
Kernel regression in high dimensions: Refined analysis beyond double descent

This is the supplementary material for the paper: “Kernel regression in high dimensions: Refined analysis beyond
double descent”, by Fanghui Liu, Zhenyu Liao, and Johan A.K. Suykens. The supplementary material (Appendix)
is organized as follows.

• Section A provides high dimensional linearizations of some typical smooth kernels as concrete examples of
Table 2.

• In Section B, we demonstrate that, a kernel matrix in high dimensions admits the same eigenvalue decay as

X̃ and XX>/d.

• Our proof framework includes the error decomposition in Section C, the error bound for the bias in Section D
and for the variance in Section E, respectively.

• Section F discusses the quantity functionNnλ+γ

X̃
based on three eigenvalue decays: harmonic decay, polynomial

decay, and exponential decay in the n < d and n > d regimes.

• Some additional experiments are presented in Section G to further validate our theoretical results.

A Examples of kernels and their linearizations

In this section, we present linearization of some typical kernels by Eq. (5). Here we assume that α, β, γ ≥ 0 to

ensure the positive definiteness of the approximated kernel matrix K̃ lin. Table 4 reports the results of three
inner-product kernels including polynomial kernel, linear kernel, exponential kernel; as well as a radial kernel: the
common-used Gaussian kernel. We can find that α, γ ≥ 0. Specifically, β > 0 avoids a trivial solution.

Table 4: Linearizations of typical kernels in high dimensions.

kernel formulation α β γ

polynomial kernels k(x,x′) :=
(
1 + 1

d 〈x,x
′〉
)p 1 + p(p− 1)

tr
(
Σ2
d

)
2d2

p (1 + τ)p − 1− pτ

linear kernel k(x,x′) = 1
d 〈x,x

′〉 0 1 0

exponential kernel k(x,x′) = exp( 2
d 〈x,x

′〉) 1 + 2
tr
(
Σ2
d

)
d2

2 exp(2τ)− 1− 2τ

Gaussian kernel k(x,x′) = exp
(
− 1
d‖x− x′‖22

)
exp(−2τ)

[
1 + 2

tr
(
Σ2
d

)
d2

]
2 exp(−2τ) 1− 2τ exp(−2τ)− exp(−2τ)

B Eigenvalue decay equivalence

In this section, we demonstrate that, in high dimensions, a kernel matrix induced by inner-product kernels or

radial kernels admits the same eigenvalue decay as X̃ = βXX>/d+ α11> and XX>/d.

For notational simplicity, denote the inner-product kernel matrix Kinner and its linearization K̃ lin
inner; the radial

kernel matrix Kradial and its linearization K̃ lin
radial.

Proposition 2. The inner-product kernel matrix Kinner admits the same eigenvalue decay as X̃ and XX>/d.

Proof. According to Theorem 2.1 in [26], the inner-product kernel matrix Kinner can be well approximated by

K̃ lin
inner with

K̃ lin
inner := β

XX>

d
+ γI + α11> ,

in a spectral norm sense, where α, β, γ are given in Table 2. As a result, with high probability, the inner-product

kernel matrix Kinner and its linearization K̃ lin
inner has the same eigenvalue. That means, Kinner admits the same

eigenvalue decay as X̃ := βXX>/d+ α11> via a constant shift γ.
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Next, we shall demonstrate that Kinner admits the same eigenvalue decay as XX>/d. Since 11> is a rank-one
matrix with λ1(11>) = n, with Weyl’s inequality and λn ≤ λn−1 ≤ . . . ≤ λ1, we have

βλ1

(
XX>

d

)
+ γ ≤ λ1(K̃ lin

inner) ≤ βλ1

(
XX>

d

)
+ γ + αn,

and

βλi

(
XX>

d

)
+ γ ≤ λi(K̃ lin

inner) ≤ βλi−1

(
XX>

d

)
+ γ , i = 2, 3, . . . n ,

so that the eigenvalue of K̃ lin
inner interlaced with those of βXX>/d+γI. We can thus conclude that the eigenvalue

decay of K̃ lin
inner is the same as that of XX>/d with a constant shift and scaling, which do not effect the trend of

eigenvalue decay. Accordingly, the inner-product-type kernel matrix Kinner and its linearization K̃ lin
inner, X̃ admit

the same eigenvalue decay as XX>/d, which concludes the proof.

Proposition 2 also provides a justification to study the eigenvalue decay of a radial kernel matrix. According to

Theorem 2.2 in [26], the radial kernel matrix Kradial can be well approximated by K̃ lin
radial with

K̃ lin
radial := β

XX>

d
+ γI + α11> + h′(2τ)A+

1

2
h′′(2τ)A�A ,

in a spectral norm sense, where α, β, γ are given in Table 2. Recall A := 1ψ> + ψ1>, where ψ ∈ Rn with
ψi := ‖xi‖22/d− τ , we find that A is a rank 2 matrix with its eigenvalues λ(A) = 1>ψ ±

√
n‖ψ‖2, and thus we

have rank(A�A) = 3.3 Hence, by virtue of Proposition 2, apart from the top 5 eigenvalues of the radial kernel
matrix Kradial, its remaining eigenvalues follow with

βλi

(
XX>

d

)
+ γ ≤ λi(K̃ lin

radial) ≤ βλi−1

(
XX>

d

)
+ γ , i = 6, 7, . . . n .

Accordingly, Kradial admits the same eigenvalue decay as XX>/d.

C Proof of Lemma 1

Proof. By virtue of the closed form of the KRR estimator in Eq. (3) and ε := y − fρ(X), we have

fz,λ(x)− fρ(x) = k(x,X)>(K + nλI)−1ε+ k(x,X)>(K + nλI)−1fρ(X)− fρ(x) ,

where fρ(X) = [fρ(x1), fρ(x1), · · · , fρ(xn)]> ∈ Rn. According to Ey|x[ε] = 0, we then have

Ey|x
∥∥fz,λ − fρ∥∥2

L2
ρX

= Ex

∥∥k(x, ·)>(K + nλI)−1fρ(X)− fρ
∥∥2

L2
ρX

+ Ey,x
∥∥k(x, ·)>(K + nλI)−1ε

∥∥2

L2
ρX

.

Based on the definition of B, we decompose B as

B := Ex

∥∥k(x, ·)>(K + nλI)−1fρ(X)− fρ
∥∥2

L2
ρX

= ‖fX,λ − fρ‖2L2
ρX

≤ 2‖fX,λ − fλ‖2L2
ρX

+ 2‖fλ − fρ‖2L2
ρX

,

which concludes our proof.

D Proof for the bias

The error bound for the bias is given by the following theorem.

3This can be proved using rank-one decomposition of A.
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Theorem 3. (Bias) Under Assumption 4 (source condition with 0 < r ≤ 1), Assumption 5 (capacity condition
with 0 ≤ η ≤ 1), let 0 < δ < 1/2, taking the regularization parameter λ := c̄n−ϑ with 0 ≤ ϑ ≤ 1

1+η , there holds
with probability at least 1− 2δ, we have

B ≤ 2
(
‖fX,λ − fλ‖2L2

ρX

+ ‖fλ − fρ‖2L2
ρX

)
. n−2ϑr log4

(2

δ

)
.

In our error decomposition, ‖fλ − fρ‖2L2
ρX

is independent of data X that corresponds to the approximation error

in learning theory [30]; while the first term ‖fX,λ− fλ‖2L2
ρX

depends on X, termed as bias-sample error. To prove

Theorem 3, we need to bound the approximation error and the bias-sample error as follows.

D.1 Bound approximation error

In learning theory, the approximation error ‖fλ−fρ‖L2
ρX

can be estimated by the source condition in Assumption 4.

Lemma 2. (Lemma 3 in [61]) Under the source condition in Assumption 4 with 0 < r ≤ 1, the approximation
error can be given by

‖fλ − fρ‖L2
ρX

= ‖(LK + λI)−1LKfρ − fρ‖L2
ρX
≤ λr‖L−rK fρ‖L2

ρX
≤ Rλr .

D.2 Bound bias-sample error

To bound the bias-sample error ‖fX,λ − fλ‖L2
ρX

, we need the following lemma.

Lemma 3. (Lemma 17 in [62]) For any 0 < δ < 1, it holds with probability at least 1− δ that

‖(LK + λI)−1/2(LK − LK,X)‖ ≤ 2κ√
n

{
κ√
nλ

+
√
N (λ)

}
log

(
2

δ

)
,

where κ := max{1, supx∈X
√
k(x,x)}.

Then the bias-sample error can be decomposed into several parts.

Lemma 4. Under Assumption 4, we have

‖fX,λ − fλ‖ ≤ Rλ1/2‖(LK,X + λI)−1/2(LK + λI)1/2‖‖(LK + λI)−1/2(LK − LK,X)‖r

‖(LK + λI)−1/2(LK − LK,X)(LK + λI)−1‖1−r .

Proof of Lemma 4. According to the definition of fX,λ and fλ, we have

fX,λ − fλ = (LK,X + λI)−1LK,Xfρ − (LK + λI)−1LKfρ .

Due to (A+ λI)−1A = I − λ(A+ λI)−1 for any bounded positive operator A, we have

(LK + λI)−1LKfρ − (LK,X + λI)−1LK,Xfρ = λ
[
(LK,X + λI)−1 − (LK + λI)−1

]
fρ .

Further, by virtue of the first order decomposition of operator difference: A−1 −B−1 = A−1(B −A)B−1 for any
invertible bounded operator and using the source condition in Assumption 4, the above equation can be further
expressed as

(LK + λI)−1LKfρ − (LK,X + λI)−1LK,Xfρ = λ(LK,X + λI)−1(LK − LK,X)(LK + λI)−1LrKgρ

= λ1/2
(
λ1/2(LK,X + λI)−1/2

)(
(LK,X + λI)−1/2(LK + λI)1/2

)
(

(LK + λI)−1/2(LK − LK,X)(LK + λI)−(1−r)
) (

(LK + λI)−rLrK
)
gρ .

Besides, using ‖ABt‖ ≤ ‖A‖1−t‖AB‖t with t ∈ [0, 1] for any bounded linear operator A and positive semi-definite
operator B in Proposition 9 in [37], we have

‖(LK + λI)−1/2(LK − LK,X)(LK + λI)−(1−r)‖ ≤ ‖(LK + λI)−1/2(LK − LK,X)‖r

‖(LK + λI)−1/2(LK − LK,X)(LK + λI)−1‖1−r ,
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where we choose A := (LK + λI)−1/2(LK − LK,X), B := (LK + λI)−1, and t := 1− r ∈ [0, 1). Accordingly, we

can conclude our proof due to ‖(LK,X + λI)−1/2‖ ≤ 1/
√
λ and ‖(LK + λI)−rLrK‖ ≤ 1.

Remark: The proof framework of Lemma 4 is similar to Lemma 4 in [37] but we consider a more general case
0 < r ≤ 1 than 1/2 ≤ r ≤ 1 in [37]. Although 0 < r < 1/2 appears to be unattainable as claimed in [37], we
follow with [62, 63] on a quite general case with r > 0.

To prove Theorem 3, we also need the following two lemmas.

Lemma 5. (Proposition 6 in [37]) Let δ ∈ (0, 1/2], it holds with probability at least 1− 2δ that

‖(LK + λI)−1/2(LK − LK,X)(LK + λI)−1‖

≤ ‖(LK + λI)−1/2(LK − LK,X)(LK + λI)−1/2‖‖(LK + λI)−1/2‖ ≤

(
κ2

3nλ
+

√
κ2

nλ

)
1√
λ
.

Lemma 6. For any 0 < δ < 1, with probability at least 1− δ, we have

‖(LK,X + λI)−1/2(LK + λI)1/2‖ ≤ 1 +
2κ√
nλ

{
κ√
nλ

+
√
N (λ)

}
log

(
2

δ

)
.

Proof of Lemma 6. By virtue of a second order decomposition of operator difference in Lemma 16 [62], we have

A−1 −B−1 = B−1(B −A)A−1(B −A)B−1 +B−1(B −A)B−1 ,

which leads to

A−1B = I +B−1(B −A) +B−1(B −A)A−1(B −A) . (11)

Accordingly, denote A := LK,X + λI and B := LK + λI, we can derive that

‖(LK,X + λI)−1/2(LK + λI)1/2‖ ≤ ‖(LK,X + λI)−1(LK + λI)‖1/2

≤
√

1 + λ−1/2‖(LK + λI)−1/2(LK − LK,X)‖+ λ−1‖(LK + λI)−1/2(LK − LK,X)‖2

≤
√

1 +A+A2 ≤ 1 +A ,

where A := 2κ√
nλ

{
κ√
nλ

+
√
N (λ)

}
log(2/δ) by Lemma 3. The first inequality holds by ‖AsBs‖ ≤ ‖AB‖s with

0 ≤ s ≤ 1 for positive operators A and B on Hilbert spaces [39]. The second inequality can be derived by Eq. (11),
‖(LK,X + λI)−1‖ ≤ 1/λ and ‖(LK + λI)−1/2‖ ≤ 1/

√
λ.

Remark: Lemma 7.2 in [64] gives ‖(LK,X + λI)−1/2(LK + λI)1/2‖ ≤
√

2 by assuming λ > 9
n log n

δ ; whereas our
result does not require extra conditions on λ.

Based on the above lemmas, we are ready to prove Theorem 3.

Proof of Theorem 3. We first estimate ‖(LK,X + λI)−1/2(LK + λI)1/2‖ in Lemma 6 by taking λ := c̄n−ϑ and
the capacity condition in Assumption 5: N (λ) ≤ Q2λ−η with η ∈ [0, 1]. Accordingly, we have

‖(LK,X + λI)−1/2(LK + λI)1/2‖ ≤ 1 +
2κ√
nλ

{
κ√
nλ

+
√
N (λ)

}
log

(
2

δ

)
≤ 1 +

(
2κ2

c̄
n−(1−ϑ) + 2κc̄−( 1

2 + η
2 )Qn−

1−ϑ−ϑη
2

)
log

(
2

δ

)
≤
(

1 +
2κ(κ+Q)

c̄
n−

1−ϑ−ϑη
2

)
log

(
2

δ

)
,

where we use logr(2/δ) ≤ log(2/δ) due to log(2/δ) > 1 in the last inequality. Since ‖(LK,X +λI)−1/2(LK+λI)1/2‖
converges to zero when n is large enough, we require ϑ < 1

1+η to ensure a positive convergence rate, which implies
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ϑ ≤ 1. Then we bound ‖(LK + λI)−1/2(LK − LK,X)‖r by Lemma 3. By virtue of (a + b)r ≤ ar + br for any
r ∈ (0, 1] and a, b ≥ 0, we have

‖(LK + λI)−1/2(LK − LK,X)‖r ≤
(

2κ√
n

)r {
κ

(nλ)
r
2

+ [N (λ)]
r
2

}
log

(
2

δ

)
≤ (2κ)r(nc̄)−

r
2

[
κn−

r(1−ϑ)
2 +

Q

c̄
ηr
2

n
ϑηr
2

]
log

(
2

δ

)
≤ 2κ(Q+ κ)

c̄
n−

(1−ϑη)r
2 log

(
2

δ

)
,

where the second one admits by the capacity condition in Assumption 5. Similarly, to bound ‖(LK+λI)−1/2(LK−
LK,X)(LK + λI)−1‖1−r by Lemma 5, we can derive that

‖(LK + λI)−1/2(LK − LK,X)(LK + λI)−1‖1−r ≤ λ−
1−r
2

(
κ2(nλ)−(1−r) + κ(nλ)−

1−r
2

)
≤ κ2

c̄

(
n( 3

2ϑ−1)(1−r) + n(ϑ− 1
2 )(1−r)

)
≤ κ2

c̄
n(ϑ− 1

2 )(1−r) .

Combining the above three inequalities, we have

‖fX,λ − fλ‖ ≤
4Rκ3(Q+ κ)2

c̄3
n−

(1−ϑη)r+ϑ
2 n(ϑ− 1

2 )(1−r) log2

(
2

δ

)
≤ C̃R,Q,κ,c̄n−

1−ϑ(ηr+1−2r)
2 log2

(
2

δ

)
,

where C̃R,Q,κ,c̄ := 4Rκ3(Q+ κ)2/c̄3 is independent of n and d.

Finally, the bias can be bounded by

B ≤ 2‖fX,λ − fλ‖2L2
ρX

+ 2‖fλ − fρ‖2L2
ρX

≤ 2R2n−2ϑr + C̃1n
−[1−ϑ(ηr+1−2r)] log4

(
2

δ

)
≤ C̃n−2ϑr log4

(
2

δ

)
,

where the third inequality holds by 2ϑr ≤ 1 − ϑ(ηr + 1 − 2r) due to ϑ ≤ 1
1+η , and C̃, C̃1 are some constants

independent of n and d. Accordingly, we can conclude the proof.

E Proof for the variance

Formally, we have the following theorem to bound the variance.

Theorem 4. (Variance) Under Assumptions 2, 3, then for 0 < δ < 1 with probability 1− δ − d−2, θ = 1
2 −

2
8+m ,

and d large enough, for any given ε > 0, we have

V . V1 + V2 ,

where V1 := σ2β
d N

nλ+γ

X̃
and V2 is the residual term with

V2 :=


σ2 log2+4ε d

(nλ+ γ)2d4θ−1
, inner-product kernels

σ2

(nλ+ γ)2
d−2θ log1+ε d, radial kernels .

For inner-product kernels, our proof framework follows [18], and is briefly discussed in Section E.1. Nevertheless,
error bound on radial kernels has not been investigated in [18] and is more subtle to handle (than that of
inner-product kernels) due to the additionally introduced A and A�A in Table 2. Accordingly, we mainly focus
on proofs for radial kernels.
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E.1 Inner-product kernel matrices

In this subsection, we consider the inner-product kernel case with k(x,x′) = h (〈x,x′〉/d). We briefly introduce
our results that can be derived from proofs of Theorem 2 in [18] for completeness.

To prove Theorem 4, define

K̃ lin(X,X) := (nλ+ γ)I + α11> + β
XX>

d
∈ Rn×n , klin(x,X) := h(0)1 + β

Xx>

d
∈ Rn×1 , (12)

and klin(X,x) is the transpose of klin(x,X). Note that γ in K̃ lin corresponds to the implicit regularization and
nλ corresponds to the explicit regularization. Now we prove Theorem 4 for inner-product kernels.

Proof of Theorem 4 for inner-product kernels. According to the definition of V, we have

V = Ex,ytr
[
k(x,X)>(K + nλI)−1εε>(K + nλI)−1k(x,X)

]
= Ex‖(K + nλI)−1k(x,X)‖22 Ey|x‖ε‖22

≤ σ2Ex‖(K + nλI)−1k(x,X)‖22
≤ σ2‖(K + nλI)−1K̃ lin‖22 Ex‖[K̃ lin]−1klin(x,X)‖22 + σ2‖(K + nλI)−1‖22 Ex‖k(x,X)− klin(x,X)‖22 ,

(13)

where the first inequality comes from Assumption 2. To bound the terms in Eq. (13), we need

Ex‖[K̃ lin]−1klin(x,X)‖22 = Ex tr

[[
K̃ lin

]−1 (
β
Xx

d
+ h(0)1

)(
β
x>X>

d
+ h(0)1>

) [
K̃ lin

]−1
]

≤ 1

d
‖Σd‖2 tr

([
K̃ lin

]−1

β2XX
>

d

[
K̃ lin

]−1
)

+
1

d
tr

([
K̃ lin

]−1

h(0)211>
[
K̃ lin

]−1
)

≤ β

d
‖Σd‖2

n∑
j=1

λj

(
X̃
)

[
nλ+ γ + λj

(
X̃
)]2 +

1

d

h(0)2n[
nλ+ γ + λ1

(
X̃
)]2

� β

d
Nnλ+γ

X̃
+O

(
1

nd

)
.

(14)

To bound the remaining terms in Eq. (13), we also need the following results that can be obtained from [18]:
(i) By Proposition A.2 in [18], with probability at least 1− δ− d−2, for θ = 1

2 −
2

8+m and any given ε > 0, we have∥∥∥K + nλI − K̃ lin
∥∥∥

2
≤ d−θ

(
δ−1/2 + log0.5+ε d

)
and Ex

∥∥k(x,X)− klin(x,X)
∥∥2

2
≤ C̃1d

−(4θ−1) log2+4ε d.

(ii)
∥∥(K + nλI)−1

∥∥
2
≤ 2

nλ+γ and
∥∥∥(K + nλI)−1K̃ lin

∥∥∥
2
≤ 2 provided d is large enough such that

d−θ
(
δ−1/2 + log0.5+ε d

)
≤ γ/2.

Combining the above results, with probability at least 1− δ − d−2, for any given ε > 0, The error bound for the
variance in Eq. (13) can be further given by

V ≤ σ2Ex‖(K + nλI)−1k(x,X)‖22

≤ 2σ2
∥∥∥(K + nλI)−1K̃ lin

∥∥∥2

2
Ex‖[K̃ lin]−1klin(X,x)‖22 + 2σ2‖K−1‖22 Ex

∥∥k(x,X)− klin(x,X)
∥∥2

2

� 8σ2β

d
‖Σd‖2

n∑
j=1

λj(X̃)[
nλ+ γ + λj(X̃)

]2 +
8σ2

(nλ+ γ)2
C̃1d

−(4θ−1) log2+4ε d

� σ2β

d
Nnλ+γ

X̃
+

σ2

(nλ+ γ)2
d−(4θ−1) log2+4ε d ,

which concludes the proof.

E.2 Radial kernel matrices

In this subsection, we consider the radial kernel case with k(x,x′) = h
(

1
d‖x− x

′‖22
)
. Since the linearization

of radial kernel matrices incurs in two additionally terms A and A�A, estimation for radial kernels is more
technical than that of inner-product kernels. Accordingly, to prove Theorem 4 for radial kernels, we need to
introduce the following notations and auxiliary results.
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E.2.1 Auxiliary results

Recall τ := tr(Σd)/d, define

K̃ lin(X,X) := (γ + nλ)I + α11> + β
XX>

d
+ h′(2τ)A+

1

2
h′′(2τ)A�A

klin(x,X) := h(2τ)1 + β
Xx>

d
− β

2
A(x,X) ∈ Rn×1 ,

(15)

where A(x,X) := ψx + [ψ1, ψ2, · · · , ψn]> with ψx = ‖x‖22/d − τ and ψi = ‖xi‖22/d − τ for i = 1, 2, . . . , n. As

discussed in Appendix B, we conclude that K̃ lin admits the same eigenvalue decay as X̃ since A is a rank-2
matrix. Accordingly, we have the following results.

Proposition 3. Given A(x,X) in Eq. (15), we have Ex[XxA(X,x)] = µ3XΣ
1/2
d diag(Σd)1

>
n, where µ3 :=

E[t(j)3] does not depend on j because each entry in t are independent for j = 1, 2, . . . , d. Further, Ex[XxA(X,x)]
is a rank-one matrix with its eigenvalue λ1(Ex[XxA(X,x)]) = O(

√
n/d).

Proof of Proposition 3. According to the definition in Assumption 3, xi = Σ
1/2
d ti with E[ti(j)] = 0 and V[ti(j)] =

1, we have the following expression

Et[tt
>Σdt] = Et

t d∑
i,j=1

t(i)(Σd)ijt(j)

 = µ3[(Σd)11, (Σd)22, · · · , (Σd)dd]
> ,

where µ3 := E(t3i ). Accordingly, Ex[XxA(X,x)] can be computed by

Ex[XxA(X,x)] = Ex[Xx(ψ1 + ψx),Xx(ψ2 + ψx) · · · ,Xx(ψn + ψx)]

= Ex[Xxψx,Xxψx, · · · ,Xxψx]

= XΣ
1/2
d

[
Et[tt

>Σdt]

d
,
Et[tt

>Σdt]

d
, · · · , Et[tt

>Σdt]

d

]
= µ3XΣ

1/2
d diag(Σd)1

>
n .

Note that, the matrix diag(Σd)1
>
n is a rank-one matrix, which implies rank(XΣ

1/2
d diag(Σd)1

>
n) ≤ 1. Accordingly,

its non-zero eigenvalue λ1(XΣ
1/2
d diag(Σd)1

>
n) admits

1

d
λ1(XΣ

1/2
d diag(Σd)1

>
n) =

1

d

n∑
i=1

x>i Σ
1
2

d diag(Σd) =
1

d

n∑
i=1

t>i Σd diag(Σd) .

Due to E[t>i Σd diag(Σd)] = 0 and V[t>i Σd diag(Σd)] = ‖Σd diag(Σd)‖22, which, with a central limit theorem

argument, implies
∑n
i=1 t

>
i Σd diag(Σd) = O(

√
nd) due to ‖Σd diag(Σd)‖2 ≤ ‖Σd‖2‖ diag(Σd)‖2 ≤ C̃‖ diag(Σd)‖2.

Accordingly, we can conclude that 1
dλ1(XΣ

1/2
d diag(Σd)1

>
n) = O(

√
n/d).

Proposition 4. Given A(x,X) in Eq. (15), we have Ex[A(x,X)A(X,x)] = ψψ> +O(1/d). Further, it has
only one non-zero eigenvalue that admits λ1(Ex[A(x,X)A(X,x)]) = O(n).

Proof of Proposition 4. By virtue of the following results [26]

1

d
Ex‖x‖22 =

1

d
Et[t

>Σdt] = τ

Vx

[
‖x‖22
d

]
=

1

d2

(
(µ4 − 3)

d∑
i=1

((Σd)ii)
2 + 2 tr(Σ2

d)

)
= O

(
1

d

)
,
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where µ4 := E[t(i)4] does not depend on i. Accordingly, each entry in Ex[A(x,X)A(X,x)] can be computed as

Ex[A(x,X)A(X,x)]ij = Ex[(ψi + ψx)(ψj + ψx)]

= ψiψj + (ψi + ψj)Exψx + Ex[ψ2
x]

= ψiψj + Vx

[
‖x‖22
d

]
= ψiψj +

µ4 − 3

d2
tr(Σd �Σd) +

2 tr(Σ2
d)

d2
.

Then we have

Ex[A(x,X)A(X,x)] = ψψ> +O(1/d) .

Therefore, ψψ> is a rank-one matrix with λ1(ψψ>) = ‖ψ‖22 = O(n). Then λ1(Ex[A(x,X)A(X,x)]) can be
estimated by

‖ψ‖22 ≤ λ1(Ex[A(x,X)A(X,x)]) ≤ ‖ψ‖22 + n

[
µ4 − 3

d2
tr(Σd �Σd) +

2 tr(Σ2
d)

d2

]
︸ ︷︷ ︸

=O(1/d)

,

which implies λ1(Ex[A(x,X)A(X,x)]) = O(n).

Lemma 7. Given a radial kernel, under Assumption 3, for θ = 1
2 −

2
8+m , we have with probability at least 1−d−2

with respect to the draw of X, for d large enough, for any given ε > 0, we have

Ex

∥∥k(x,X)− klin(x,X)
∥∥2

2
≤ C̃1d

−2θ log1+ε d ,

where C̃1 is some constant independent of n and d.

Remark: In fact, we only need the (5 +m)-moment in Assumption 3 but we still follow with it for simplicity.

Proof of Lemma 7. We start with the entry-wise Taylor expansion for the smooth kernel at 2τ with τ := tr(Σd)/d

k(x,xj) = h(
1

d
‖x− xj‖22) = h(2τ) + h′(2τ)(

1

d
‖x− xj‖2 − 2τ) +

h′′(2τ)

2

(
1

d
‖x− xj‖2 − 2τ

)2

+O(d−3/2)

= h(2τ) + h′(2τ)(ψx + ψj −
2x>xj
d

) +
h′′(2τ)

2

(
ψx + ψj −

2x>xj
d

)2

+O(d−3/2) ,

where ψj = ‖xj‖22/d − τ for j = 1, 2, . . . , n as defined before. Accordingly, by virtue of klin(x,xj) =
βx>xj
d −

β
2 (ψx + ψj) and Corollary 2 in [26], with probability at least 1− d−2, for any ε > 0, we have

k(x,xj)− klin(x,xj) =
h′′(2τ)

2

(
1

d
‖x− xj‖22 − 2τ

)2

≤ C̃d−1+ 4
m (log d)

1+ε
2 ,

where we only need (5 +m)-moment. Therefore, with probability at least 1− d−2, for any given ε > 0, we have∥∥k(x,X)− klin(x,X)
∥∥

2
≤ C1d

−1/2+ 4
m (log d)

1+ε
2 ≤ C̃1d

−θ(log d)
1+ε
2 ,

which implies

Ex

∥∥k(x,X)− klin(x,X)
∥∥2

2
≤ C̃2d

−2θ log1+ε d ,

where C̃1 and C̃2 are some constant independent of n and d.
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E.2.2 Proofs of Theorem 4 for radial kernels

Now we are ready to prove Theorem 4 for radial kernels.

Proof of Theorem 4 for radial kernels. Similar to Eq. (13), to estimate V ≤ σ2Ex‖(K + nλI)−1k(x,X)‖22,

we need to bound subsequently the following terms:
∥∥∥K + nλI − K̃ lin(X,X)

∥∥∥
2
,
∥∥(K + nλI)−1

∥∥
2
,∥∥∥(K + nλI)−1K̃ lin(X,X)

∥∥∥
2
, Ex‖[K̃ lin(X,X)]−1klin(x,X)‖22, and Ex‖k(x,X)− klin(x,X)‖22.

In [26], the approximation error between radial kernel matrices and their linearization can be decomposed into
three parts: the first-order term A1, the second-order term A2, and the third-order term A3∥∥∥K + nλI − K̃ lin(X,X)

∥∥∥
2

:= A1 +A2 +A3 ,

where A1 and A3 admit ‖A1‖2 ≤ d−θ log2+4ε d and ‖A3‖2 ≤ d−θ log2+4ε d. The second-order term A2 admits
Pr(‖A2‖ ≤ d−θδ−1/2) ≤ δ by Proposition A.2 in [18] and [26]. Accordingly, with probability at least 1− δ − d−2,
for θ = 1

2 −
2

8+m and any given ε > 0, we have∥∥∥K + nλI − K̃ lin(X,X)
∥∥∥

2
≤ d−θ

(
δ−1/2 + log2+4ε d

)
.

According to Proposition 3 and 4, we have

Ex‖[K̃ lin(X,X)]−1klin(X,x)‖22

= β2Ex tr

[
[K̃ lin]−1

(Xxx>X>
d2

− XxA(X,x)

d
+

1

4
A(x,X)A(X,x) + h(2τ)211>

)
[K̃ lin]−1

]
≤ β2 tr

(
[K̃ lin]−1

(XX>‖Σd‖2
d2

−
µ3XΣ

1/2
d diag(Σd)1

>
n

d
+

1

4
A(x,X)A(X,x) + h(2τ)211>

)
[K̃ lin]−1

)

=
β2‖Σd‖2

d

n∑
i=1

λi(XX
>/d)

[λi(K̃ lin)]2
− β2µ3

d

λ1(XΣ
1/2
d diag(Σd)1

>
n)

[λ1(K̃ lin)]2
+ β2 4λ1(Ex[A(x,X)A(X,x)]) + h(2τ)2n

[λ1(K̃ lin)]2

�
β2 ‖Σd‖2

d

n∑
i=1

λi(XX
>/d)

[λ1(K̃ lin)]2
+
O(
√
n/d)

[λ1(K̃ lin)]2
+

O(n)

[λ1(K̃ lin)]2
+

O(n)

[λ1(K̃ lin)]2

� β

d
Nnλ+γ

X̃
+O

(
1

n

)
.

(16)

It can be found that, the above error bounds are the same as that of inner-product kernels, except two additional
terms due to the considered A and A�A in the linearization, which can be shown small in the large n, d regime.

By virtue of
∥∥(K + nλI)−1

∥∥
2
≤ 2

nλ+γ and
∥∥∥(K + nλI)−1K̃ lin

∥∥∥
2
≤ 2 in [18], Lemma 7, and the above equations,

with probability at least 1− δ − d−2, for any given ε > 0, we have

V ≤ σ2Ex‖(K + nλI)−1k(x,X)‖22

≤ 2σ2
∥∥∥(K + nλI)−1K̃ lin

∥∥∥2

2
Ex‖[K̃ lin]−1klin(X,x)‖22 + 2σ2‖K−1‖22 Ex

∥∥k(x,X)− klin(x,X)
∥∥2

2

≤ 8σ2Ex‖[K̃ lin]−1klin(X,x)‖22 +
8σ2

(nλ+ γ)2
C̃1d

−2θ log1+ε d

� σ2β

d
Nnλ+γ

X̃
+

σ2

(nλ+ γ)2
d−2θ log1+ε d ,

(17)

where the second inequality admits by Lemma 7, and the last inequality follows by Eq. (16). Finally, we conclude
the proof.

F Proof of Proposition 1

In this section, we discuss Nnλ+γ

X̃
based on three eigenvalue decays: harmonic decay, polynomial decay, and

exponential decay under two regimes n < d and n > d.
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F.1 n < d case

Recall b := nλ + γ > 0, and N b
X̃

:=
∑n
i=1

λi(X̃)

[b+λi(X̃)]
2 , define F (λi) := λi

(b+λi)2
where λi is short for λi(X̃). We

notice that, when λi ≤ b, F (λi) is an increasing function of λi, and thus a decreasing function of i when the
above three eigenvalue decays are considered. Likewise, when λi ≥ b, F (λi) is a decreasing function of λi, and
thus an increasing function of i. Without loss of generality, we assume that the first q eigenvalues satisfy λi ≥ b
with i = 1, 2, · · · , q and the remaining n− q eigenvalues satisfy λi ≤ b with i = m+ 1,m+ 2 · · · , n. Clearly, the

integer q can be chosen from 0 to n. Accordingly, denote r∗ := rank(X̃) which includes the rank-deficient case,
N b

X̃
can be upper bounded by the Riemann sum as follows.

Harmonic decay λi(X̃) ∝ n/i for i ∈ {1, 2, . . . , r∗} and λi(X̃) = 0 for i ∈ {r∗ + 1, . . . , n}

1

d
N b

X̃
=

1

d

r∗∑
i=1

n/i

(b+ n/i)
2 =

1

d

q∑
i=1

n/i

(b+ n/i)
2 +

1

d

r∗∑
i=q+1

n/i

(b+ n/i)
2

6
1

nd

∫ q+1

1

t(
1 + bt

n

)2 dt+
1

nd

∫ r∗+1

q+1

t(
1 + bt

n

)2 dt

=
n

b2d

∫ (r∗+1)b
n

b
n

u

(1 + u)
2 du with the change of variable u = tb/n

=
n

b2d

[
ln
n+ (r∗ + 1)b

n+ b
+

n

n+ b+ r∗b
− n

n+ b

]
6

n

b2d
ln
n+ (r∗ + 1)b

n+ b
= O(

n

b2d
) .

Polynomial decay: λi(X̃) ∝ ni−2a with a > 1/2 for i ∈ {1, 2, . . . , r∗} and λi(X̃) = 0 for i ∈ {r∗ + 1, . . . , n}.
Hence, we actually aim to bound

1

d
N b

X̃
=

1

d

r∗∑
i=1

ni−2a

(b+ ni−2a)
2 =

1

d

q∑
i=1

ni−2a

(b+ ni−2a)
2 +

1

d

r∗+1∑
i=q+1

ni−2a

(b+ ni−2a)
2

6
1

nd

∫ r∗+1

1

t2a(
1 + t2ab

n

)2 dt

=
1

2abd

(n
b

) 1
2a

∫ (r∗+1)2ab/n

b/n

u
1
2a

(1 + u)
2 du with the change of variable u = t2ab/n

6 C̃
1

2abd

(n
b

) 1
2a

since the integral is finite due to 2a > 1

Exponential decay: λi(X̃) ∝ ne−ai with a > 0 for i ∈ {1, 2, . . . , r∗} and λi(X̃) = 0 for i ∈ {r∗ + 1, . . . , n}.

We aim to bound the sum as

1

d
N b

X̃
=

1

d

r∗∑
i=1

ne−ai

(b+ ne−ai)
2 =

1

d

q∑
i=1

ne−ai

(b+ ne−ai)
2 +

1

d

r∗∑
i=q+1

ne−ai

(b+ ne−ai)
2

6
1

d

∫ r∗+1

1

ne−at

(b+ ne−at)
2 dt

=
1

ad

∫ ne−a

ne−a(r∗+1)

1

(b+ u)
2 du with the change of variable u = ne−at

=
1

ad

(
1

b+ ne−a(r∗+1)
− 1

b+ ne−a

)
.

Note that, the monotonicity of N b
X̃

(also V1) with respect to n is relatively clear for harmonic decay and polynomial
decay but is unclear in the case of exponential decay. Here we study the monotonicity in the exponential decay.
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Denote the function G(n) :=
(

1
b+ne−a(r∗+1)− 1

b+ne−a

)
with b := nλ+ γ, taking λ := c̄n−ϑ, its derivation is

G′(n) =
−c̄(1− ϑ)n−ϑ − e−a(r∗+1)[
cn1−ϑ + γ + ne−a(r∗+1)

]2 +
c̄(1− ϑ)n−ϑ + e−a[
cn(1−ϑ) + γ + ne−a

]2 , (18)

which can be rewritten as

G′(n) =
c̄(1− ϑ)n−ϑ + e−a[

cn1−ϑ + γ + ne−a(r∗+1)
]2

[
c̄n1−ϑ + γ + ne−a(r∗+1)

]2[
c̄n(1−ϑ) + γ + ne−a

]2︸ ︷︷ ︸
,H1(n)

− c̄(1− ϑ)n−ϑ + e−a(r∗+1)

c̄(1− ϑ)n−ϑ + e−a︸ ︷︷ ︸
,H2(n)

 .

It can be found that both H1(n) and H2(n) are decreasing functions with n. More specifically, their maximum
and minimum can be achieved with

max
n

H1(n) = H1(1) =

(
c̄+ γ + e−a(r∗+1)

c̄+ γ + e−a

)2

, min
n
H1(n) = lim

n→∞
H1(n) =

(
e−a(r∗+1)

e−a

)2

,

and

max
n

H2(n) = H2(1) =
c̄(1− ϑ) + e−a(r∗+1)

c̄(1− ϑ) + e−a
, min

n
H2(n) = lim

n→∞
H2(n) =

e−a(r∗+1)

e−a
.

Accordingly, if H1(1) < H2(1), we obtain a decreasing function G(n) of n, which implies that N b
X̃

will decrease

with n. Here the condition H1(1) < H2(1) indicates

(
c̄+ γ + e−a(r∗+1)

c̄+ γ + e−a

)2

≤ c̄(1− ϑ) + e−a(r∗+1)

c̄(1− ϑ) + e−a
,

which is equivalent to

(ϑc̄+ γ)2 ≤
[
e−a + (1− ϑ)c̄

] [
e−a(r∗+1) + (1− ϑ)c̄

]
. (19)

Accordingly, if the above inequality holds, N b
X̃

will decrease with n. In Section G.2, we will experimentally check
whether this condition holds or not.

F.2 n > d case and the large n limit

In this section, we consider the n > d case, and further study the trend of V1 as n→∞. Note that, in this case,
XX>/d has at most r∗ ≤ d non-zero eigenvalues. Accordingly, the Riemann sum is counted to r∗ instead of n.
Similar to the above description, we also consider the following three eigenvalue decays.

Harmonic decay λi(X̃) ∝ n/i, i ∈ {1, 2, · · · , d}

1

d
N b

X̃
=

1

d

r∗∑
i=1

n/i

(b+ n/i)
2 =

1

d

q∑
i=1

n/i

(b+ n/i)
2 +

1

d

r∗∑
i=q+1

n/i

(b+ n/i)
2

6
n

b2d

∫ (r∗+1)b
n

b
n

u

(1 + u)
2 du

=
n

b2d

[
ln
n+ (r∗ + 1)b

n+ b
+

n

n+ b+ r∗b
− n

n+ b

]
.
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In particular, taking the limit of n→∞, we have

lim
n→∞

1

d
N b

X̃
= lim
n→∞

n

b2d

[
ln
n+ (r∗ + 1)b

n+ b
+

n

n+ b+ r∗b
− n

n+ b

]
= lim
n→∞

n

b2d
ln
n+ (r∗ + 1)b

n+ b
+ lim
n→∞

n

b2d

(
n

n+ b+ r∗b
− n

n+ b

)
=
r∗
d

(
lim
n→∞

1

b

n

n+ b
− lim
n→∞

n2

b(n+ b+ r∗)(n+ b)

)
≤ lim
n→∞

1

b

n

n+ b
− lim
n→∞

n2

b(n+ b+ r∗)(n+ b)

= 0 .

Accordingly, by the squeeze theorem, we can conclude, given d, N b
X̃

tends to zero when n→∞.

Polynomial decay: λi(X̃) ∝ ni−2a with a > 1/2, i ∈ {1, 2, · · · , d}

1

d
N b

X̃
=

1

d

r∗∑
i=1

ni−2a

(b+ ni−2a)
2 6

1

2abd

(n
b

) 1
2a

∫ (r∗+1)2ab/n

b/n

u
1
2a

(1 + u)
2 du

6
1

2abd

(n
b

) 1
2a

∫ ∞
0

u
1
2a

(1 + u)
2 du

6 C̃
1

2abd

(n
b

) 1
2a

since the integral is finite due to 2a > 1

Since the integral
∫

u
1
2a

(1+u)2
du can behave rather differently for different choices of a, here we take a = 1 as an

example. Taking the limit of n→∞, we have

lim
n→∞

1

d
N b

X̃
= lim
n→∞

1

2bd

(n
b

) 1
2

∫ (r∗+1)2b/n

b/n

u
1
2

(1 + u)
2 du

=
1

2bd
lim
n→∞

(n
b

) 1
2

(
arctan(

√
u)−

√
u

u+ 1

) ∣∣∣∣∣
(r∗+1)2b/n

b/n

=
1

2bd
lim
n→∞

√
n

b

(
(r∗ + 1)

√
b/n−

(r∗ + 1)
√
b/n

(r∗ + 1)2b/n
−
√
b/n+

√
b/n

b/n+ 1

)
using lim

x→0

arctan x
x = 1.

= 0 .

Exponential decay: λi(X̃) ∝ ne−ai with a > 0, i ∈ {1, 2, · · · , d}

1

d
N b

X̃
=

1

d

r∗∑
i=1

ne−ai

(b+ ne−ai)
2 =

1

d

q∑
i=1

ne−ai

(b+ ne−ai)
2 +

1

d

r∗∑
i=q+1

ne−ai

(b+ ne−ai)
2

6
1

ad

∫ ne−a

ne−a(r∗+1)

1

(b+ u)
2 du

=
1

ad

(
1

b+ ne−a(r∗+1)
− 1

b+ ne−a

)
.

Taking the limit of n→∞, we can directly have lim
n→∞

1
dN

b
X̃

= 0.

G Additional Experiments

In this section, we present additional experiments including the following parts:
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• In Section G.1, we add the MNIST dataset [59] to verify the eigenvalue decay equivalence, and evaluate the
effect by different orders in polynomial kernel.

• In Section G.2, our model works in a polynomial kernel setting under the polynomial decay and exponential

decay of X̃ on the synthetic dataset.

G.1 Eigenvalue decay equivalence

Apart from the YearPredictionMSD dataset in the main text, we add the MNIST dataset [59] to verify the

eigenvalue decay equivalence. We also compute eigenvalues of X̃ := βXX>/d + α11> for validation. Here
the parameters α depends on the covariate Σd, which can be empirically estimated by the sample covariance
1
n

∑n
i=1(xi − 1

n

∑n
j=1 xj)(xi −

1
n

∑n
j=1 xj)

>.

Results on the polynomial kernel with order 3 and the Gaussian kernel are presented in Figure 6 and 7,
respectively. It can be observed that, the nonlinear kernel matrix K admits almost the same eigenvalue as

X̃ := βXX>/d+ α11> with a constant shift γ, and accordingly exhibits the same eigenvalue decay with X̃ and
XX>/d.

(a) digit 1 (b) digit 3 (c) digit 5 (d) digit 7 (e) digit 10

Figure 6: Top 60 eigenvalues of Polynomial kernel with order 3 and its linearization on the MNIST dataset. Note
that the largest eigenvalue λ1 is not plotted for better display.

(a) digit 1 (b) digit 3 (c) digit 5 (d) digit 7 (e) digit 10

Figure 7: Top 60 eigenvalues of Gaussian kernel and its linearization on the MNIST dataset. Note that the largest
eigenvalue λ1 is not plotted for better display.

Besides, to study eigenvalue decay effected by the order in polynomial kernels, we present results of the order
p = 5 and p = 10 in Figure 8. Experimental results show that, there is some gap between the original kernel and
its linearization in higher orders. This is because, nonlinear kernel approximated by linear model here is based
on Taylor expansion, which would incur in some residual errors as higher order in polynomial kernels brings in
stronger non-linearity.

G.2 Results on the synthetic dataset

Here we evaluate our model with the polynomial kernel on the synthetic dataset under the polynomial/exponential

decay of Σd. The data generation process follows with our experiments part in the main text such that X̃ admits
the polynomial/exponential decay.

Results on the polynomial decay and the exponential decay are shown in Figure 9 and Figure 10, respectively.
We find that, the bias achieves the certain O(n−2ϑr) convergence rate on both decays; while the variance shows
different configurations on these two decays. To be specific, the tend of V1 on the polynomial decay is unimodal,
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(a) order 5 (b) order 10

Figure 8: Top 60 eigenvalues of polynomial kernel matrices and their linearizations on the MNIST dataset (digit
1). Note that the largest eigenvalue λ1 is not plotted for better display.

(a) ϑ = 2/3 (b) ϑ = 2/3 (c) ϑ = 1/3 (d) ϑ = 1/3

Figure 9: Polynomial decay of X̃ in the polynomial kernel case: MSE of the expected excess risk, the variance in
Eq. (10), our derived V1, the bias in Eq. (9), and our derived convergence rate O(n−2ϑr) with r = 1 in Theorem 2
under different ϑ.

(a) ϑ = 2/3 (b) ϑ = 2/3 (c) ϑ = 1/3 (d) ϑ = 1/3

Figure 10: Exponential decay of X̃ in the polynomial kernel case: MSE of the expected excess risk, the variance in
Eq. (10), our derived V1, the bias in Eq. (9), and our derived convergence rate O(n−2ϑr) with r = 1 in Theorem 2
under different ϑ.

and thus the risk curve is bell-shaped. However, in Figure 10, V1 on the exponential decay monotonically decreases
with n even if we set c̄ to 10−5, 10−8 for a small regularization scheme.

Here we attempt to explain this phenomenon. In our setting, γ is set to zero. The condition in Eq. (19) can be
reformulated as

(2ϑ− 1)c̄ ≤ e−a(1− ϑ) .

Clearly, if we choose 0 < ϑ < 1/2, the condition in Eq. (19) always holds. Hence, V1 will monotonically decreases
with n. If 1/2 < ϑ < 1, we examine our result with a = 1 and ϑ = 2/3. We conclude that the used c̄ = 0.01 < e−1,
so the tend of V1 is monotonically decreasing with n.




