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Abstract

In this paper, we attempt to solve a long-
lasting open question for non-positive definite
(non-PD) kernels in machine learning commu-
nity: can a given non-PD kernel be decom-
posed into the difference of two PD kernels
(termed as positive decomposition)? We cast
this question as a distribution view by intro-
ducing the signed measure, which transforms
positive decomposition to measure decompo-
sition: a series of non-PD kernels can be asso-
ciated with the linear combination of specific
finite Borel measures. In this manner, our
distribution-based framework provides a suffi-
cient and necessary condition to answer this
open question. Specifically, this solution is
also computationally implementable in prac-
tice to scale non-PD kernels in large sample
cases, which allows us to devise the first ran-
dom features algorithm to obtain an unbiased
estimator. Experimental results on several
benchmark datasets verify the effectiveness of
our algorithm over the existing methods.

1 Introduction

Devising a pairwise similarity/dissimilarity function
plays a significant role in metric learning and kernel
learning [1l 2, [B]. However, such function is not always
positive definite (PD) in practice. For example, we
are often faced with indefinite (real, symmetric, but
not positive definite) kernels including the hyperbolic
tangent kernel [4, [5] and truncated ¢;-distance kernel
[6]. Interestingly, some common-used PD kernels, e.g.,
polynomial kernels, Gaussian kernels, would degen-
erate to indefinite ones in some cases. An intuitive
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example is that a linear combination of PD kernels
with negative coefficients [7]. Polynomial kernels using
ly-normalization (i.e., distributed on the unit sphere)
are not always PD [§]. Gaussian kernels with some
geodesic distances cannot be ensured positive definite
[9, [10]. We refer to a survey [LI] for details.

Learning with indefinite similarity/dissimilarity func-
tions is typically modeled in Reproducing Kernel Krein
Spaces (RKKS) [12], where the (reproducing) indefinite
kernel can be decomposed into the difference of two PD
kernels, a.k.a, positive decomposition [I3]. A series of
work [14], [15] [T6], (17 [18] 19] rely on the positive decom-
position. It is important to note that, indefinite kernel
matrices can be decomposed in the difference of two
positive semi-definite matrices by eigenvalue decompo-
sition, but for a given indefinite kernel, does it admit a
positive decomposition? is a long-lasting open question
in machine learning community. In fact, it appears
non-trivial how to verify that an indefinite kernel can
be associated with RKKS except for some intuitive
examples, e.g., a linear combination of PD kernels with
negative coefficients. In the past, we usually assume
that a (reproducing) indefinite kernel is associated with
RKKS in practice while the theoretical gap cannot be
ignored. In particular, the used eigenvalue decomposi-
tion in indefinite kernel based algorithms [15, 16} [17]
often incurs huge computational and space complexities
and thus is infeasible to large-scale problems.

To answer the open question, we consider indefinite
kernel in a distribution view. Our model is based on
the signed measure, which generalizes Borel measure to
be negative. Accordingly, the positive decomposition
can be transformed to measure decomposition and thus
we provide a sufficient and necessary condition to an-
swer this question. Our distribution-based framework
is simple but effective, which naturally allows us to
devise unbiased random features based algorithm to
scale indefinite kernel methods in large sample cases.
Formally, we make the following contributions:

e In Section [3] by introducing the signed measure,
we provide a sufficient and necessary condition
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to answer the above open question for indefinite
kernels via the measure decomposition technique.
Moreover, this condition also guides us how to find
a specific positive decomposition in practice, and
thus we can devise a unbiased estimator to ob-
tain randomized feature maps. To the best of our
knowledge, this is the first work to generate unbi-
ased estimation for non-PD kernel approximation
by random features.

e In Section [d] we demonstrate that spherically dot-
product kernels including polynomial kernels, arc-
cosine kernels, and the popular NTK in two-layer
ReLU network on the unit sphereEl, are radial and
non-PD associated with RKKS. Then we demon-
strate the feasibility of our random feature algo-
rithm on several indefinite kernels admitting the
positive decomposition.

e In Section 5] we evaluate various non-PD kernels
on several typical benchmark datasets to validate
the effectiveness of our algorithm.

2 Preliminaries and Related Works

In this section, we briefly sketch some basic ideas of
RKKS [13] and Bochner’s theorem in random features
[20], and then introduce related works on indefinite
kernel approximation.

2.1 Reproducing Kernel Krein Spaces

Here we briefly review on the Krein spaces and the
reproducing kernel Krein space (RKKS). Detailed expo-
sitions can be found in book [I3]. Most of the readers
would be familiar with Hilbert spaces. Krein spaces
share some properties of Hilbert spaces but differ in
some key aspects which we shall emphasize as follows.

Krein spaces are indefinite inner product spaces en-
dowed with a Hilbertian topology.

Definition 1. (Krein space [13]) An inner product
space is a Krein space Hi if there exist two Hilbert
spaces Hi and H_ such that

1) Vf € Hi, it can be decomposed into [ = fL @& f_,
where fi € Hy and f_ € H_, respectively.

i) Vf,9 € Hic, {f, 9re = <f+7g+>7'l+ —(f=9-)n_-

The Krein space Hi can be decomposed into a direct
sum Hx = HPH_. Besides, the inner product on Hy
is non-degenrate, i.e., for f € Hi, if {f,g)n, = 0 for
any g € Hi, we have f = 0. From the definition, the
decomposition Hx = H,®H_ is not necessarily unique.
For a fixed decomposition, the inner product (f, g)#

TWe use the £2 normalization scheme to ensure the data
on the unit sphere as suggested by [8], which is different
from directly using spherically i.i.d data.

is given accordingly [15, [16]. The key difference from
Hilbert spaces is that the inner products might be
negative for Krein spaces, i.e., there exists f € Hi
such that (f, )2, < 0. If Hy and H_ are two RKHSs,
the Krein space Hi is an RKKS associated with a
unique indefinite reproducing kernel k such that the
reproducing property holds, i.e., Vf € Hi, f(z) =
<f7 k(xv )>H}c

Proposition 1. (positive decomposition [13]) Let k :
R? x R — R be a real-valued kernel function. Then
there exists an associated RKKS identified with a re-
producing kernel k if and only if k admits a positive
decomposition k = ky — k_, where ky and k_ are two
positive definite kernels.

From the definition, this decomposition is not necessar-
ily unique. As mentioned before, not every indefinite
kernel function admits a representation as a difference
between two positive definite kernels.

2.2 Bochner’s theorem and random features

A positive definite function corresponds to a nonnega-
tive and finite Borel measure, i.e., a probability distri-
bution, via Fourier transform by the following theorem.

Theorem 1 (Bochner’s Theorem [21]). Let k : R? x
R? — R be a bounded continuous function satisfying the
stationary property, i.e., k(x,x") = k(x —a'). Then,
k is positive definite if and only if it is the (conjugate)
Fourier transform of a nonnegative and finite Borel
measure p (rescale it to a probability measure by setting

k(0)=1)

k(x — ac'):/ ei“’T(’”*w/)u(dw) =Eu~p [ei“’T(w*m/)] .
Rd

Typically, the kernel in practical uses is real-valued
and thus the imaginary part can be discarded, i.e.,
k(x — ') = Egynycoslw’ (2 — 2')]. Accordingly, we
can use the Monte Carlo method to sample a series
of random features {w;};_; from the distribution u
to approximate the PD kernel function k, a.k.a. Ran-
dom Fourier features (RFF) [20]. It brings promising
performance and solid theoretical guarantees on scal-
ing up kernel methods in classification [22], nonlinear
component analysis [23] [24], and neural tangent kernel
(NTK) [25]. Improvements on RFF mainly focus on
variance reduction by advanced sampling methods, e.g.,
quasi-Monte Carlo sampling [260], Monte Carlo sam-
pling with orthogonal constraints [27], 28] 29], leverage-
score sampling [30, [3T], and quadrature based methods
[32] [33], 34], see a survey [35] for details.

2.3 Signed measure

Let i : A — [0, +00] be a measure on a set {2 satisfying
w(0) = 0 and o-additivity (i.e., countably additive). We
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call i a finite measure if 4(Q) < 4o00. Specifically, u is a
probability measure if 4(€2) = 1, and the triple (2, A, p)
is referred as the corresponding probability space. Here
we consider the signed measure, a generalized version
of a measure allowing for negative values.

Definition 2. (Signed measure [36]) Let Q be some set,
A be a o-algebra of subsets on Q. A signed measure is
a function p1: A — [—00, +00) or (—oo, +00] satisfying
o-additivity.

Based on this definition, the following theorem shows
that any signed measure can be represented by the
difference of two nonnegative measures.

Theorem 2. (Jordan decomposition [36]) Let u be a
signed measure defined on the o-algebra A as given in
Definition . There exists two (nonnegative) measures
t4 and p— (one of them is a finite measure) such that

H=py = p—

The total mass of p on A is defined as ||| = ||p+ || +
|le—||- Note that this decomposition is not unique.

2.4 Related works

Learning with indefinite kernels in RKKS can be solved
by eigenvalue transformation [37), B8], stabilization [12]
15], and minimization [16]. However, these methods
need eigenvalue decomposition and cannot be directly
applied to large-scale problems.

To scale indefinite kernel matrices in large sample
problems, Nystrom approximation works in a data-
dependent way, and is a good choice to seek a low-rank
representation to approximate indefinite kernel matri-
ces, e.g., [I7,[39, [40]. Besides, Liu et al. [41] decompose
(a subset of) kernel matrix into two PD kernel matri-
ces, and then learn their respective randomized feature
maps by infinite Gaussian mixtures. However, this ap-
proach in fact focuses on approximating kernel matrices
rather than kernel functions. If we consider indefinite
kernel approximation by random features in a data-
independent way, Pennington et al. [§] find that the
polynomial kernel using £s-normalized data is not PD,
and then use (positive) mixtures of Gaussian distribu-
tions, associated with a PD kernel, to approximate it.
This is in essence using a PD kernel to approximate an
indefinite one. Till now, approximating non-PD kernels
by random features cannot ensure unbiased and has not
yet been fully investigated. In this paper, our work pro-
vides an unbiased estimator without extra parameters,
so as to achieve both simplicity and effectiveness.

Besides, our algorithm can be also applied to dot-
product kernels with ¢>-normalized data, e.g., poly-
nomial kernels on the unit sphere. Recent works for
polynomial kernel approximation include Maclaurin
expansion [42], the tensor sketch technique [43], 44],
and oblivious subspace embedding [45], 46].

3 Model

In this section, by introducing the concept of signed
measures [30], we attempt to answer the open ques-
tion and then devise the sampling strategy for ran-
dom features. For notational simplicity, we denote
z = ||z|l2 = ||& — /|| and w = ||w]||2. Moreover, a
function k(z) is called radial if k(z) = k(]|z]2). To
notify, the considered stationary kernels in this paper
are all radial, and their Fourier transforms are also
radial, i.e., p(w) = p(w), refer to [8, 47].

3.1 Answer to the open question in RKKS

As mentioned before, not every indefinite kernel admits
a representation as a difference between two positive
definite kernels. In fact we do not know how to verify
that an indefinite kernel can be associated with RKKS
except for some intuitive examples, e.g., a linear com-
bination of PD kernels with negative coefficients. By
virtue of measure decomposition of the signed measure
in Theorem [2] we provide a sufficient and necessary
condition in the following theorem to answer the ques-
tion in RKKS: for a given indefinite kernel, does it
admit a positive decomposition?

Theorem 3. Assume that an indefinite kernel is sta-
tionary, i.e., k(x,2') = k(x — a’). Denote its (gener-
alized) Fourier transform as the measure p, then we
have the following results:

(i) Existence: k admits the positive decomposition,
i.e., k=ky —k_, if and only if the total mass of the
measure  is finite, i.e., ||p]] < co. Here ki and k_ are
two reproducing kernels associated with two reproducing
kernel Hilbert spaces (RKHS) H and H_, respectively.
(7i) Representation: If ||u|| < oo, we choose py and
— such that p = py — pu_, then the associated RKHSs
Hi are given by

He = {f £ 1B = /]R mdw = "O} ’

where F(w) is the Fourier transform of f.
Proof. The proof can be found in Appendix [A] O

Remark: We provide an explicit sufficient and
necessary condition to link the Jordan decomposition
of signed measures to positive decomposition in RKKS.
(i) Functions that can be written as a difference
between two positive functions have been studied and
characterized intrinsically in the field of harmonic
analysis [48, 49, B0]. They partly answered this
question either restricted in the one-dimensional case
(i.e., d = 1) or assuming the indefinite kernel k(x,x’)
to be jointly analytic of  and z’ in a neighborhood
of the origin. However, the used univariate condi-
tion could not be directly applied to the machine
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learning society and the smoothness requirement
on kernels excludes some non-differentiable kernels,
e.g., arc-cosine kernels. Instead, Theorem [3] provides
an access via Fourier transform to verify whether a
(reproducing) indefinite kernel belongs to RKKS or
not. The measure decomposition is much easier to be
founded than positive decomposition in RKKS that
cannot be verified in practice.

(#i) Theorem 3| can be further improved to cover
some non-squared-integrable kernel functions, e.g.,
conditionally positive definite kernels [51], of which the
standard Fourier transform does not exist. In this case,
Theorem [B] needs to consider the Fourier transform
in Schwartz space [52]. For example, conditionally
positive kernels correspond to a positive Borel measure
p on RN\{0} with an analytic function in Schwartz
space, refer to [53, Theorem 2.3].

3.2 Randomized feature map

The condition in Theorem [3| serves as a guidance
for us to find a specific positive decomposition in
practice. Hence we are ready to develop our ran-
dom feature algorithm for (real-valued) non-PD ker-
nels. One intuitive implementation way is choosing
py = max{p,0} and p— := min{0,p} such that
@ = p+ — p—. Then the stationary indefinite kernel
k can be expressed by Eq. via k = ki — k_ with
two positive constants ¢, ca. The decomposed two
Borel measures fiy == jiy /|||, i = pu/|lu_|| are
associated with two (normalized) PD kernels k; and
k_, respectively. Accordingly, the stationary indefinite
kernel k£ can be approximated by k ~ k := ki — k_.
That is, k(x, @') = By, (B(x), &(x')) ~ k(z,x') =
Iy (pi(®), pi(2)) where ®(x) is the explicit fea-
ture mapping ®(z) = [p1(), -, ¢s(2)]" with ¢;(z)

pi(@)=| Verllur [ cos(w] @), V/erllur [ sin(w] @),
iv/eallu—feos(v] @), i/l [ sin(v] @),

where i is the imaginary unit. Then random features
are obtained by sampling {w;}{ ; ~ pi/||ps| and
{vi}i_y ~ u_/||—||. The employed sampling method
can be Monte Carlo sampling, orthogonal Monte Carlo
sampling [27], [54], or leverage-score based sampling [30}
55]. The real and imaginary part in ¢;(x) correspond
to k4 and k_, and thus our estimation is unbiased. It
is important to note that, we need the imaginary unit
in the feature mapping due to the difference operatio

and then the approximated kernel is still real-valued.

(2)

The complete random features process is summarized
in Algorithm [I] For a given stationary indefinite kernel,

2 A simple example is that a — b = ((v/a, iv/b), (v/a, iv/b))
for two nonnegative real numbers a, b.

Algorithm 1: Random features for various
indefinite kernels via generalized measures.

Input: A kernel function k(x,x’) = k(z) with

z = || — '||2 and the number of
random features s.
Output: Random feature map
®(-) : R4 — R* such that
k.2~ 1570 (o), gi(a).

1. Obtain the measure pu(-) of the kernel k via
(generalized) Fourier transform ;

2. Given pu, let p == p4 — p— be the Jordan
decomposition with two nonnegative measures
1+ and compute the total mass
liall = D )+ NI

3. Sample {w;}7_1 ~ 4 /[|p+] and
{vitiog ~ p—/lp-1l;

4. Output the explicit feature mapping ®(x)
with ¢;(x) given in Eq. (2).

its p, p+ can be pre-computed, which is independent of
the training data. In this way, our algorithm achieves
the same complexity with the standard RFF by O(ns?)
time and O(ns) memory. Besides, the formulation in
Eq. (1), as well as Algorithm [1] is general enough to
cover various PD and non-PD kernels. Stationary PD
kernels admit Eq. by choosing ¢; =1 and co =0
where we have p = pu associated with ||u|| =1, i.e., a
Borel measure. Hence, the Bochner’s theorem can be
regarded as a special case of the considered integration
representation in this paper.

The approximation performance in our method for
indefinite kernels still achieves theoretical guarantees
with those of PD kernels by the following proposition.
The result can be easily derived from [56], [57], of which
the proof refers to Appendix [B] for completeness.

Proposition 2. Let k be a stationary indefinite ker-
nel in RKKS with two Borel measures i+ defined in
Eq. , we have the following results:

(i) Approximation: Let Sp be the compact ball by
Sr = {A|A € R, ||Allz < R}, then given the approz-
imated kernel k obtained by our algorithm via Monte
Carlo sampling, for any € > 0

A 20R\? 2
Pr| sup |k(z,2")—k(x,x")| > €|<66( — |e™ 2@+
€

x,x' ESR

where 02 == B, W w] + By [w'w] < 0.

(i) Variance reduction: If we consider orthogonal
Monte Carlo (OMC) sampling [27,[54]] in our algorithm,
it admits MSE[kOMC (z,x')] < MSE[KMC (x, )] for
sufficiently large d, where the mean-squared error

(MSE) is defined as E[k(x,x’)] = Elk(z, 2') — k(x, z')].
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e —2) = /R T (dw) e /R (@) = eallps B, [cos(@! 2)] — eallp [y [cos(2)]

=ki(x—ax)—k (x—2)~k (x—x)—k (x—2) (1)

S

= 2 Y Reli(@)], Relir(@)]) — ¢ D (imlgi(a)) Imlgi(a)])

i=1

4 Examples

In this section, we investigate a series of indefinite ker-
nels for a better understanding of our random features
algorithm. We begin with an intuitive example, the
linear combination of PD kernels with negative con-
straints. Then we discuss several dot-product kernels
using {5 normalization data, including the polynomial
kernel [§], the arc-cosine kernel [58], and the NTK
kernel in a two-layer ReLU network [59].

A linear combination of positive definite kernels
with negative coefficients: Kernels in this class ad-
mit the formulation k = Y'_, a;k;, where {k;}!_; is
the set of PD kernels, and a; € R. This is a typical
example of indefinite kernels in RKKS, which admits
positive decomposition such that k = k; —k_ with two
PD kernels k. Theorem [3| guides us to find p4 based
on the sign of a;. Hence we explicitly decompose an
indefinite kernel in this class into the difference of two
PD kernels, i.e., k = ki — k_ == 23:1 max(0, a;)k; —
22:1 max(0, —a;)k;. Then the corresponding nonnega-
tive measures p4+ can be subsequently obtained due to
the additivity of Fourier transform. We take the Delta-
Gaussian kernel [16] k(z, ') = exp(—||z — ='||3/278)—
exp(—||xz — x'||3/273) as an example. This kernel ad-
mits ¢; = co =1 and ||u4|| = ||p—| =1 in Eq. (1)), and
its random feature mapping is given by Eq. with
{witiy ~ N(O,7 L) and {w Y, ~ N(0,75 L),

After providing the above simple warming-up example,
we now discuss dot-product kernels on the unit sphere,
and demonstrate the feasibility of our algorithm.

Polynomial kernels on the sphere: Pennington
et al. [8] point out that a polynomial kernel on
the unit sphere by ¢ normalization is of k(x,z’) =

1 -3\ f .
-2 or a > 2 and p > 1 and z =

le — a'||]2 € [0,2]. This kernel is indefinite since its
Fourier transform is not a nonnegative measure in [§]

(3)

which results from the oscillatory behavior of the Bessel
function of the first kind J;/51;(2w). We demonstrate
llell < oo (see in Appendix , which makes the in-
tegration our random features algorithm feasible by

decomposing g = py — p— with gy = max{0, u}
and p— = min{0,u}. Then random feature map
for this kernel can be also given by Eq. with
fwitiy ~ /Il | and {3}, ~ p/|ju_||- There-
fore, Algorithm [I]is suitable for this kernel. Note that
the (scaled) measure p4 is not a typical probability
distribution, but the radial property of the Fourier
transform allows us to conduct rejection sampling in
one dimension to sample from this “complex” distribu-
tion, which does not incur too much computational cost.
We experimentally evaluate this with other sampling
schemes in Section |5} Compared to [8] using a positive
sum of Gaussians to approximate p(w), where parame-
ters in Gaussians need to be optimized aforehand, our
algorithm achieves both simplicity and effectiveness
by having (i) an unbiased estimator, (i) incurring no
extra parameters. Figure|l|shows the superiority of our
method to SRF on approximating the spherical poly-
nomial kernel k(z). It can be found that, our method
is unbiased to achieve lower mean squared error since
SRF directly overlooks the negative part of the signed
measure .

Next we consider the NTK of two-layer ReLU networks
on the unit spherd’| [59]. Since this kernel in fact
consists of zero/first-order arc-cosine kernels [58], we
combine them together for discussion.

NTK of Two-layer ReLU networks on the
unit sphere: Bietti and Mairal [59] consider a
two-layer ReLU network of the form f(x;0) =
V2535 30 ajmax{w] @, 0}, with the parameter
0 = (w—{, ‘e ,w—sr, aj,--- ,as) initialized according to
N(0,1). By formulating ReLU as max{w]x,0} =
(w]T-sc)Jr, we have the following formulation correspond-
ing to NTK [59, [60]

k(z,2') = 2B no,n [(w ')+ (w'a') 1]

4

+2(z'2) Eyonon [l {w >0} 1{w'2’ >0}], )
which can be further represented by k(x,x’) =
|| ||| - s (¢, ") /(llae]| |2’ [])) with (w) := wuso(u) +
r1(u). Here, ro(u) =1 — X arccos(u) corresponds to
the zero-order arc-cosine kernel and r1(u) = L (u(m —

arccos(u)) + v 1 — u?) is the first-order arc-cosine ker-

3This setting is actually different from the considered
f2-normalization case in this paper that cannot ensure the
data are i.i.d on the unit sphere.
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nel [58]. Furthermore, such NTK kernel is proved to
be stationary but indefinite by the following theorem.

Theorem 4. For any x,x’ € R%, by ly normaliza-
tion, the NTK kernel of a two layer ReLU network of
the form f(x;0) = V2sY25_ Y% aymax{w]x,0} is
stationary, that is,

2 — 22 1
k(x,z') =  arccos 222 —1) + =4 22,
T 2 2m
where z == |l — &'||2 € [0,2]. However, the function

k(z),z € ]0,2] is not positive deﬁniteﬂ
Proof. The proof can be found in Appendix O

Since the above NTK on the unit sphere can be for-
mulated as k(x,2’) = (x,z')ko(x, ') + k1 (x, ') as-
sociated with arc-cosine kernels, we have the direct
corollary for arc-cosine kernels.

Corollary 4.1. The zero/first order arc-cosine kernel
is not positive definite if the data are fo-normalized,
and its measure p is given in Appendiz [E.

Remark: These spherical dot-product kernels includ-
ing polynomial kernels, arc-cosine kernels, and NTK
are indefinite by ¢2 normalization, which extends the
classical insight on spherical dot-product kernels via
spherical harmonics [61]. Besides, our findings moti-
vate us to scrutinize functional spaces, the approxi-
mation performance, and generalization properties of
over-parameterized networks in deep learning theory
if considering ¢s-normalization data, which in return
expands the usage scope of indefinite kernels.

In Appendix[E] we compute the measure 4 of arc-cosine
kernels, which is quite complex as it involves with the
sum of infinite series with Bessel functions. When tak-
ing finite series (e.g., one term) as an approximation,
we demonstrate ||p|| < co. In this case, Algorithm [1]is
accordingly suitable for arc-cosine kernels and NTK on
the unit sphere. If we take more terms in finite series,
the calculation appears non-trivial. And specifically,
there exists a gap between the original p and its ap-
proximation by finite series, so we do not include these
two kernels in our experiments.

5 Experiments

We evaluate the proposed method on four represen-
tative benchmark datasets including letteTEL ijcnn]ﬂ
covtypéﬂ, and cod-RNAB, see in Table[ll The datasets
are normalized to [0,1]¢ by an fy-norm scaling scheme

“The behavior of k(z) with z > 2 is undefined. Following
[8], we set k(z) =0 for z > 2.

Shttps://archive.ics.uci.edu/ml/datasets.html.

Shttps://www.csie.ntu.edu.tw/~cjlin/
libsvmtools/datasets/
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Figure 1: Approximation of the spherical polynomial
kernel with a = p = 2.

Table 1: Benchmark datasets.

Datasets d  #training  #test

letter 16 12,000 6,000

ijennl 22 49,990 91,701
covtype 54 290,506 290,506
cod-RNA 8 59,535 157,413

and have been given with training/test partition ex-
cept for covtype. Hence, we randomly split the covtype
dataset into the training and test sets by half. In our
experiment, the used indefinite kernels are the spheri-
cal polynomial kernel k(z,z') = (1 — ||z — 2'||3/a?)"
with @ = 2, p = 2 in [§], and the Delta-
Gaussian kernel k(z,x’') = exp(—|z — z'||?/273) —
exp(—||z — x'||?/272) with 7y = 1 and 75 = 10 in [16].
The compared algorithms include SRF (Spherical Ran-
dom Features) [§], DIGMM (Double-Infinite Gaussian
Mixtures Model) [41], and Nystrom with leverage score
[I7]. Moreover, we also include Random Maclaurin
(RM) [42], Tensor Sketch (TS) [43], and Tensorized
Random Projection (TRP) [44] for polynomial ker-
nel approximation. Note that the related error bars
and standard deviations are obtained by running the
experiments for 10 times. All experiments are imple-
mented in MATLAB and carried out on a PC with
Intel® i7-8700K CPU (3.70 GHz) and 64 GB RAM.
The source code of our implementation can be found
in http://www.lfhsgre.org.

Kernel approximation: The relative error |K —
§||F/||K||F is chosen to measure the approximation
quality where K and K denote the exact kernel matrix
on 1,000 random selected samples and its approximated
kernel matrix, respectively. Figure [2] shows the approx-
imation error under two indefinite kernels as a function
of #random features s. Our method achieves lower ap-
proximation error than the other algorithms across such
two kernels on these datasets in most cases. A clear
look at the case of Delta-Gaussian kernel approximation
will find that our approach significantly improves the
approximation quality compared to random features
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Figure 2: Comparisons of various algorithms for approximation error across the Delta-Gaussian kernel (top) and
the spherical polynomial kernel (bottom) on four datasets.
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Figure 3: Comparisons of various algorithms for classification accuracy with LibLinear across the Delta-Gaussian
kernel (top) and the spherical polynomial kernel (down) on four datasets.

based algorithms: SRF and DIGMM. There always ex-
ists a gap in SRF that uses a PD kernel to approximate
an indefinite one since the negative part is overlooked.
DIGMM only focuses on approximating a subset of the
kernel matrix. Different from these two, our method
directly approximates the indefinite kernel function by
an unbiased estimator, which incurs no extra loss for
kernel approximation. Besides, when compared with
several representative algorithms for polynomial ker-
nels, e.g., RM, TS, and TRP, our method still performs
well, which extends the application of our model.

Classification with linear SVM: We train a linear
classifier: LibLinear [62] with the obtained random-
ized feature map. The balanced parameter in linear
SVM is tuned by five-fold cross validation on a grid
of points: C = [0.01,0.1,1,10,100]. The test accu-
racy of various algorithms are shown in Figure (3] As
we expected, higher-dimensional randomized feature
map outputs higher classification accuracy except the
cod-RNA dataset. On this dataset, all of algorithms
achieve the similar classification accuracy under various
s. Apart from this dataset, our method performs best
in most cases.
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Table 2: Time cost (sec.) for generating feature matrices of various algorithms.

Spherical polynomial kernel | Delta-Gaussian kernel

Datasets s
SRF! Nystrom DIGMM RM TS TRP Ours | SRF! Nystrom DIGMM  Ours
2d  17.740.02 0.12 0.21 0.04 0.07 0.01 0.08 | 17.2+0.03 0.14 0.32 0.07
letter 8d 0.09 0.24 0.41 0.12 0.10 0.21 0.23 0.10 0.39 1.19 0.23
32d 0.33 1.27 2.69 0.38 0.31 0.89 0.85 0.30 1.69 4.56 0.92
2d  10.340.24 0.83 0.42 0.33 0.53 073 0.70 | 20.340.23 1.23 0.61 0.41
ijennl 8d 0.89 2.78 1.08 1.20 0.90 2.74  1.87 0.86 4.38 1.96 1.44
32d 3.30 16.44 8.36 450 264 10.50 7.31 3.42 22.64 6.86 5.67

1 On each dataset, SRF obtains parameters in GMM by an off-line grid search scheme in advance, of which this extra

time cost is reported in bold.
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Figure 4: Comparisons of various sampling schemes
across the spherical polynomial kernel on letter.

Computational time: Table [2| reports the time cost
on generating randomized feature map with various
dimensions s on two datasets. Our method achieves the
same complexity with the standard RFF with O(ns?)
time and O(ns) memory. In practice, as reported by
Table [2, our method takes a little more time than
SRF to generate randomized feature maps due to the
introduced extra imaginary part. Nevertheless, on each
dataset, SRF requires extra time to obtain parameters
of a sum of Gaussians in advance.

Sampling schemes in spherical polynomial ker-
nel: The measures py /||| and p— /|| p—| associated
with the spherical polynomial kernel are not typical dis-
tributions, so we conduct rejection sampling to acquire
them by generating a set of uniformly 10,000 samples
in a range of [—10,10]. Here we compare various sam-
pling schemes in our method for spherical polynomial
kernel approximation, including sampling with 1,000
points, sampling in a sub-interval [—5, 5], importance
sampling, and orthogonal Monte Carlo. Here the sur-
rogate distribution in importance sampling is chosen
as the Gaussian distribution. The applied orthogonal
Monte Carlo, followed by [27], aims to obtain orthogo-
nal random features.

Figure 4] shows the approximation error and time cost
of various sampling schemes. It can be found that, or-
thogonal random features achieve lower approximation
error but require more computational cost, as suggested
by [27, 54]. Instead, the applied importance sampling

(a) order p =1 (b) order p =3
Figure 5: Approximation error of various algorithms
across the spherical polynomial kernel with different
orders on the letter dataset.

decreases the time cost with a slight improvement on
the approximation performance. If we choose the ridge
leverage function in importance sampling, our model
works with the leverage score based sampling, refer to
[30] for details.

Different orders in spherical polynomial kernel:
Apart from the used p = 2 in the spherical polynomial
kernel in our experiment, we evaluate our model on
spherical polynomial kernels with various orders, e.g.,
p =1 and p = 3. Kernel approximation results in
Figure [5| show that, under different orders, our method
performs better than other algorithms in terms of the
approximation error.

6 Conclusion

We answer the open question of indefinite kernels in
machine learning community by the introduced mea-
sure decomposition technique, which motivates us to
develop a general random features algorithm across
various kernels that are stationary indefinite kernels.
Albeit simple, our algorithm is effective to output un-
biased estimates for indefinite kernel approximation.
Besides, our findings on the indefiniteness of NTK on
the unit sphere (by ¢2 normalization) encourages us
to better understand the approximation performance,
functional spaces, and generalization properties in over-
parameterized networks in the future.
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