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Abstract

In this paper, we provide a precise charac-
terization of generalization properties of high
dimensional kernel ridge regression across the
under- and over-parameterized regimes, de-
pending on whether the number of training
data n exceeds the feature dimension d. By
establishing a bias-variance decomposition of
the expected excess risk, we show that, while
the bias is (almost) independent of d and
monotonically decreases with n, the variance
depends on n, d and can be unimodal or mono-
tonically decreasing under different regular-
ization schemes. Our refined analysis goes
beyond the double descent theory by show-
ing that, depending on the data eigen-profile
and the level of regularization, the kernel re-
gression risk curve can be a double-descent-
like, bell-shaped, or monotonic function of n.
Experiments on synthetic and real data are
conducted to support our theoretical findings.

1 Introduction

Interpolation learning [1, 2, 3] has recently attracted
growing attention in the machine learning community.
This is mainly because current state-of-the-art neural
networks appear to be models of this type: they are able
to interpolate the training data while still generalize
well on test data, even in the presence of label noise
[4]. It has been empirically observed that other models
including random features, decision trees, and as simple
as linear regression also exhibit similar phenomenon
[3, 5, 6]. This is somewhat striking as it goes against
the conventional wisdom of bias-variance trade-off [7]:
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predictors that generalize well must trade off the model
complexity against training data fitting. The double
descent theory [5] resolves this paradox by revisiting
the bias-variance trade-off and showing that the model
generalization error exhibits a phase transition at the
interpolation point : moving away from this point on
either side tends to reduce the generalization error.

The double descent phenomenon has recently inspired
intense theoretical research [1, 8, 9, 10] and has been
further extended to multiple descent [11, 12, 13] on var-
ious models. One line of work formalized the argument
that, even when no explicit regularization is imposed,
implicit regularization is encoded in the model via the
choice of optimization algorithms and techniques, e.g.,
stochastic gradient descent (SGD) [14], dropout [15],
early stopping [16], and ensemble methods [17]. Dif-
ferent from these “external” schemes, the kernel inter-
polation estimator [18, 19] directly benefits from its
intrinsic kernel structure that serves as an implicit reg-
ularization to help both interpolate and approximate.
In fact, (strictly) positive-definite kernels can inter-
polate an arbitrary number of data points [20], and
thus kernel spaces contain (nearly) optimal interpolants
[21, 22]. Although the kernel space is rich enough to
contain models that generalize well, the generalization
property of kernel method, for example how it depends
on the choice of kernel, its interplay with the data and
the level of regularization, still remains unclear. In
particular, the question whether the double descent
phenomenon exists in the kernel regression models is
still unanswered [18, 23]. As such, refined analyses
are needed to have a thorough understanding of kernel
estimators, notably in the high dimensional regime of
interest. This is indeed the objective of the article.

Here, we consider the kernel ridge regression (KRR)
estimator [7, 24, 25] in a high dimensional setting with
data dimension d and size n both large, and treat the
kernel interpolation as a special case of KRR by taking
the explicit regularization to be zero. More precisely, by
virtue of the linearization of kernel matrices in high di-
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Table 1: Trends of the variance V with respect to n in the n < d case. The notation ↗ means V increases with n;
→ for V stays unchanged; and ↘ for V decreases with n, see Figure 1(a); and r∗ := rank(XX>). From left to the
right column, the regularization λ increases, and a large λ leads to a small value of peak point n∗ := n∗(λ), which
may even disappear. Note that n∗ is different for three eigenvalue decays of XX>/d. See Section 4.1 for details.

eigenvalue decay λ = 0 λ := c̄n−ϑ (KRR)

harmonic decay ↗ →
1 ≥ ϑ ≥ 1

2(2−c̄) ϑ < 1
2(2−c̄)

↗ → r∗ < d ≤ n∗ r∗ ≤ n∗ ≤ d n∗ ≤ r∗ < d n∗ ≤ c < r∗ < d 1

↗ → ↗ → ↗ ↘ → ↘ →

polynomial decay ↗ →
1 ≥ ϑ ≥ 1

1+ 1
2a

ϑ < 1
1+ 1

2a

↗ → r∗ < d ≤ n∗ r∗ ≤ n∗ ≤ d n∗ ≤ r∗ < d n∗ ≤ c < r∗ < d
↗ → ↗ → ↗ ↘ → ↘ →

exponential decay ↗ → r∗ < d ≤ n∗ r∗ ≤ n∗ ≤ d n∗ ≤ r∗ < d n∗ ≤ c < r∗ < d
↗ → ↗ → ↗ ↘ → ↘ →

1 Here c is some constant such that n > c always holds as n is required to be large in theory and practice.

(a) trends of variance (b) double descent (c) bell-shaped (d) monotonically decreasing

Figure 1: (a) Trends of variance under different regularization schemes corresponding to Table 1. (b-d) Trends of
the risk curve under various bias and variance can be double descent, bell-shaped, and monotonically decreasing.

mensions [18, 26, 27, 28, 29], we disentangle the implicit
regularization of kernel interpolation estimators in an
explicit manner. As a result, both implicit and explicit
regularization schemes can be systematically studied
within the proposed framework. Mathematically, KRR
aims to solve the following empirical risk minimization
problem on a training set z := {(xi, yi)}ni=1 with data
xi ∈ Rd and responses yi ∈ R:

fz,λ :=argmin
f∈H

{
1

n

n∑
i=1

(
f(xi)−yi

)2
+λ〈f, f〉H

}
, (1)

where an explicit Tikhonov regularization term induced
by a reproducing kernel Hilbert space (RKHS) H is
added to the least-squares objective. In statistical
learning theory [30], the regularization parameter λ > 0
is generally taken to depend on the sample size n in
such a way that limn→∞ λ(n) = 0. Here we assume
that λ := c̄n−ϑ with some ϑ ≥ 0 and 0 ≤ c̄ ≤ 1 to
cover the interpolation case.

In this paper, we propose a novel bias-variance decom-
position of the KRR expected excess risk, and derive
non-asymptotic bounds for both bias and variance.

This precise assessment leads to fruitful discussions
as a function of different data eigenvalue decays and
regularization schemes. Our main findings include:

• We demonstrate that, for data dimension d large,
the kernel matrix admits the same eigenvalue decay
as XX>/d, where X = [x1, . . . ,xn]> ∈ Rn×d
is the data matrix. So in high dimensions, the
eigenvalue decay of K is almost determined by the
data, as reflected in our error bound for the bias.

• The explicit regularization λ := c̄n−ϑ largely af-
fects the peak point of the variance: a large λ
decreases the model complexity, and thus cor-
responds to a small value of interpolation point
n∗ ≡ n∗(λ). Table 1 shows that, under a small
(or zero) regularization so that r∗ ≤ n∗ with
r∗ := rank(XX>/d): the error bound for variance
V monotonically increases with n until n := r∗, as
in the red curve of Figure 1(a). Under a moderate
regularization with n∗ ≤ r∗: V first increases with
n until n := n∗ and then decreases. In this case,
the peak point will move to the left due to n∗ < d,
see the blue curve in Figure 1(a). Under a large
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regularization with n∗ ≤ c for some constant c, V
monotonically decreases with n, as in the green
curve of Figure 1(a).

• Our error bounds for the bias and the variance
exhibit different characteristics. More specifically,
the bias bound is (almost) independent of the
data/feature dimension d and monotonically de-
creases with n at a certain O(λ) (learning) rate
as in the classical learning theory [30, 31, 32]. Be-
sides, the variance bound depends on n and d,
and exhibits monotonic decreasing or unimodal
with n under different regularizations. Hence, the
expected excess risk, as the sum of bias and vari-
ance, can be double descent (Figure 1(b)), bell-
shaped (Figure 1(c)), or monotonic decreasing
(Figure 1(d)), depending on the level of implicit
and explicit regularizations. This is in agreement
with empirical findings in neural networks [33].

• Our non-asymptotic results show that, for large
but fixed d, both the variance and bias tends to
zero as n → ∞ under λ := c̄n−ϑ, implying that
the excess risk approaches zero. Based on this, in
the double descent case particularly, the minimum
of the expected error in the over-parameterized
n > d regime is lower than that in the n < d
regime. This claim cannot be obtained from [18].

The rest of the paper is organized as follows. We briefly
introduce problem settings in Section 2. In Section 3,
we present our main results on the generalization prop-
erty of KRR in high dimensions and briefly sketch the
main ideas of the proof. Discussions on the derived
error bounds are given in Section 4. In Section 5, we re-
port numerical experiments to support our theoretical
results and the conclusion is drawn in Section 6.

2 Problem Settings and Preliminaries

We work in the high dimensional regime for some large
d, n with c ≤ d/n ≤ C for some constants c, C > 0.
For notational simplicity, we denote by a(n) . b(n):

there exists a constant C̃ independent of n such that
a(n) ≤ C̃b(n), and analogously for � and &.

2.1 Kernel Ridge Regression Estimator

Let X ⊆ Rd be a metric space and Y ⊆ R, the instances
(xi, yi) in the training set z = {(xi, yi)}ni=1 ∈ Zn

are assumed to be independently drawn from a non-
degenerate Borel probability measure ρ on X×Y . The
target function of ρ is defined by

fρ(x) =

∫
Y

y dρ(y | x), x ∈ X , (2)

where ρ(· | x) is the conditional distribution of ρ at x ∈
X. Define the response vector y = [y1, y2, · · · , yn]> ∈
Rn and the kernel matrix K = {k(xi,xj)}ni,j=1 in-
duced by a positive definite kernel k(·, ·), KRR aims to
find a hypothesis f : X → Y such that f(x) is a good
approximation of the response y ∈ Y corresponding
to a new instance x ∈ X. This is actually an empir-
ical risk minimization in problem (1). By denoting
k(x,X) = [k(x,x1), k(x,x2), · · · , k(x,xn)]> ∈ Rn,
the closed-form of KRR estimator in Eq. (1) is

fz,λ(x) = k(x,X)>(K + nλI)−1y . (3)

We consider two popular positive definite kernel
classes of (i) the inner-product kernel of the form
k(xi,xj) = h (〈xi,xj〉/d) and (ii) the radial kernel
function k(xi,xj) = h

(
‖xi − xj‖22/d

)
. Here h(·) :

R → R is a nonlinear function that is assumed to
be (locally) smooth, as in [26, 18]. Examples include
commonly used kernels such as linear kernels, polyno-
mial kernels, Sigmoid kernels, exponential kernels, and
Gaussian kernels, to name a few.

The expected (quadratic) risk is defined as E(f) =∫
Z

(f(x) − y)2dρ and the empirical risk functional
is defined on the training set z, i.e., Ez(f) =
1
n

∑n
i=1

(
f(xi)− yi

)2
. To measure the estimation qual-

ity of fz,λ, one natural way is the expected excess
risk : Ey|x[E(fz,λ)− E(fρ)]. Specifically, in KRR, the
expected excess risk admits Ey|x[E(fz,λ) − E(fρ)] =
Ey|x‖fz,λ − fρ‖2L2

ρX

, which is exactly in the weighted

L2-space with the norm ‖f‖2L2
ρX

=
∫
X
|f(x)|2dρX(x).

2.2 Background on RKHS

Now we characterize the integral operators defined
by a kernel. Given a kernel k, its integral operator
LK : L2

ρX → L
2
ρX admits

(LKf)(·) =

∫
X

k(·,x)f(x)dρX(x), ∀f ∈ L2
ρX . (4)

Since LK is compact, positive definite and self-adjoint,
by the spectral theorem (see, Theorem A.5.13 in
[34]), there exists countable pairs of eigenvalues and
eigenfunctions {µi, ψi}∞i=1 of LK such that LKψi =
µiψi, where {ψ}∞i=1 are orthogonal basis of L2

ρX (X)
and µ1 ≥ µ2 · · · > 0 with lim

i→∞
µi = 0. Ac-

cordingly, by Mercer’s theorem, we have k(x,x′) =∑∞
i=1 µiψi(x)ψi(x

′), and there exists a constant κ ≥ 1
such that supx∈X

∑∞
i=1 µiψ

2
i (x) ≤ κ2. It holds by

κ := max{1, supx∈X
√
k(x,x)}. Based on the data

matrix X and the integral operator LK , the empirical
integral operator is given by LK,X = 1

n

∑n
i=1 k(·,xi)⊗

k(·,xi), which converges to the data-free limit LK at
an O(1/

√
n) rate [35].
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Table 2: Parameters of the linearized kernel K̃ lin in [26].

parameters inner-product kernels radial kernels

α h(0) + h′′(0)
tr
(
Σ2
d

)
2d2

h(2τ) + 2h′′(2τ)
tr
(
Σ2
d

)
d2

β h′(0) −2h′(2τ)

γ h(τ)− h(0)− τh′(0) h(0) + 2τh′(2τ)− h(2τ)

E 0n×n h′(2τ)A + 1
2h
′′(2τ)A�A 1

1A := 1ψ> + ψ1>, where ψ ∈ Rn with ψi := ‖xi‖22/d− τ
and τ := tr(Σd)/d.

3 Main Results

In this section, we state our main result under some
basic/technical assumptions, compare it with existing
results, and sketch the main ideas of our proof.

3.1 Basic results

To illustrate our analysis, we need the following three
standard assumptions.

Assumption 1. (Existence of fρ) We assume fρ ∈ H.

This is a standard assumption in learning theory and
assumes that the target function fρ defined in Eq. (2)
is indeed realizable, see also [36, 37, 30, 32].

Assumption 2. (Noise condition [18, 38]) There ex-
ists σ such that E[(fρ(x)− y)2 | x] ≤ σ2, almost surely.

This is a broad model for the noise in the output y,
containing uniformly bounded or sub-Gaussian noise;
and is in fact weaker than the standard Bernstein
condition, e.g., in [39].

Assumption 3. ((8+m)-moments [18, 40]) Let xi =

Σ
1/2
d ti, where ti ∈ Rd has i.i.d. entries with zero mean,

unit variance, and a finite (8+m)-moments, i.e., its
entry ti(j), 1 ≤ j ≤ d, satisfies E[ti(j)] = 0, V[ti(j)] =

1, and E(|ti(j)|) ≤ Cd
2

8+m such that E[xix
>
i ] = Σd

with a bounded spectral norm ‖Σd‖2, for some m > 0.

This is a standard setting in high-dimensional statis-
tics and random matrix theory [26, 38, 18, 2, 27]
that assumes that the data are drawn from some not-
too-heavy-tailed distribution, with possibly (involved)
structure between the entries.

To aid our proof, we need some extra results. In [26],
it has been shown that the kernel matrix K in high di-

mensions can be well approximated by K̃ lin in spectral

norm, i.e., ‖K − K̃ lin‖2 → 0 as n, d→∞

K̃ lin := α11> + β
XX>

d
+ γI +E , (5)

with non-negative parameters α, β, γ, and the addi-
tional matrix E given in Table 2, see some typical
examples in Appendix A. Here γ is the implicit regular-
ization parameter in kernel estimator that depends on

the nonlinear function h in the kernel k and the data
structure Σd. According to Eq. (5), denote the shortcut

X̃ := βXX>/d+ α11>, we show in high dimensions

that, K admits the same eigenvalue decay as X̃ and
XX>/d (see details in Appendix B). Subsequently, we
introduce the following quantity function

N b
X̃

:= tr
[
(X̃ + bIn)−2X̃

]
=

n∑
i=1

λi(X̃)[
b+ λi(X̃)

]2 , (6)

which is associated with various quantity functions
in [16, 38, 18, 41, 42] and, as we shall see, plays an
important role in determining the variance behavior.
We will discuss at length N b

X̃
based on different data

eigenvalue decays in Section 4.

Formally, our main results of KRR in a high-
dimensional regime are stated as follows.

Theorem 1. (Basic result) Under Assumptions 1-3,
let 0 < δ < 1/2, θ = 1

2−
2

8+m , d large enough, taking the

regularization parameter λ := c̄n−ϑ with 0 ≤ ϑ ≤ 1/2,
for any given ε > 0, it holds with probability at least
1− 2δ − d−2 with respect to the draw of X that

Ey|x
∥∥fz,λ−fρ∥∥2

L2
ρX

.n−ϑlog4
(2

δ

)
+ V1 + V2 , (7)

with V1 := σ2β
d N

nλ+γ

X̃
and the residual term V2

V2 :=


σ2 log2+4ε d

(nλ+ γ)2d4θ−1
, for inner-product kernels

σ2

(nλ+ γ)2
d−2θ log1+ε d, for radial kernels .

Remark: The first term in Eq. (7) is the bound of
the bias, which is independent of d and monotonically
decreases with n. The sum V1 + V2 is the bound of
the variance that depends on both n and d. Note that
V2 monotonically decreases with n, and approaches
to zero for a large n. Therefore, the error bound for
V1 � 1

dN
nλ+γ

X̃
is the key part of estimates for the vari-

ance and will be discussed in in Section 4, where nλ
corresponds to the explicit regularization and γ the im-
plicit regularization. We will demonstrate that V1 can
be monotonically decreasing or unimodal under differ-
ent regularization schemes. Such monotonic bias and
unimodal variance can lead to various behaviors of the
excess risk, including monotonically decreasing, double
descent, and bell-shaped risk curve, as illustrated in
Figure 1 of introduction.

3.2 Refined result

Based on the basic result, if we consider two additional
assumptions, i.e., extending Assumption 1 by consider-
ing the regularity of fρ and studying spectral decay of
k via complexity of H, we can obtain a refined result.
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Assumption 4. (Source condition [30]) For some 0 <
r ≤ 1, there exists gρ ∈ L2

ρX satisfying ‖gρ‖L2
ρX
≤ R

such that fρ = LrKgρ.

It has been widely used in the literature of learning
theory to assess the regularity of fρ [30, 43, 37], which
indicates fρ belongs to the range space of LrK . Assump-
tion 1 is the worst case of Assumption 4 by choosing

r = 1/2 since ‖f‖L2
ρX

= ‖L1/2
K f‖H, ∀f ∈ L2

ρX .

Assumption 5. (Capacity condition [30]) For any
λ > 0, there exist Q > 0 and η ∈ [0, 1] such that

N (λ) := tr
(
(LK + λI)−1LK

)
≤ Q2λ−η .

The notation N (λ) denotes the “effective dimension”
and can be regarded as a “measure of size” of the RKHS.
This is a natural and widely used assumption in the lit-
erature [30, 43, 37]. Assumption 5 always holds for η =
1 and Q = κ where κ := max{1, supx∈X

√
k(x,x)} as

LK is a trace class operator. Its kernel matrix form

is dλK := tr
(
(K + λIn)−1K

)
=
∑n
i=1

λi(K)
λi(K)+λ [44, 45].

While Assumption 5 can be further refined to obtain
a bound that depends on d [46], here we focus on the
eigenvalue decay of K, see Section 4 for details.

Based on the above discussion, we obtain a refined
result of Theorem 1 as below.

Theorem 2. (Refined result) Under Assumptions 2-5,
let 0 < δ < 1/2, θ = 1

2 −
2

8+m , and d large enough,

taking λ := c̄n−ϑ with 0 ≤ ϑ ≤ 1
1+η , then for any given

ε > 0, it holds with probability at least 1− 2δ − d−2

Ey|x
∥∥fz,λ−fρ∥∥2

L2
ρX

≤n−2ϑrlog4
(2

δ

)
+ V1 + V2 , (8)

where V1 and V2 are the same as in Theorem 1.

Remark: Compared to classical learning theory re-

sults [47] achieving O(n−
2r+1

2r+1+η ) learning rates, the
parameter η in our results only effects the selection
range of λ, which is nearly independent of the learning
rates to some extent. That means, the spectral decay
of a kernel function k in high dimensions is almost
irrelevant to its kernel type. In fact, the eigenvalue
decay of the kernel matrix in our model largely depends
on the data, which is in essence different from classical
learning theory results. Therefore, our result reflects
a certain “universality” on the kernel function in high
dimensional problems, which shows consistency to [26].

3.3 Related work

We provide non-asymptotic results that systemati-
cally analyze both implicit and explicit regularization
schemes within a unified framework.

Implicit regularization in kernel/linear interpo-
lation: Implicit regularization can be induced by min-
imum norm solutions in linear interpolation [48, 49],
or the curvature of the kernel function in kernel in-
terpolation [18]. Compared to the risk curve in [18]
that converges to a non-zero constant, the risk curve
in our results tends to zero when n � d. Hence our
result demonstrates that, in the double descent case,
the minimum of the expected risk in the second de-
scent is lower than the first descent; while the same
claim cannot be obtained from [18]. Besides, under
the basic fρ ∈ H case, our bias bound is based on
the eigen-decay (trends) of the kernel matrix K and
thus can be (almost) independent of d, achieving an
optimal learning rate O(λ) in a minimax case. This
is different from [18] that corresponds to the sum of
tailed eigenvalues of K. Specifically, if we directly set
λ to zero, our result for the bias still holds, which can
be bounded by ‖LK,X − LK‖L2

ρX
. O(1/

√
n).

Explicit regularization in kernel/linear regres-
sion: We provide non-asymptotic results that refine a
series of asymptotic analyses, e.g., the Stieltjes trans-
form approach in [2, 27, 33, 50] and the statistical
mechanic approach in [51]. In fact, by considering the
limiting eigenvalue distribution ofXX>/d via its Stielt-
jes transform 1

nN
b
XX>/d≈m(−b)− bm′(−b), for m(b)

the solution to the popular Marc̆enko–Pastur equation
[52], our error bound recovers [2, Theorem 5] with
b := λ and isotropic features Σd = Id. Finite sample
analyses are often based on a finer control of the Stielt-
jes transform [41] or the effective rank [3, 53]. However,
the aforementioned results are generally limited to
Gaussian [41, 42] and sub-Gaussian data [3, 53, 54],
or Gaussian covariates [55]. Here we consider a much
broader family of distributions. Besides, under some
specific situations, the regularization parameter λ in
(generalized) linear regression can be negative [49] or
optimal tuned [42, 9] so as to generalize well. Recent
research [21, 12, 23] on kernel regression in n := O(dc)
shows different trends.

3.4 Proof framework

The proof of our results is fairly technical and lengthy,
and we briefly sketch some main ideas of Theorem 2
here. Note that, Theorem 1 is a special case of Theo-
rem 2 by taking r = 1/2 and η = 1. The modified error
decomposition, the error bounds of variance for radial
kernels, and estimates for bias are the main elements
of novelty in the proof.

In order to estimate the error Ey|x‖fz,λ−fρ‖ in the L2
ρX

space, we need the following intermediate functions.
Define fλ = (LK + λI)−1LKfρ, where I is the identity
operator, then fλ is actually the minimizer of the follow-

ing problem fλ = argminf∈H

{
‖f − fρ‖2L2

ρX

+λ‖f‖2H
}

.
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Besides, by defining

fX,λ(x) = k(x,X)>(K + nλI)−1fρ(x) ,

we have fX,λ = (LK,X + λI)−1LK,Xfρ. Accordingly,
the variance-bias decomposition is stated in the follow-
ing lemma, with proof deferred to Appendix C.

Lemma 1. Let fz,λ be the minimizer of problem (1),
Ey|x‖fz,λ − fρ‖2L2

ρX

can be bounded by

Ey|x
∥∥fz,λ − fρ∥∥2

L2
ρX

= B + V

≤ 2
(
‖fX,λ − fλ‖2L2

ρX

+ ‖fλ − fρ‖2L2
ρX

)
+ V

where the bias B is defined as

B := Ex

∥∥k(x, ·)>(K + nλI)−1fρ(X)− fρ
∥∥2

L2
ρX

, (9)

where fρ(X) = [fρ(x1), fρ(x1), · · · , fρ(xn)]> ∈ Rn and
the variance V is defined as

V := Ex,y

∥∥k(x, ·)>(K + nλI)−1ε
∥∥2

L2
ρX

, (10)

where ε := y − fρ(X) satisfying Ey|x[ε] = 0.

It is clear that, the variance term does not depend
on the target function fρ, and the bias is indepen-
dent of the residual error ε. Proof for the bias
B . n−2ϑr log4

(
2
δ

)
can be found in Appendix D. Proof

for the variance V . V1 + V2 refers to Appendix E.

4 Discussion on Error Bounds

In this section, we discuss our Theorem 2 for different

eigenvalue profiles of X̃ in the two regimes of n < d
and n > d. Since K shares the same eigenvalue decay

as XX>/d and X̃ (see Proposition 2 in Appendix B),
we do not distinguish the eigen-decay of these two data
matrices in the subsequent discussions. We first focus
on the variance V that can be unimodal or monotoni-
cally decreasing with n under different regularization
schemes. Subsequently, we investigate the total risk

curve as the sum of bias and variance. Note that X̃ has
different numbers of non-zero eigenvalues under the two

regimes, we denote r∗ := rank(X̃) ≤ min{n, d}, which,
as we shall see, plays a significant role in characterizing
the different cases of our bounds.

4.1 Variance trend for n < d

We consider here three eigenvalue decays of X̃: har-
monic, polynomial, and exponential decay [56, 45].

Proposition 1. Under the three eigenvalue decays

in Table 3, denote r∗ = rank(X̃), then the quantity
function N b

X̃
with b := nλ+ γ can be bounded by

1) harmonic decay: N b
X̃
≤ n

b2 ln n+(r∗+1)b
n+b = O( nb2 ).

Table 3: Three eigenvalue decays of X̃.

eigenvalue decay
λi(X̃)

i ≤ r∗ i > r∗

harmonic decay n/i
0polynomial decay ni−2a with a > 1/2

exponential decay ne−ai with a > 0

2) polynomial decay: N b
X̃
≤ C̃

2ab

(
n
b

) 1
2a , where C̃ is

some constant.
3) exponential decay: N b

X̃
≤ 1
a

(
1

b+ne−a(r∗+1)− 1
b+ne−a

)
.

Proof. The proof can be found in Appendix F.

According to Proposition 1, we summarize our results
in Table 1 and discuss them as follows:

Harmonic decay : V1 6 O( n
b2d ).

For λ = 0, i.e., the ridgeless case, we have b = γ = O(1),
and V1 ≤ O(nd ), which indicates V1 increases with n in
the n < d regime. For λ 6= 0, taking λ := c̄n−ϑ, we have
V1 6 O( n

d(c̄n1−ϑ+γ)2
). To investigate the monotonicity

of g(n) := n
d(c̄n1−ϑ+γ)2

, define n∗ :=
(

γ
2−2ϑ−c̄

) 1
1−ϑ

, we

find that, a large λ leads to a small n∗. According to
the relationship between r∗, n∗, and d, we can conclude
that (see Table 1 and the red curve in Figure 1(a)):

When ϑ ≥ 1
2(2−c̄) , V1 will increase with n until n := r∗

and then remain unchanged when r∗ < n < d.
When ϑ < 1

2(2−c̄) , there are various trends as follows:

1) if d < n∗, this is the same as the ϑ ≥ 1
2(2−c̄) case;

2) if r∗ < n∗ < d, V1 will increase with n until n := r∗,
and then remain unchanged when r∗ < n < d;
3) if n∗ < r∗ < d, V1 will increase with n until n :=
n∗ and then decrease with n until n := r∗, and stay
unchanged on r∗ < n < d;
4) If n∗ < c such that n > c always holds for some
constant c, we have V1 increases with n until n := r∗,
and then stays unchanged on r∗ < n < d. Remark that,
for γ < 2 − 2ϑ − c̄, we have n∗ < 1 and thus n > n∗,
so that V1 always decreases with n until n := r∗.

Polynomial decay: V1 6 O( 1
bd (nb )

1
2a ).

Similar to above, define n∗ =
(

γ
2ac̄[1−(1+ 1

2a )ϑ]

) 1
1−ϑ

, we

obtain results similar to the case of harmonic decay,
but with different thresholds: ϑ ≥ (1 + 1

2a )−1 and
ϑ < (1 + 1

2a )−1, see Table 1 for details.

Exponential decay: V1 ≤ C̃β
ad

(
1

b+ne−a(r∗+1)− 1
b+ne−a

)
.

Here we consider the monotonicity of the function
G(n) :=

(
1

b+ne−a(r∗+1) − 1
b+ne−a

)
with b := nλ + γ to
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(a) poly kernel with order 3 (b) Gaussian kernel

Figure 2: Top 60 eigenvalues of two kernel matrices
and their linearizations on the subset of the YearPre-
dictionMSD dataset. Note that the largest eigenvalue
λ1 is not plotted for better display.

study the trend of V1 regarding to n. Let n∗ be the
solution of the equation G′(n) = 0, then we have the
similar conclusion with that of harmonic decay and
polynomial decay by the relationship between n∗, r∗,
and d, see Table 1 for details. More specifically, under
some certain conditions, V1 is able to monotonically
decrease with n, refer to Appendix F.1 for details.

4.2 Variance trends for n > d and total risk

Different from the above n < d case, the current n > d

regime admits that X̃ has at most d non-zero eigen-
values. In this under-parameterized regime, we are
particularly interested in the behavior as n→∞. In
Appendix F.2, we prove that V1 approaches to zero as
n→∞ under the above three eigenvalue decays.

Based on the above discussions in the n > d and n < d
regimes, we conclude that, the variance can be uni-
modal (small regularization) or decreasing (large reg-
ularization) as n grows, which, together with the fact
that the bias is monotonically decreasing with n, leads
to the following three configurations for the total risk:
(i) if the bias dominates at small n and then decays fast
(i.e., with a small regularization), we observe a double
descent curve as in Figure 1(b); (ii) if the bias domi-
nates but decays slowly (with a large regularization),
the risk curve will be monotonic decreasing as in Fig-
ure 1(d); (iii) if the variance dominates, a bell-shaped
risk curve as in Figure 1(c) will be observed.

5 Numerical Results

In this section, experiments are conducted to validate
our theoretical results1. Polynomial kernel of degree
3 and Gaussian kernel are evaluated on 1) a synthetic
dataset that satisfies our technical assumptions and
2) a subset of the YearPredictionMSD dataset [57]
with 1,000 data samples and d = 90, to study our

1The source code of our implementation can be found
in http://www.lfhsgre.org.

derived error bounds for the bias and variance. More
experimental results can be found in Appendix G.

Eigenvalue decay equivalence: Here we study the
eigenvalue decay of the original polynomial/Gaussian
kernel matrices and their linearization XX>/d on
the subset of YearPredictionMSD dataset. Note that,
polynomial kernels k(x,x′) := (1 + 〈x,x′〉/d)

p
admit

β := p independent of Σd (see in Table 4), so we use the
linearization βXX>/d for this kernel. Results in Fig-
ure 2 demonstrate that, the original nonlinear kernels
admit the same eigenvalue decay as XX>/d. More
experimental results on various dataset can be found
in Appendix G.1.

Risk curves on synthetic dataset: To quantita-
tively assess our derived error bounds for the bias
and variance, we generate a synthetic dataset under
a known fρ, with harmonic decay for the data as an
illustrating example. More experimental results on dif-
ferent eigenvalue decays refer to Appendix G.2. To be
specific, we assume yi = fρ(xi)+ε with target function
fρ(x) = sin(‖x‖22) and Gaussian noise ε having zero-
mean and unit-variance. The feature dimension d is set
to 500. The samples are generated from xi = Σ

1/2
d ti

(and thus X>X = T>ΣdT with T = [t1, t2, · · · , tn]>)
by the following steps: (i) take Σd as a diagonal matrix
with its diagonal entries following with harmonic decay,
i.e., (Σd)ii ∝ n/i. (ii) take T as a random orthog-
onal matrix2 such that T>ΣdT also has a harmonic
eigen-decay with T having almost i.i.d entries.

Accordingly, the above generation process satisfies As-
sumption 3, and also XX>/d admits the same eigen-
value decay as Σd, which can be used to validate our
discussion in Section 4. In this setting, the expected
excess risk, the bias, and the variance can be directly
computed to validate our derived error bounds. The ex-
perimental results are validated across 10 trials. Specif-
ically, to disentangle the implicit regularization effect
of KRR on the final result, we apply the linearization
of the polynomial/Gaussian kernel by setting γ = 0 in
Eq. (5). In this case, the explicit λ := c̄n−ϑ is the only
regularization in KRR. In our model, c̄ is empirically
set to 0.01 to avoid a large λ when n is small.

Figures 3 and 4 show results under the harmonic decay
setting for the linearization of the polynomial/Gaussian
kernel, respectively. We observe that: 1) our error
bound V1 � 1

dN
nλ
X̃

exhibits the same trend as the true

variance; 2) in this case, the variance dominates and we
thus obtain a bell-shaped risk curve that first increases
and then decreases; 3) as ϑ decreases, λ increases and
the peak point of the variance occurs at smaller and
smaller n; 4) the bias monotonically decreases with n,

2We generate a random Gaussian matrix and use the
QR decomposition to obtain an orthogonal matrix [58].

http://www.lfhsgre.org
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(a) ϑ = 2/3 (b) ϑ = 2/3 (c) ϑ = 1/3 (d) ϑ = 1/3

Figure 3: Harmonic decay of X̃ with polynomial kernel: MSE of the expected excess risk, the variance in Eq. (10),
our derived V1, the bias in Eq. (9), and our derived convergence rate O(n−2ϑr) with r = 1 for different ϑ.

(a) ϑ = 2/3 (b) ϑ = 2/3 (c) ϑ = 1/3 (d) ϑ = 1/3

Figure 4: Harmonic decay of X̃ in the Gaussian kernel case. The legend is the same as Figure 3.

(a) YearPredictionMSD (b) MNIST (digits 3 vs. 7)

Figure 5: The test performance of the kernel interpola-
tion estimator and its linearization one.

which corresponds to our error bound for the bias at
a certain O(n−2ϑr) rate in Theorem 2 by taking r = 1
as the used fρ is smooth enough to achieve a good ap-
proximation error; 5) in our high-dimensional regimes,
different kernels lead to the same convergence rates of
the bias, which verifies our results but is different from
those in classical learning theory.

Risk curves on the real-world datasets: Fig-
ure 5(a) shows the relative mean squared error (RMSE)
of kernel ridgeless regression and its linearization in
Eq. (5) on a subset (1,000 examples) of the YearPre-
dictionMSD dataset averaged on 10 trials. Figure 5(b)
shows the classification accuracy of such two methods
on the MNIST dataset [59]. To evaluate the effec-
tiveness of our error bounds, we plot the re-scaled
V1 � 1

dN
γ

X̃
with λ = 0. It can be found that, kernel

interpolation estimator generalizes well due to the im-
plicit regularization, i.e., γ 6= 0, which also exhibits a
bell-shaped risk curve as our theoretical results sug-
gest. However, in Figure 5(b), the risk curve mono-
tonically decreases with n on the MNIST dataset [59],
and at the same time kernel interpolation estimator
and its linearization appear to generalize well. This
observation may due to the implicit regularization pa-
rameter γ in Eq. (5) (of 10−3 order on this dataset)
that plays a fundamental role of “self-regularization”.
Accordingly, the proposed analysis provides access to
the high-dimensional classification problem that may
establish more involved behavior than double descent,
despite a clear mismatch between real-world data and
the technical Assumption 3, thereby conveying a strong
practical motivation for the present analysis.

6 Conclusion

We derived non-asymptotic expressions for the expected
excess risk of kernel ridge regression estimators in the
under- and over-determined regimes. The used lin-
earization technique of nonlinear smooth kernel allows
us to discuss the impact of implicit and explicit regu-
larization in a systematic manner. Our refined analysis
demonstrates that the monotonic bias and unimodal
variance are able to exhibit various trends of risk curves.
Since it is enough to require that the kernel function
is differentiable in a neighborhood, our results further
extend to the case of Laplace kernels [60].
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Machine Learning, pages 1–20, 2021.

[26] Noureddine El Karoui. The spectrum of kernel
random matrices. Annals of Statistics, 38(1):1–50,
2010.

[27] Khalil Elkhalil, Abla Kammoun, Xiangliang
Zhang, Mohamed-Slim Alouini, and Tareq Al-
Naffouri. Risk convergence of centered kernel ridge
regression with large dimensional data. IEEE
Transactions on Signal Processing, 68:1574–1588,
2020.

[28] Zhenyu Liao and Romain Couillet. On the spec-
trum of random features maps of high dimensional
data. In the International Conference on Machine
Learning, pages 3063–3071, 2018.

[29] Zhenyu Liao and Romain Couillet. A large di-
mensional analysis of least squares support vector
machines. IEEE Transactions on Signal Process-
ing, 67(4):1065–1074, 2019.

[30] Felipe Cucker and Dingxuan Zhou. Learning the-
ory: an approximation theory viewpoint, volume 24.
Cambridge University Press, 2007.

[31] Cheng Wang and Ding-Xuan Zhou. Optimal learn-
ing rates for least squares regularized regression
with unbounded sampling. Journal of Complexity,
27(1):55–67, 2011.

[32] Ingo Steinwart and Clint Scovel. Fast rates for
support vector machines using Gaussian kernels.
Annals of Statistics, 35(2):575–607, 2007.

[33] Zitong Yang, Yaodong Yu, Chong You, Jacob
Steinhardt, and Yi Ma. Rethinking bias-variance
trade-off for generalization of neural networks. In
the International Conference on Machine Learning,
2020.

[34] Ingo Steinwart and Christmann Andreas. Support
Vector Machines. Springer Science and Business
Media, 2008.

[35] Christine De Mol, Ernesto De Vito, and Lorenzo
Rosasco. Elastic-net regularization in learning the-
ory. Journal of Complexity, 25(2):201–230, 2009.

[36] Dominic Richards and Patrick Rebeschini. Op-
timal statistical rates for decentralised non-
parametric regression with linear speed-up. In
Advances in Neural Information Processing Sys-
tems, pages 1216–1227, 2019.

[37] Alessandro Rudi and Lorenzo Rosasco. Generaliza-
tion properties of learning with random features.
In Advances in Neural Information Processing Sys-
tems, pages 3215–3225, 2017.

[38] Edgar Dobriban and Stefan Wager. High-
dimensional asymptotics of prediction: Ridge re-
gression and classification. Annals of Statistics,
46(1):247–279, 2018.

[39] Gilles Blanchard and Nicole Krämer. Optimal
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