1/n)|{i ∈ [n] : 〈u,Xi〉 ≤ t}|.

Let X = L(Sd−1 × R) and ‖ · ‖X = ‖ · ‖L, we can check that (X , ‖ · ‖X) is a normed linear space. By the

definition of PW1,1, we have PW1,1(µ̂n, µθ) = ‖F̂n − Fθ‖X . By Assumption 3.1, F̂n converges to F?. Moreover,
in well-specified setting, F? = Fθ? where θ? is some fixed (but unknown) point in the interior of Θ. Now we are
ready to check the conditions of Theorem E.1.

First, Assumption A.1 and PW1,1(µ̂n, µθ) = ‖F̂n − Fθ‖X imply C1. Furthermore, by the definition of norm
differentiable, Assumption 3.6 and Assumption A.2 imply C2. Finally, Assumption 3.7 and F? = Fθ? imply C3.
Therefore, we conclude from Theorem E.1 that

√
n inf
θ∈Θ
PW1,1(µ̂n, µθ) =

√
n inf
θ∈Θ
‖F̂n − Fθ‖L ⇒ inf

t∈Θ
‖G? − 〈t,Dθ?〉‖L.

in the sense for the metric induced by the norm ‖ ·‖L. This together with the definition of the norm ‖ ·‖L implies
the desired result for the goodness-of-fit statistics.
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On the other hand, Theorem E.2 can be applied with specific choice of ηn. More specifically, we notice that the
estimator θ̂n is well defined by

θ̂n := argmin
θ∈Θ

PW1,1(µ̂n, µθ) = argmin
θ∈Θ

‖F̂n − Fθ‖L.

Let ηn = 0, the set Mn = {θ̂n} is a singleton set. This implies that
√
n(θ̂n− θ?)⇒ K1(G?, 0) as n→ +∞ under

its Hausdorff metric topology. Since the random map θ → maxu∈Sd−1

∫
R |G?(u, t)− 〈θ,D?(u, t)〉| dt has a unique

infimum almost surely, we have K1(G?, 0) is a singleton set defined by

K1(G?, 0) = argmin
θ∈Θ

max
u∈Sd−1

∫
R
|G?(u, t)− 〈θ,D?(u, t)〉| dt.

In this case, the Hausdorff metric is simply induced by the norm ‖ · ‖L. Putting these pieces together yields the
desired result for the MPRW estimator of order 1.

E.4 Minor Technical Issues

We use the notations of Bernton et al. (2019, Theorem B.8) throughout this subsection. Indeed, in page 38-
39 of the recent arvix version of Bernton et al. (2019), the authors prove that m(Hn) = infu∈Ln f(Hn, u),
implicitly assuming that the minimizer of the map θ 7→

√
n‖Fn − Fθ? − 〈θ − θ?, Dθ?〉‖L1

is contained in the set
N1 = {θ ∈ N : ‖θ − θ?‖H ≤ c?/2}. However, this result is not obvious. Indeed, it seems difficult to derive such
results from the existing fact that the minimizer of θ 7→

√
n‖Fn − Fθ‖L1 is contained in N . We only have the

uniform control over the difference between θ 7→
√
n‖Fn − Fθ‖L1

and θ 7→
√
n‖Fn − Fθ? − 〈θ − θ?, Dθ?〉‖L1

over
the set Sn instead of the whole set. So there is few relationship between the minimizers of these two mappings.
Moreover, the techniques from the proof of Pollard (1980, Theorem 7.2) can not be applicable to fix this issue
here since the proof depends on the assumption that µ? = µθ? which does not hold under model misspecification
yet.

F Computational Aspects

The computation of the PRW distance is in general computationally intractable when the projection dimension
is k ≥ 2 since this amounts to solving a nonconvex max-min optimization model. Despite several pessimistic
results (Paty and Cuturi, 2019; Niles-Weed and Rigollet, 2019), we adopt the Riemannian optimization tool-
box (Absil et al., 2009) to develop a Riemannian supergradient algorithm and empirically show that our algorithm
can approximate PW2,k(µ̂n, ν̂n) when the projection dimension is k ≥ 2. Part of results can be found in the
appendix of concurrent work (Lin et al., 2020) and we provide the details for the sake of completeness.

Approximation of PW2,k. We consider the computation of PW2,k between empirical measures. Indeed,
let {x1, x2, . . . , xn} ⊆ Rd and {y1, y2, . . . , yn} ⊆ Rd denote sets of n atoms, and let (r1, r2, . . . , rn) ∈ ∆n and
(c1, c2, . . . , cn) ∈ ∆n denote weight vectors, we define discrete measures µ̂n :=

∑n
i=1 riδxi and ν̂n :=

∑n
j=1 cjδyj .

The computation of PW2,k(µ̂n, ν̂n) is equivalent to solving a structured max-min optimization model where the
maximization and minimization are performed over the Stiefel manifold St(d, k) := {U ∈ Rd×k | U>U = Ik} and
the transportation polytope Π(µ, ν) := {π ∈ Rn×n+ | r(π) = r, c(π) = c} respectively. Formally, we have

max
U∈Rd×k

min
π∈Rn×n+

n∑
i=1

n∑
j=1

πi,j‖U>xi − U>yj‖2 s.t. U>U = Ik, r(π) = r, c(π) = c. (20)

Eq. (20) is equivalent to the non-convex nonsmooth optimization model as follows,

max
U∈St(d,k)

f(U) := min
π∈Π(µ,ν)

n∑
i=1

n∑
j=1

πi,j‖U>xi − U>yj‖2
 . (21)

Fixing U ∈ St(d, k), Eq. (21) becomes a classical OT problem which can be either solved by the Sinkhorn
iteration (Cuturi, 2013) or the variant of network simplex method in the POT package (Flamary and Courty,
2017). The key challenge is the maximization over the Stiefel manifold St(d, k) := {U ∈ Rd×k | U>U = Ik}.
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Algorithm 1 Riemannian SuperGradient Ascent with Network Simplex Iteration (RSGAN)

1: Input: measures {(xi, ri)}i∈[n] and {(yj , cj)}j∈[n], dimension k and tolerance ε.
2: Initialize: U0 ∈ St(d, k) and γ0 > 0.
3: for t = 0, 1, 2, . . . , T − 1 do
4: Compute πt+1 ← OT({(xi, ri)}i∈[n], {(yj , cj)}j∈[n], Ut).
5: Compute ξt+1 ← PTUtSt(2Vπt+1

Ut).

6: Compute γt+1 ← γ0/
√
t+ 1.

7: Compute Ut+1 ← RetrUt(γt+1ξt+1).
8: end for

Eq. (21) is a special instance of the Stiefel manifold optimization problem. The dimension of St(d, k) is equal
to dk − k(k + 1)/2 and the tangent space at the point Z ∈ St(d, k) is defined by TZSt := {ξ ∈ Rd×k :
ξ>Z + Z>ξ = 0}. We endow St(d, k) with Riemannian metric inherited from the Euclidean inner product
〈X,Y 〉 for any X,Y ∈ TZSt and Z ∈ St(d, k). Then the projection of G ∈ Rd×k onto TZSt is given by Absil
et al. (2009, Example 3.6.2): PTZSt(G) = G − Z(G>Z + Z>G)/2. We make use of the notion of a retraction,
which is the first-order approximation of an exponential mapping on the manifold and which is amenable to
computation (Absil et al., 2009, Definition 4.1.1). For the Stiefel manifold, we have the following definition:

Definition F.1 A retraction on St ≡ St(d, k) is a smooth mapping Retr : TSt → St from the tangent bundle
TSt onto St such that the restriction of Retr onto TZSt, denoted by RetrZ , satisfies that (i) RetrZ(0) = Z for all
Z ∈ St where 0 denotes the zero element of TSt, and (ii) for any Z ∈ St, it holds that limξ∈TZSt,ξ→0 ‖RetrZ(ξ)−
(Z + ξ)‖F /‖ξ‖F = 0.

Our algorithm uses the retraction based on the QR decomposition as suggested by Liu et al. (2019). More
specifically, Retrqr

Z (ξ) = qr(Z + ξ) where qr(A) is the Q factor of the QR factorization of A.

We start with a brief overview of the Riemannian supergradient ascent algorithm for nonsmooth Stiefel opti-
mization, denoted by maxU∈St(d,k) F (U). A generic Riemannian supergradient ascent algorithm for solving this
problem is given by

Ut+1 ← RetrUt(γt+1ξt+1) for any ξt+1 ∈ subdiffF (Ut),

where subdiffF (Ut) is Riemannian subdifferential of F at Ut and Retr is any retraction on St(d, k). The step
size is set as γt+1 = γ0/

√
t+ 1 as suggested by (Li et al., 2019). By the definition of Riemannian subdifferential,

ξt can be obtained by taking ξ ∈ ∂F (U) and by setting ξt = PTUSt(ξ). Thus, it is necessary for us to specify the
subdifferential of f in Eq. (21). We define Vπ =

∑n
i=1

∑n
j=1 πi,j(xi − yj)(xi − yj)> ∈ Rd×d which is symmetry

and derive that

∂f(U) = Conv{2Vπ?U | π? ∈ argmin
π∈Π(µ,ν)

〈UU>, Vπ〉}, for any U ∈ Rd×k,

It remains to solve an OT problem with a given U at each inner loop of the maximization and use the output
π(U) to obtain a supergradient of f . The network simplex method can exactly solve this LP. To this end, we
summarize the pseudocode of the RSGAN algorithm in Algorithm 1.

Approximation of PW2,k. We recall the definition of the IPRW distance of order 2 as follows,

PW2
2,k(µ, ν) =

∫
Sd,k
W2

2 (E?#µ,E
?
#ν)dσ(E),

where σ is the uniform distribution on Sd,k and E? is the linear transformation associated with E for any x ∈ Rd
by E?(x) = E>x. For any measurable function f and µ ∈ P(Rd), we denote f#µ as the push-forward of µ by
f , so that f#µ(A) = µ(f−1(A)) where f−1(A) = {x ∈ Rd : f(x) ∈ A} for any Borel set A. We approximate the
integral by selecting a finite set of projections S ⊆ Sd,k and computing the empirical average:

PW2
2,k(µ, ν) ≈ 1

card(S)

∑
E∈S
W2

2 (E?#µ,E
?
#ν).
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The quality of this approximation depends on the sampling of Sd,k. In this paper, we use random projections
picked uniformly on Sd,k, which is analogues to the approach proposed by Bonneel et al. (2015) for the case of
k = 1; see Sampling schemes for the details.

Approximation of PWp,1. We recall the definition of the PRW distance of order p with the projection
dimension k = 1 as follows,

PWp

p,1(µ, ν) := sup
u∈Sd,1

Wp
p (u?#µ, u

?
#ν) = sup

u∈Sd,1

∫ 1

0

|F−1
u?#µ

(t)− F−1
u?#ν

(t)|pdt.

where u ∈ Sd,1 is an unit d-dimensional vector, u? is the linear transformation associated with u for any x ∈ Rd
by u?(x) = u>x, and F−1

ξ is the quantile function of ξ. This integral can be estimated using a Monte Carlo
estimate and a linear interpolation of the quantile function. Following up Nadjahi et al. (2019, Appendix 4), we
consider two approximations of this quantity. The first one is given by,

PWp

p,1(µ, ν) = sup
u∈Sd,1

1

K

K∑
k=1

|F̃−1
u?#µ

(tk)− F̃−1
u?#ν

(tk)|p, (22)

where {tk}Kk=1 are uniform and independent samples from [0, 1] and F̃−1
ξ is a linear interpolation of F−1

ξ which
denotes either the exact quantile function of a discrete measure ξ, or an approximation by a Monte Carlo
procedure. The second one is given by

PWp

p,1(µ, ν) = sup
u∈Sd,1

1

K

K∑
k=1

|sk − F̃−1
u?#ν

(F̃u?#µ(sk))|p, (23)

where {sk}Kk=1 are uniform and independent samples from u?#µ and F̃ξ (resp. F̃−1
ξ ) is a linear interpolation of

Fξ (resp. F−1
ξ ) which denotes either the exact cumulative distribution function (resp. quantile function) of a

discrete measure ξ, or an approximation by a Monte Carlo procedure.

Sampling schemes. We explain the methods that we use to generate the i.i.d. samples from the uniform
distribution on the set of d× k orthogonal matrices, i.e., Sd,k = {E ∈ Rd×k : E>E = Ik} and the i.i.d. samples
from multivariate elliptically contoured stable distributions.

To sample from Sd,k, we first construct the (d × k)-dimensional matrix Z by drawing each of its components
from the standard normal distribution N (0, 1) and then perform the QR decomposition of it: E = qr(Z). By
the definition, E ∈ Sd,k is an uniform sample.

To sample from multivariate elliptically contoured stable distributions, we follows the approach presented in Nad-
jahi et al. (2019, Appendix 4). Indeed, we recall that if Y ∈ Rd is α-stable and elliptically contoured, i.e.,
Y ∈ EαSc(Σ,m), then its joint characteristic function is defined as, for any t ∈ Rd that,

E
[
exp(it>Y )

]
= exp

(
−(t>Σt)α/2 + it>m

)
, (24)

where Σ is a positive definite matrix (akin to a correlation matrix), m ∈ Rd is a location vector (equal to the mean
if it exists) and α ∈ (0, 2) controls the thickness of the tail. Elliptically contoured stable distributions are scale
mixtures of multivariate Gaussian distributions (Samoradnitsky, 2017, Proposition 2.5.2) with computationally
intractable densities. Fortunately, it was shown by Nolan (2013) that sampling from multivariate elliptically
contoured stable distributions is possible: let A ∼ Sα/2(β, γ, δ) be a one-dimensional positive (α/2)-stable

random variable with β = 1, γ = 2 cos(πα/4)2/α and δ = 0, and G ∼ N (0,Σ). By the definition, Y =
√
AG+ m

satisfies Eq. (24) and Y ∼ EαSc(Σ,m).

Optimization methods. Computing the MPRW and MEPRW estimators are intractable in general. This is
mainly because the PRW distance requires a maximization over infinitely many projections. Formally, we hope
to solve the following minimax optimization model,

min
θ∈Θ
PWp

p,1(µθ, µ?) = min
θ∈Θ

max
u∈Sd,1

∫ 1

0

|F−1
u?#µθ

(t)− F−1
u?#µ?

(t)|pdt,
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where {µθ : θ ∈ Θ} is the model and µ? is the data-generating process. Following up the approach presented
in Nadjahi et al. (2019) together with the approximation of PWp,1, we consider using the ADAM optimization
method to minimize the (expected) PRW distance over the set of parameters while applying multiple projected
supergradient ascent to find an approximate projection u which maximizes over Sd,1 at each inner loop. The
ADAM optimization method is associated with the default parameter setting as suggested by Kingma and Ba
(2015). At each inner loop, we run 5 projected supergradient ascent with the learning rate 10−3.

Gaussian models. For the MPRW estimator, we consider the approximate PW2

2,1 distance based on Eq. (23).
Indeed, let µ denote N (m, σ2I) and ν̂ denote the empirical probability measures of n samples drawn from the
data-generating process, we define the function f1(m, σ2, u) as

f1(m, σ2, u) =
1

card(S)

∑
s∈S
|s− F̃−1

u?#ν̂
(F̃u?#µ(s))|2N (s;u>m, σ2I),

where S ⊆ R and N (s;u>m, σ2I) refers to the density function of Gaussian of parameters (u>m, σ2I) evaluated
at s ∈ S. We compute the explicit gradient expression of f1(m, σ2, u) with respect to the mean m, the variance
σ2 and the projection vector u as follows,

∇mf1(m, σ2, u) =
1

σ2card(S)

∑
s∈S

(
|s− F̃−1

u?#ν̂
(F̃u?#µ(s))|2N (s;u>m, σ2I)(s− u>m)u

)
,

∇σ2f1(m, σ2, u) =
1

2σ4card(S)

∑
s∈S

(
|s− F̃−1

u?#ν̂
(F̃u?#µ(s))|2N (s;u>m, σ2I)((s− u>m)2 − σ2)

)
,

∇uf1(m, σ2, u) =
1

σ2card(S)

∑
s∈S

(
|s− F̃−1

u?#ν̂
(F̃u?#µ(s))|2N (s;u>m, σ2I)(s− u>m)m

)
.

For the MEPRW estimator, we consider the approximate PW2

2,1 distance based on Eq. (22). Indeed, let µ̂ and ν̂
denote the empirical probability measures of m samples drawn from N (m, σ2I) and n samples drawn from the
data-generating process, we define the function f2(m, σ2, u) as

f2(m, σ2, u) =
1

K

K∑
k=1

|F̃−1
u?#µ̂

(tk)− F̃−1
u?#ν̂

(tk)|2,

where {tk}Kk=1 are uniform and independent samples from [0, 1]. We compute the explicit gradient expression of
f2(m, σ2, u) with respect to the mean m, the variance σ2 and the projection vector u as follows,

∇mf2(m, σ2, u) = − 2

K

K∑
k=1

|F̃−1
u?#µ̂

(tk)− F̃−1
u?#ν̂

(tk)|u,

∇σ2f2(m, σ2, u) = − 2

K

K∑
k=1

|F̃−1
u?#µ̂

(tk)− F̃−1
u?#ν̂

(tk)|m,

∇uf2(m, σ2, u) = − 1

σ2K

K∑
k=1

(
|F̃−1
u?#µ̂

(tk)− F̃−1
u?#ν̂

(tk)|(u>m− F̃−1
u?#µ̂

(tk))
)
.

Elliptically contoured stable models. When comparing the MEPRW estimator with the MPRW estimator using
elliptically contoured stable models, we also approximate these estimators using the ADAM optimization method
with the default parameter setting.

We consider the approximate PW2

2,1 distance based on Eq. (22). Indeed, let µ̂ and ν̂ denote the empirical
probability measures of m samples drawn from EαSc(I,m) and n samples drawn from the data-generating
process, we define the function f3(m, u) as

f3(m, u) =
1

K

K∑
k=1

|F̃−1
u?#µ̂

(tk)− F̃−1
u?#ν̂

(tk)|2.
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Figure 5: Mean values (Top) and mean computational time (Bottom) of the IPRW and PRW distances of order 2 between
empirical measures µ̂n and ν̂n as the number of points n varies. Results are averaged over 100 runs.

where {tk}Kk=1 are uniform and independent samples from [0, 1]. We compute the explicit gradient expression of
f(m, u) with respect to the location parameter m and the projection vector u as follows,

∇mf3(m, u) = − 2

K

K∑
k=1

|F̃−1
u?#µ̂

(tk)− F̃−1
u?#ν̂

(tk)|u,

∇uf3(m, u) = − 2

K

K∑
k=1

|F̃−1
u?#µ̂

(tk)− F̃−1
u?#ν̂

(tk)|m.

Generative modeling. We use the ADAM optimizer provided Pytorch GPU.

G Experimental Setup

Computing infrastructure. For the experiments on the uniform distribution over hypercube, we implement
in Python 3.7 with Numpy 1.18 on a workstation with an Intel Core i5-9400F (6 cores and 6 threads) and 32GB
memory, equipped with Ubuntu 18.04. For the experiments on MPRW and MEPRW estimators, we implement
in Python 2.7 with Numpy 1.16 and IPython 5.8 on the same machine. These experiments were not conducted
with GPU. For the experiments on neural networks, we implement on the same machine with 2 GPUs (GeForce
GTX 1070 and GeForce GTX 2070).

Convergence and concentration. We conduct the experiment on the uniform distribution over different
hypercubes which are also used in the experiment (Paty and Cuturi, 2019). In particular, we consider µ = ν =
U([−v, v]d) which is an uniform distribution over an hypercube and where d and v stand for the dimension and
scale of the distribution respectively. µ̂n and ν̂n are empirical distributions corresponding to µ and ν with n
samples. We evaluate the PRW and IPRW distance in terms of mean values and mean computational times over
100 runs for (d, v) ∈ {(10, 1), (10, 3), (30, 1), (30, 5), (50, 1), (50, 5)}. For the PRW distance, we run Algorithm 1
with emd solver in the POT package (Flamary and Courty, 2017) and terminate the algorithm either when the
maximum number of iterations T = 30 is reached or when ‖Ut+1 − Ut‖F ≤ 10−6. For the IPRW distance, we
draw 100 uniform and independent projections from Sd,k and compute each Wasserstein distances using emd
solver in the POT package again.

Model misspecification. We conduct the experiments on three type of data: the mixture of 8, 12 and 25
Gaussian distributions with Gaussian models M1 = {N (m, σ2I) : m ∈ R2, σ2 > 0} and elliptically contoured
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(a) Mixture of 12 Gaussian distributions (b) Mixture of 25 Gaussian distributions

Figure 6: Probability density of estimation of centered and rescaled σ̂n on the Gaussian model for different n.

stable models M2 = {EαSc(I,m) : m ∈ R2}. For data-generating process, we fix k centers {(ai, bi)}1≤i≤k. For
each sample, we first randomly select m from the centers at uniform and then draw the sample from N (2m, 0.01).
For the mixture of 8 and 12 Gaussian distributions, the fixed set of centers are evenly distributed around a unit
circle. For the mixture of 25 Gaussian distributions, the fixed set of centers are 25 grid points in [−2, 2]2.

We use the ADAM optimization method with the default parameter setting to compute the MPRW and MEPRW
estimators. At each inner loop, we run 5 projected supergradient ascent with the learning rate 10−3. For the
Gaussian models, we estimate the densities of σ̂2

n with a kernel density estimator by computing 100 times MPRW
estimator of order 1. The maximum number of ADAM iterations is set as 20000. To illustrate the consistency of
MPRW and MEPRW estimators, we compute 100 times MPRW and MEPRW estimators of order 2, where the
maximum number of ADAM iterations are set as 20000 and 10000 respectively. We also verify the convergence of
MEPRW to MPRW by computing 100 times these estimators on a fixed set of n = 2000 observations for different
m generated samples from the model. The maximum number of ADAM iterations for MPRW and MEPRW
estimators are set as 20000 and 10000. For the elliptically contoured stable models, we verify the consistency
property of MEPRW and the convergence of MEPRW to MPRW. For the former one, we compute 100 times
MEPRW estimator of order 2 and set the maximum number of ADAM iterations as 10000. For the latter one,
we compute 100 times MPRW and MEPRW estimators of order 2 on a fixed set of n = 100 observations for
different m generated samples from the model. The maximum number of ADAM iterations are set as 20000 and
10000. All of these settings are consistently used on the mixture of 8, 12 and 25 Gaussian distributions.

Generative modeling. The procedure of the max-SW generator is summarized as follows: we first sample
a random variable Z from a fixed distribution on the base space Z, and then transforms Z through a neural
network parametrized by θ. This provides a parametric function Tθ : Z → Rd which allows us to generate images
from a distribution µθ. Our goal is to optimize the neural network parameters θ by minimizing the max-SW
distance (Deshpande et al., 2019) between µθ and data-generating distribution. We use a neural network with the
fully-connected configuration from Deshpande et al. (2018, Appendix D) and train our model with CIFAR107

and ImageNet2008. The former one consists of 60000 and 10000 images of size 3 × 32 × 32 for training and
testing while the latter one consists of 100000 and 10000 images for training and testing. We use the minimal
expected max-SW estimator of order 2 approximated with 50 projected gradient ascent steps and 10−4 learning
rate. We train for 1000 iterations with the ADAM optimizer (Kingma and Ba, 2015) and 10−4 learning rate.

H Additional Experimental Results

Convergence and concentration. Figure 5 presents average distances and computational times for (d, v) ∈
{(10, 5), (30, 1), (50, 1)}, where the shaded areas show the max-min values over 100 runs. We also observe that
the IPRW distance is smaller than the PRW distance for small n, especially so when d and v are large. The two

7Available in https://www.cs.toronto.edu/ kriz/cifar.html
8Available in https://tiny-imagenet.herokuapp.com/
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(a) MPRW vs. n (b) MEPRW vs. n = m (c) MEPRW with n = 2000 vs. m

Figure 7: Minimal PRW and expected PRW estimations using Gaussian models and n samples from the mixture of 12
Gaussian distributions. Results are averaged over 100 runs and shaded areas represent standard deviation.

(a) MPRW vs. n (b) MEPRW vs. n = m (c) MEPRW with n = 2000 vs. m

Figure 8: Minimal PRW and expected PRW estimations using Gaussian models and n samples from the mixture of 25
Gaussian distributions. Results are averaged over 100 runs and shaded areas represent standard deviation.

distances are close when n is large, supporting the theoretical results given by Theorem 3.4 and Theorem 3.6 in
practice. The computation of the PRW distance is relatively faster than that of the IPRW distance.

Model misspecification: Gaussian models. Figure 6 shows the distributions centered and rescaled by
√
n

for a range of moderately large n, based on the two underlying models including the mixture of 12 Gaussian
distributions and the mixture of 25 Gaussian distributions. The left figure supports the convergence rate and the
limiting distribution of the estimator as derived in Theorem 3.12 on the mixture of 12 Gaussian distributions.
The right figure suggests that the limiting distribution is not normal when the underlying model is given by
the mixture of 25 Gaussian distributions. For the latter case, the result is not as anticipated by Theorem 3.12.
This is possibly because we only conduct 5 projected supergradient ascent at each inner loop, which may not be
enough to achieve a good approximate projection u ∈ Sd,1.

Figure 7 and 8 demonstrate the large-sample consistency behavior of MPRW and MEPRW estimators on the
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(a) MEPRW (b) MEPRW, n? = 100

Figure 9: Minimal expected PRW estimations using elliptically contoured stable models and n samples from the mixture
of 8 Gaussian distributions (top), 12 Gaussian distributions (middle) and 25 Gaussian distributions (bottom), and m
samples generated from the model. Results are averaged over 100 runs and shaded areas represent standard deviation.

mixture of 12 and 25 Gaussian distributions, which are expected since Assumption 3.1-3.3 are mild. The MEPRW
estimator also converges to the MPRW estimator on the mixture of 12 Gaussian distributions, confirming Theo-
rem 3.11. One exception in these experiments is the failure of convergence of MEPRW to MPRW on the mixture
of 25 Gaussian distributions. Apparently, the results from Theorem 3.11 do not hold in this experiment setting.
This is likely due to the violation of Assumption 3.5 that is necessary for Theorem 3.11 to hold.

Model misspecification: Elliptically contoured stable models. Figure 9 (a) illustrates the consistency
of the MEPRW estimator m̂n,m, approximated with 5 projected supergradient ascent, the same way as for the
Gaussian models. Figure 9 (b) confirms the convergence of m̂n,m to the MPRW estimator m̂n, where we fix
n = 100 observations and compute the mean squared error between these two estimators (using 5 projected
supergradient ascent) for different values of m. Note that the MPRW estimator is approximated with the
MEPRW obtained for a large enough value of m: m̂n = m̂n,104 . To this end, our results on elliptically contoured
stable models confirm Theorem 3.9, Theorem 3.10 and Theorem 3.11 in practice.

Generative modeling. Figure 10 presents the mean test loss on CIFAR10 over 10 runs, where the shaded
areas show the max-min values over the runs. Here the minimal expected max-SW estimator of order 2 is
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Figure 10: Mean test loss for different value of (n,m) on CIFAR10.

approximated with 20 projected gradient ascent steps and 10−4 learning rate. We trained for 1000 iterations
with the ADAM optimizer (Kingma and Ba, 2015) and 10−4 learning rate. We also train the NNs with (n,m) ∈
{(100, 20), (1000, 40), (5000, 60), (10000, 100)} where n is the number of training samples and m is the number of
generated samples and compute the testing losses using the trained models on the testing dataset (n = 10000)
with m = 250 generated samples. We compare these testing losses to that of a NN trained using n = 60000 (i.e.,
the training dataset) and m = 200 in Figure 10. Again, our results confirm Theorem 3.10 in practice.


