
Fast learning in reproducing kernel Krĕın spaces via signed measures

This is the supplementary material for the paper: “Fast learning in reproducing kernel Krĕın spaces via generalized
measures”, by Fanghui Liu, Xiaolin Huang, Yingyi Chen, and Johan A.K. Suykens. The supplementary material
(Appendix) is organized as follows.

• Section A gives the proof of Theorem 3 on the studied open question.

• The approximation performance is theoretically demonstrated in Section B in terms of uniform approximation
error bound and variance reduction.

• In Section (C), we demonstrate that polynomial kernels on the unit sphere by `2 normalization data is with
finite total mass.

• Section D gives the proof of Theorem 4.

• The measure of arc-cosine kernels on the unit sphere by `2 normalization data is given in Section E.

A Proof of Theorem 3

Proof. We give the proof of the existence.
(i) Necessity.
An stationary indefinite kernel associated with RKKS admits the positive decomposition

k(x− x′) = k+(x− x′)− k−(x− x′) , ∀x,x′ ∈ X ,

where k+ and k− are two positive definite kernels. According to the Bochner’s theorem [21], there exists two
probability measures µ+, µ− such that

k(z) = k+(z)− k−(z) =

∫
Ω

exp
(
iω>z

)
µ+(dω)−

∫
Ω

exp
(
iω>z

)
µ−(dω) ,

where z := x−x′. Denote µ := µ+−µ−, it is clear that µ is a signed measure, and its total mass is finite because
of ‖µ‖ = ‖µ+‖+ ‖µ−‖ = 2.

(ii) Sufficiency.
Let Ω := Rd and A be the smallest σ-algebra containing all open subsets of Ω, and µ : A → [−∞,∞]

µ(ω) =

∫
Ω

exp
(
−iω>z

)
k(z)dz .

Since we assume that µ has total mass ‖µ‖ < ∞, i.e., µ is finite, µ can be regarded as a signed measure. By
virtue of Jordan decomposition in Theorem 2, there exist two nonnegative finite measures µ+ and µ− such that
µ = µ+ − µ−. One intuitive implementation way is choosing µ+ = max{µ, 0} and µ− = min{0, µ}. Then using
the inverse Fourier transform and Plancherel’s theorem [52], we have

k(z) =

∫
Ω

exp
(
iω>z

)
µ(dω) =

∫
Ω

exp
(
iω>z

)
µ+(dω)−

∫
Ω

exp
(
iω>z

)
µ−(dω)

= ‖µ+‖
∫

Ω

exp
(
iω>z

)
µ̃+(dω)− ‖µ−‖

∫
Ω

exp
(
iω>z

)
µ̃−(dω)

= ‖µ+‖k̃+(z)− ‖µ−‖k̃−(z) ,

where µ̃+ := µ+/‖µ+‖ and µ̃− := µ−/‖µ−‖ are two nonnegative Borel measures, which correspond to two positive
definite kernels k̃+ and k̃−, respectively. By defining k+ := ‖µ+‖k̃+ and k− := ‖µ+‖k̃−, we have

k(x,x′) = k+(x,x′)− k−(x,x′), ∀x,x′ ∈ X .

This completes the proof.

Based on the above analysis, we give a characterization of the RKHSs H± through the given spectral density µ±.
In [63], a RKHS can be characterized by its measure via Fourier transform. Therefore, in our model, the RKHSs
H± are represented by µ±. That is, for any f ∈ H±, the inner product is induced by the Hilbert norm

‖f‖2H± =

∫
Rd

|F (ω)|2

µ+(ω)
dω ,
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where F (ω) = F (f) =
∫
Rd f(x)e−2πiω>xdx is the Fourier transform of f .

B Proof of Proposition 2

The proof can be easily derived from [56, 57], and we briefly present here for completeness.

Proof. Proposition 1 in [56] demonstrates

Pr

[
sup

x,x′∈SR
|k±(x,x′)−k̃±(x,x′)| ≥ ε

]
≤66

(
σ±R

ε

)2

exp

(
− sε2

8(d+ 2)

)
,

where σ2
± = Eω∼µ̃± [ω>ω] <∞. Since the indefinite kernel k admits

|k(x,x′)− k̃(x,x′)| ≤ |k+(x,x′)− k̃+(x,x′)|+ |k−(x,x′)−k̃−(x,x′)| , ∀x,x′ ∈ SR ,

then we have

Pr

[
sup

x,x′∈SR
|k(x,x′)−k̃(x,x′)| ≥ ε

]
≤ Pr

[
sup

x,x′∈SR
|k+(x,x′)−k̃+(x,x′)| ≥ ε

2

]
+ Pr

[
sup

x,x′∈SR
|k−(x,x′)−k̃−(x,x′)| ≥ ε

2

]
≤ 66

(
2σ+R

ε

)2

exp

(
− sε2

32(d+ 2)

)
+ 66

(
2σ−R

ε

)2

exp

(
− sε2

32(d+ 2)

)
= 66

(
2σR

ε

)2

exp

(
− sε2

32(d+ 2)

)
.

Then we study the variance reduction of the applied orthogonal Monte Carlo (OMC) sampling. Based on the
definition of MSE, i.e., E[k̃(x,x′)] = E[k(x,x′)− k̃(x,x′)], we conclude that E[k̃(x,x′)] is the variance of k̃(x,x′),
termed as Var[k̃(x,x′)] due to our unbiased estimator. According to Theorem 4.2 in [57], for sufficiently large d,
we have

MSE[k̃OMC
+ (x,x′)] ≤ MSE[k̃MC

+ (x,x′)] and MSE[k̃OMC
− (x,x′)] ≤ MSE[k̃MC

− (x,x′)] ,

where ω ∼ µ̃+(·) in k̃+ and ν ∼ µ̃−(·) in k̃− as indicated by Eq. (1). Since these two random vectors ω and ν
are independent, we have

Var[k̃OMC(x,x′)] = Var[k̃OMC
+ (x,x′)]+Var[k̃OMC

− (x,x′)] ≤ Var[k̃MC
+ (x,x′)]+Var[k̃MC

− (x,x′)] = Var[k̃MC(x,x′)] .

which implies MSE[k̃OMC(x,x′)] ≤ MSE[k̃MC(x,x′)] for sufficiently large d.

C Polynomial kernels on the unit sphere with finite total mass

We consider the asymptotic properties of the Bessel function of the first kind Jα(x) under the large and small
cases to study the ‖µ‖.

C.1 A small ω

Consider the asymptotic behavior for small ω. The Bessel function of the first kind is asymptotically equivalent to

Jα(x) ∼ 1

Γ(α+ 1)

(x
2

)α
, when 0 < x�

√
α+ 1 .

In this case, the measure µ is formulated as

µ(ω) ∼
p∑
i=0

p!

(p− i)!

(
1− 4

a2

)p−i(
2

a2

)i
2d/2+i

Γ(d/2 + i+ 1)
, (5)

which can be regarded as a generalized version of a uniform distribution. Therefore, µ is absolutely integrable

over a finite range (0, c1], where c1 is some constant satisfying c1 �
√

d
2 − 1.
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C.2 A large ω

Consider the asymptotic behavior for large ω. The Bessel function of the first kind is asymptotically equivalent to

Jα(x) ∼
√

2

πx
cos(x− πα

2
− π

4
) , when x� |α2 − 1

4
| .

The Fourier transform of the polynomial kernel on the sphere, i.e., the measure µ, is hence given by [8]

µ(ω) ∼ 1√
πω

(
1− 4

a2

)p(
2

ω

)d/2
cos
(

(d+ 1)
π

4
− 2ω

)
, for a large ω . (6)

In this way, we have
∫∞
c2
|µ(ω)|dω <∞ for a large ω, where c is some constant satisfying c2 � 1

4 |d
2 − 1|.

Accordingly, combining Eq. (6) with Eq. (5), we conclude that

‖µ‖ :=

∫ ∞
0

|µ(ω)|dω =

∫ c1

0

|µ(ω)|dω +

∫ c2

c1

|µ(ω)|dω +

∫ ∞
c2

|µ(ω)|dω <∞ ,

where we use
∫ c2
c1
|µ(ω)| dω is finite due to the continuous, bounded Bessel function Jα(x) on a finite region [c1, c2].

D Proof of Theorem 4

To prove Theorem 4, we firstly derive its formulation on the unit sphere and then demonstrate that it is a
shift-invariant but not positive definite kernel via completely monotone functions.

Definition 3. (Completely monotone [64]) A function f is called completely monotone on (0,+∞) if it satisfies
f ∈ C∞(0,+∞) and

(−1)rf (r)(x) ≥ 0 ,

for all r = 0, 1, 2, · · · and all x > 0. Moreover, f is called completely monotone on [0,+∞) if it is additionally
defined in C[0,+∞).

Note that the definition of completely monotone functions can be also restricted to a finite interval, i.e., f is
completely monotone on [a, b] ⊂ R, see in [8].

Besides, we need the following lemma that demonstrates the connection between positive definite and completely
monotone functions for the proof.

Lemma 1. (Schoenberg’s theorem [64]) A function f is completely monotone on [0,+∞) if and only if f := g(‖·‖22)
is radial and positive definite function on all Rd for every d.

Now let us prove Theorem 4.

Proof. By virtue of 〈x,x′〉 = 1− 1
2‖x− x

′‖22 and ‖x‖2 = ‖x′‖2 = 1, we have ‖x− x′‖2 ∈ [0, 2]. Therefore, the
standard NTK of a two-layer ReLU network can be formulated as

k(x,x′) = 〈x,x′〉κ0(〈x,x′〉) + κ1(〈x,x′〉)

=

(
1− 1

2
‖x− x′‖22

)
κ0

(
1− 1

2
‖x− x′‖22

)
+ κ1

(
1− 1

2
‖x− x′‖22

)
=

2− ‖x− x′‖22
π

arccos(
1

2
‖x− x′‖22 − 1) +

‖x− x′‖2
2π

√
4− ‖x− x′‖22

=
2− z2

π
arccos(

1

2
z2 − 1) +

z

2π

√
4− z2 , z := ‖x− x′‖2 ∈ [0, 2] ,

which is shift-invariant.

Next, we prove that k(z) is not a positive definite kernel, i.e., g(
√
z) := k(z) is not a completely monotone function

over [0,∞) by Lemma 1. In other words, there exist some value x ∈ [0,∞) such that (−1)lg(l)(x) < 0 for some l.
To this end, the function g is given by

g(x) =
2− x
π

arccos(
1

2
x− 1) +

1

2π

√
4x− x2 , x ∈ [0, 4] ,
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and its first-order derivative is

g′(x) =
4− 2x

4π
√

4x− x2
− 2− x

2π

√
1−

(
x
2 − 1

)2 − arccos
(
x
2 − 1

)
π

.

Since g′(x) is continuous, and limx→0 g
′(x) = −∞ and limx→4 g

′(x) = ∞, there exists a constant c such that
g′(x) < 0 over (0, c) and g′(x) > 0 over (c, 4). That is to say, (−1)lg(l)(x) < 0 holds for x ∈ (c, 4), which violates
the definition of completely monotone functions. In this regard, g(

√
z) := k(z) is not a completely monotone

function over [0,∞) and thus {k(z), z ∈ [0, 2]; 0, z > 2} is not positive definite.

E The measure of arc-cosine kernels on the unit sphere

According to Appendix D, the zero/first-order arc-cosine kernel on the unit sphere is proven to be stationary but
indefinite. In this section, we derive its measure µ.

E.1 The measure of the zero-order arc-cosine kernel

In this section, we derive the measure µ of the zero-order arc-cosine kernel on the unit sphere.

Proposition 3. The measure µ of the zero-order arc-cosine kernel on the unit sphere: κ0(x,x′) := κ0(z) =
1
π arccos( 1

2z
2 − 1) is given by

µ(ω) = (
1

ω
)(

2

ω
)
d
2−1J d

2
(2ω)− 1

π
(

1

ω
)
d
2−2

∞∑
j=0

(2j)!

4j(j!)2(2j + 1)

∫ 2

0

(
1

2
z2 − 1

)2j+1

ωzd/2Jd/2−1(zω)dz ,

where the integral
∫ 2

0

(
1
2z

2 − 1
)2j+1

ωzd/2Jd/2−1(zω)dz can be computed by parts with the following simple recur-
rence formula ∫

zaJv+1(z)dz = 2v

∫
za−1Jv(z)dz −

∫
zaJv−1(z)dz . (7)

Proof. According to the definition of κ0(z), we have

µ(ω) =

∫ 2

0

z

π
arccos(

1

2
z2 − 1)(z/ω)d/2−1Jd/2−1(zω)dz , (8)

where κ0(z) is a radial function, i.e., κ0(z) = κ0(z) with z := ‖z‖2, and thus its Fourier transform is also a radial
function, i.e., µ(ω) = µ(ω) with ω := ‖ω‖2. Obviously, the integrand in Eq. (8) and the integration region are
both bounded, and thus we have µ(ω) <∞. Following the proof of ‖µ‖ <∞ for polynomial kernels on the unit
sphere in Section C, we can also demonstrate that ‖µ‖ < ∞ for the zero-order arc-cosine kernel on the unit
sphere.

To compute the integration in Eq. (8), we take the Taylor expansion of arccos( 1
2z

2 − 1) with t terms

arccos(
1

2
z2 − 1) =

π

2
−

t∑
j=0

(2j)!

4j(j!)2(2j + 1)

(
1

2
z2 − 1

)2j+1

,

and thus the integration in Eq. (8) can be integrated by each term regarding to Bessel functions. Moreover, by

virtue of dzvJv(zω)
dz = ωzvJv−1(zω), the above integral can be computed by parts

µ(ω) =

∫ 2

0

z

π
arccos(

1

2
z2 − 1)(z/ω)d/2−1Jd/2−1(zω)dz

=
1

2
(

1

ω
)
d
2−2

∫ 2

0

ωz
d
2 J d

2−1(zω)dz − 1

π
(

1

ω
)
d
2−2

∞∑
j=0

(2j)!

4j(j!)2(2j + 1)

∫ 2

0

(
1

2
z2 − 1

)2j+1

ωzd/2Jd/2−1(zω)dz ,

(9)

where the first term equals to ( 1
ω )( 2

ω )
d
2−1J d

2
(2ω). Accordingly, we can conclude our proof.
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It appears non-trivial to prove ‖µ‖ < ∞ as Eq. (9) is quite complex. Here we choose j = 0 in Eq. (9) as an
example, we have∫ 2

0

(
1

2
z2 − 1

)
ωzd/2Jd/2−1(zω)dz = 2

d
2 J d

2
(2ω)−

∫ 2

0

z
d
2 +1J d

2
(zω)

(
1

2
z2 − 1

)
dz

= 2
d
2 J d

2
(2ω) +

1

ω
J d

2 +1(2ω)− 1

2

∫ 2

0

z
d
2 +3J d

2
(zω)dz ,

(10)

where
∫ 2

0
z
d
2 +3J d

2
(zω)dz can be computed by parts∫ 2

0

z
d
2 +3J d

2
(zω)dz = 2

d
2 +3J d

2
(2ω)− 1

ω2
2
d
2 +2J d

2 +2(2ω) . (11)

Incorporating Eqs. (11), (10) into Eq. (9), we have

µ(ω) =

(
1

ω

)(
2

ω

) d
2−1

J d
2
(2ω)− 1

π
(

1

ω
)
d
2−2

[
(−3)2

d
2 J d

2
(2ω) +

1

ω
J d

2 +1(2ω) +
1

ω2
2
d
2 +1J d

2 +2(2ω)

]
.

Following with the proof in Section C, we can demonstrate ‖µ‖ < ∞ by the asymptotic equivalence of Bessel
functions. Accordingly, in this case, µ can be decomposed into two nonnegative measures with µ(ω) = µ+(ω)−
µ−(ω), where µ+(ω) = max{0, µ(ω)} and µ−(ω) = max{0,−µ(ω)}. As a consequence, Algorithm 1 is also suitable
for this kernel.

E.2 the first-order arc-cosine kernel

In this subsection, we derive the measure µ of the zero-order arc-cosine kernel admitting κ1(x,x′) = z
2π

√
4− z2.

Proposition 4. The measure µ of the zero-order arc-cosine kernel on the unit sphere: κ0(x,x′) := κ1(z) =
z

2π

√
4− z2 is given by

µ(ω) = (
1

ω
)(

2

ω
)
d
2−1J d

2
(2ω)− 1

π
(

1

ω
)
d
2−2

∞∑
j=0

(2j)!

4j(j!)2(2j + 1)

∫ 2

0

(
1

2
z2 − 1

)2j+1

ωzd/2Jd/2−1(zω)dz ,

where the integral
∫ 2

0

(
1
2z

2 − 1
)2j+1

ωzd/2Jd/2−1(zω)dz can be computed by parts with the following simple recur-
rence formula (7).

Proof. By fractional binomial theorem, we have

(
1/2
j

)
=(−1)k−1 1

2(2j − 1)

(2j)!

(2 · 4 · ·(2j))2
=

−1

2(2j − 1)

(
−1

4

)j (
2j
j

)
.

Then, according to the definition of κ1(z), we have√
4− z2 = 2

(
1− z2

4

) 1
2

= 2

∞∑
j=0

(
1/2
j

)(
−z

2

4

)j
=

∞∑
j=0

−1

2j − 1

(
2j
j

)(z
4

)2j

.

Therefore, the measure µ of κ1 is

µ(ω) =
1

2π

∫ 2

0

z2
√

4− z2(z/ω)d/2−1Jd/2−1(zω)dz

=
1

2π

∫ 2

0

z2(z/ω)d/2−1Jd/2−1(zω)

∞∑
j=0

−1

2j − 1

(
2j
j

)(z
4

)2j

dz.

(12)

Accordingly, the above equation needs to compute the following integral∫ 2

0

z
d
2 +1+2jJ d

2−1(zω)dz ,

which can be computed by Eq. (7).
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Similarly, it appears non-trivial to prove ‖µ‖ <∞ as Eq. (12) is quite complex. Here we choose j = 0 in Eq. (12)
as an example, we have

µ(ω) =
1

2π

∫ 2

0

z2(z/ω)d/2−1Jd/2−1(zω)dz =

√
2− 1

2π

(
1

ω

) d
2−2

2
d
2 J d

2
(2ω) .

In this case, it is clear that ‖µ‖ <∞ and thus Algorithm 1 is also suitable for this kernel.




