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Abstract

The Private Aggregation of Teacher Ensem-
bles (PATE) framework is one of the most
promising recent approaches in differentially
private learning. Existing theoretical analy-
sis shows that PATE consistently learns any
VC-classes in the realizable setting, but falls
short in explaining its success in more general
cases where the error rate of the optimal clas-
sifier is bounded away from zero. We fill in
this gap by introducing the Tsybakov Noise
Condition (TNC) and establish stronger and
more interpretable learning bounds. These
bounds provide new insights into when PATE
works and improve over existing results even
in the narrower realizable setting. We also
investigate the compelling idea of using active
learning for saving privacy budget. The novel
components in the proofs include a more re-
fined analysis of the majority voting classifier
— which could be of independent interest —
and an observation that the synthetic “stu-
dent” learning problem is nearly realizable by
construction under the Tsybakov noise condi-
tion.

1 INTRODUCTION

Differential privacy (DP) (Dwork et al., 2006) is one of
the most popular approaches towards addressing the
privacy challenges in the era of artificial intelligence
and big data. While differential privacy is certainly not
a solution to all privacy-related problems, many would
agree that it represents a gold standard and is a key
enabler in many applications (Machanavajjhala et al.,
2008; Erlingsson et al., 2014; McMahan et al., 2018).
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Recently, there has been an increasing demand in train-
ing machine learning and deep learning models with
DP guarantees, which has motivated a growing body
of research on this problem (Kasiviswanathan et al.,
2011; Chaudhuri et al., 2011; Bassily et al., 2014; Wang
et al., 2015; Abadi et al., 2016).

In a nutshell, differentially private machine learning
aims at providing formal privacy guarantees that prov-
ably nullify the risk of identifying individual data points
in the training data, while still allowing the learned
model to be deployed and to provide accurate pre-
dictions. Many of these methods work well in low-
dimensional regime when the model is small and the
data is large. It however remains a fundamental chal-
lenge how to avoid the explicit dependence in the am-
bient dimension of the model and to develop practical
methods in privately releasing deep learning models
with a large number of parameters.

The “knowledge transfer” model of differentially private
learning is a promising recent development (Papernot
et al., 2017, 2018) which relaxes the problem by giving
the learner access to a public unlabeled dataset. The
main workhorse of this model is the Private Aggregation
of Teacher Ensembles (PATE) framework:

The PATE Framework:

1. Randomly partition the private dataset into K
splits.

2. Train one “teacher” classifier on each split.

3. Apply the K “teacher” classifiers on public data
and privately release their majority votes as pseudo-
labels.

4. Output the “student” classifier trained on the
pseudo-labeled public data.

PATE achieves DP via the sample-and-aggregate
scheme (Nissim et al., 2007) for releasing the pseudo-
labels. Since the teachers are trained on disjoint splits
of the private dataset, adding or removing one data
point could affect only one of the teachers, hence limit-
ing the influence of any single data point. The noise in-



Revisiting Model-Agnostic Private Learning: Faster Rates and Active Learning

Table 1: Summary of our results: excess risk bounds for PATE algorithms.

Algorithm PATE (Gaussian mechanism)
Papernot et al. (2017)
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∞ ) - - Consistent under weaker conditions. -

• Results new to this paper are highlighted in blue. Hyperparameter K is chosen optimally. The number of public data points we
privately label is chosen optimally (subsampling the available public data to run PATE) to minimize the risk bound.

• n and m denote the number of data points in the private and public dataset respectively. ε is the privacy budget for (ε, δ)-DP, with
δ assumed to be in its typical range δ < 1/poly(n) and ε < log(1/δ). The TNC parameter τ ranges between [0, 1]. d denotes the
VC-dimension of the hypothesis class, and θ denotes the disagreement coefficient (Hanneke, 2014). Õ hides logarithmic terms in
m,n, δ−1 and γ−1 where γ is the failure probability.

• Precise theorem statements of these results are found in Section 3.1, 3.2 and 3.3. Results about PATE (Gaussian mechanism) can be
found in Appendix C.

jected in the aggregation will then be able to “obfuscate”
the output and obtain provable privacy guarantees.

This approach is appealing in practice as it does not
place any restrictions on the teachers, thus allowing any
deep learning models to be used in a model-agnostic
fashion. The competing alternative for differentially
private deep learning, NoisySGD (Abadi et al., 2016),
is not model-agnostic, and it requires significantly more
tweaking and modifications to the model to achieve a
comparable performance, (e.g., on MNIST), if achiev-
able.

There are a lot of different DP mechanisms that could
be used to instantiate the PATE Framework. Laplace
mechanism and Gaussian mechanism are used in (Pa-
pernot et al., 2017, 2018) respectively. This paper
builds upon the pioneering work of (Bassily et al.,
2018b), which instantiates the PATE framework with
a more data-adaptive scheme of private aggregation
based on the Sparse Vector Technique (SVT). This
approach allows the algorithm to privately label many
examples while paying a privacy loss for only a small
subset of them (see Algorithm 2 for details). More-
over, Bassily et al. (2018b) provides the first theoretical
analysis of PATE which shows that it is able to PAC-
learn any hypothesis classes with finite VC-dimension
in the realizable setting. This is a giant leap from the
standard differentially private learning models (without
the access to a public unlabeled dataset) because the
VC-classes are not privately learnable in general (Bun
et al., 2015; Wang et al., 2016). Bassily et al. (2018b)
also establishes a set of results on the agnostic learning
setting, albeit less satisfying, as the excess risk, i.e.,
the error rate of the learned classifier relative to the
optimal classifier, does not vanish as the number of
data points increases.

In this paper, we revisit the problem of model-agnostic

private learning under the PATE framework with sev-
eral new analytical and algorithmic tools from the sta-
tistical learning theory including: the Tsybakov Noise
Condition (TNC) (Mammen and Tsybakov, 1999), ac-
tive learning (Hanneke, 2014), as well as the properties
of voting classifiers. Our results are summarized in
Table 1 and our contributions are:

1. We show that PATE consistently learns any VC-
classes under TNC. When specializing to the realiz-
able case, the sample complexity bound for achiev-
ing α-excess risk improves from O(d1.5/α1.5ε) and
O(d/α2) to O(d1.5/αε) and O(d/α) respectively
on the private and public data.

2. We show that PATE learning is inconsistent for
agnostic learning in general and derive new learn-
ing bounds that compete against a sequence of
limiting majority voting classifiers.

3. We adapt the disagreement-based active learning
algorithm to actively select which student queries
to answer. Under TNC, we show that the active
learning approach allows us to save the privacy
budget exponentially when we use the standard
privacy aggregation (Algorithm 1).

Related work and our novelty. Our work builds
upon (Bassily et al., 2018b) and substantially improves
the theoretical underpinning of PATE. To the best of
our knowledge, these results are new and we are the
first that consider noise models and active learning for
PATE. Independent to our work, Alon et al. (2019)
also studied the problem of private learning with access
to an additional public dataset, and established that
all VC-classes can be privately learned in the agnostic
setting with optimal rates. Dagan and Feldman (2020);
Nandi and Bassily (2020) established an analogous
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result on a related but different setting of privacy-
preserving predictions (Dwork and Feldman, 2018).
The underlying idea of all three papers rely on an
explicit (distribution-independent) α-net construction
due to (Beimel et al., 2016) and exponential mechanism
for producing pseudo-labels, which cannot be efficiently
implemented. Our contributions are complementary
as we focus on oracle-efficient algorithms that reduce
to the learning bounds of ERM oracles (for passive
learning) and active learning oracles. Our algorithms
can therefore be implemented (and has been) in practice
(Papernot et al., 2017, 2018). Due to space restrictions,
further discussions are deferred to Appendix A.

2 PRELIMINARIES

In this section, we introduce the notations, definitions,
and discuss specific technical tools that we will use
throughtout this paper.

2.1 Symbols and Notations

We use [n] to denote the set {1, 2, ..., n}. Let X de-
note the feature space, Y = {0, 1} denote the la-
bel, Z = X × Y to denote the sample space, and
Z∗ =

⋃
n∈NZn to denote the space of a dataset of un-

specified size. A hypothesis (classifier) h is a function
mapping from X to Y . A set of hypothesesH ⊆ {0, 1}X
is called the hypothesis class. The VC dimension of H
is denoted by d. Also, let D denote the distribution
over Z, and DX denote the marginal distribution over
X . DT = {(xTi , yTi )|i ∈ [n]} ∼ D is the labeled private
teacher dataset, and DS = {(xSj )|j ∈ [m]} ∼ DX is the
unlabeled public student dataset.

The expected risk of a certain hypothesis h with
respect to the distribution D over Z is defined as
ε(h) = E(x,y)∼D[1(h(x) 6= y)], where 1(x) is the in-
dicator function which equals to 1 when x is true, 0
otherwise. The empirical risk of a certain hypothe-
sis h with respect to a dataset {(xi, yi)|i ∈ [n]} is
defined as ε̂(h) = 1

n

∑n
i=1[1(h(xi) 6= yi)]. The best hy-

pothesis h∗ is defined as h∗ = argminh∈H ε(h), and
the Empirical Risk Minimizer (ERM) ĥ is defined
as ĥ = argminh∈H ε̂(h). ĥagg is used to denote the
aggregated classifier in the PATE framework. ĥpriv

denotes the privately aggregated one. The expected
disagreement between a pair of hypotheses h1 and
h2 with respect to the distribution DX is defined as
Dis(h1, h2) = Ex∼DX [1(h1(x) 6= h2(x)]. The empirical
disagreement between a pair of hypotheses h1 and h2

with respect to a dataset {(xi, yi)|i ∈ [n]} is defined as
D̂is(h1, h2) = 1

n

∑n
i=1[1(h1(xi) 6= h2(xi))]. Through-

out this paper, we use standard big O notations; and
to improve the readability, we use . and Õ to hide

poly-logarithmic factors.

2.2 Differential Privacy and Private Learning

Now we formally introduce differential privacy.
Definition 1 (Differential Privacy (Dwork and Roth,
2014)). A randomized algorithmM : Z∗ → R is (ε, δ)-
DP (differentially private) if for every pair of neighbor-
ing datasets D,D′ ∈ Z∗ (denoted by ‖D∆D′‖1 = 1)
for all S ⊆ R:

P(M(D) ∈ S) ≤ eε ·P(M(D′) ∈ S) + δ.

The definition says that if an algorithmM is DP, then
no adversary can use the output ofM to distinguish
between two parallel worlds where an individual is in
the dataset or not. ε, δ are privacy loss parameters that
quantifies the strength of the DP guarantee. The closer
they are to 0, the stronger the guarantee is.

The problem of DP learning aims at designing a ran-
domized training algorithm that satisfies Definition 1.
More often than not, the research question is about
understanding the privacy-utility trade-offs and char-
acterizing the Pareto optimal frontiers.

2.3 PATE and Model-Agnostic Private
Learning

There are different ways we can instantiate the PATE
framework to privately aggregate the teachers’ pre-
dicted labels. The simplest, described in Algorithm 1,
uses Gaussian mechanism to perturb the voting score.

Algorithm 1 Standard PATE (Papernot et al., 2018)

Input: “Teachers” ĥ1, ..., ĥK trained on disjoint sub-
sets of the private data. “Nature” chooses an adaptive
sequence of data points x1, ..., x`. Privacy parameters
ε, δ > 0.

1: Find σ such that
√

2` log(1/δ)
σ2 + `

2σ2 = ε.
2: Nature chooses x1.
3: for j ∈ [`] do
4: Output ŷj ← 1(

∑K
k=1 ĥk(xj)+N (0, σ2) ≥ K/2).

5: Nature chooses xj+1 adaptively (as a function of
the output vector till time j).

6: end for

An alternative approach due to (Bassily et al., 2018b)
uses the Sparse Vector Technique (SVT) in a nontrivial
way to privately label substantially more data points
in the cases when teacher ensemble’s predictions are
stable for most input data. The stability is quantified
in terms of the margin function, defined as

margin(x) :=
∣∣∣2 K∑
k=1

ĥk(x)−K
∣∣∣,



Revisiting Model-Agnostic Private Learning: Faster Rates and Active Learning

which measures the absolute value of the difference
between the number of votes (see Algorithm 2).

Algorithm 2 SVT-based PATE (Bassily et al., 2018b)

Input: “Teacher” classifiers ĥ1, ..., ĥK trained on dis-
joint subsets of the private data. “Nature” chooses an
adaptive sequence of data points x1, ..., x`. Unstable
cutoff T , privacy parameters ε, δ > 0.
1: Nature chooses x1.
2: λ← (

√
2T (ε+ log(2/δ)) +

√
2T log(2/δ))/ε.

3: w ← 3λ log(2(`+ T )/δ), ŵ ← w + Lap(λ).
4: c = 0.
5: for j ∈ [`] do
6: distj ← max{0, dmargin(xj)/2e − 1}.
7: d̂istj ← distj + Lap(2λ).
8: if d̂istj > ŵ then
9: Output ŷj ← 1(

∑K
k=1 ĥk(xj) ≥ K/2).

10: else
11: Output ŷj ←⊥.
12: c← c+ 1, break if c ≥ T .
13: ŵ ← w + Lap(λ).
14: end if
15: Nature chooses xj+1 adaptively (based on

ŷ1, ..., ŷj).
16: end for

In both algorithms, the privacy budget parameters
ε, δ are taken as an input and the following privacy
guarantee applies to all input datasets.

Theorem 2. Algorithm 1 and 2 are both (ε, δ)-DP.

Careful readers may note the slightly improved con-
stants in the formula for calibrating privacy than when
these methods were first introduced. We include the
new proof based on the concentrated differential privacy
(Bun and Steinke, 2016) approach in the Appendix C.

The key difference between the two private-aggregation
mechanisms is that the standard PATE pays for a unit
privacy loss for every public data point labeled, while
the SVT-based PATE essentially pays only for those
queries where the voted answer from the teacher ensem-
ble is close to be unstable (those with a small margin).
Combining this intuition with the fact that the individ-
ual classifiers are accurate — by the statistical learning
theory, they are — the corresponding majority voting
classifier can be shown to be accurate with a large mar-
gin. These two critical observations of (Bassily et al.,
2018b) lead to the first learning theoretic guarantees
for SVT-based PATE. For completeness, we include
this result with a concise new proof in Appendix C.

Algorithm 3 PATE-PSQ
Input: Labeled private teacher dataset DT , unla-
beled public student dataset DS , unstable query cut-
off T , privacy parameters ε, δ > 0; number of splits
K.
1: Randomly and evenly split the teacher dataset DT

into K parts DT
k ⊆ DT where k ∈ [K].

2: Train K classifiers ĥk ∈ H, one from each part DT
k .

3: Call Algorithm 2 with parameters
(ĥ1, ..., ĥK), DS , T, ε, δ and ` = m to obtain
pseudo-labels for the public dataset ŷS1 , ..., ŷ

S
m.

(Alternatively, call Algorithm 1 with parameters
(ĥ1, ..., ĥK), DS , ε, δ)

4: For those pseudo labels that are ⊥, assign them
arbitrarily to {0, 1}.

Output: ĥS trained on pseudo-labeled student
dataset.

3 MAIN RESULTS

In Section 3.1 and 3.2, we present a more refined theo-
retical analysis of PATE with Passive Student Queries
algorithm (PATE-PSQ, Algorithm 3) that uses SVT-
based Algorithm 2 as the subroutine. Our results
provide stronger learning bounds and new theoretical
insights under various settings. In Section 3.3, we pro-
pose a new active learning based method and show that
we can obtain qualitatively the same theoretical gain
while using the simpler (an often more practical) Gaus-
sian mechanism-based Algorithm 1 as the subroutine.
For comparison, we also include an analysis of stan-
dard PATE (with Gaussian mechanism) in Appendix C.
Table 1 summarizes these technical results.

3.1 Improved Learning Bounds under TNC

Recall that our motivation is to analyze PATE in the
cases when the best classifier does not achieve 0 error
and that the existing bound presented in Theorem C.3
is vacuous if ε(h∗) > 1/26. The error bound of ĥS does
not match the performance of h∗ even as m,n → ∞
and even if we output the voted labels without adding
noise. This does not explain the empirical performance
of Algorithm 3 reported in (Papernot et al., 2017, 2018)
which demonstrates that the retrained classifier from
PATE could get quite close to the best non-private
baselines even if the latter are far from being perfect.
For instance, on Adult dataset and SVHN dataset, the
non-private baselines have accuracy 85% and 92.8%
and PATE achieves 83.7% and 91.6% respectively.

To under stand how PATE works in the regime where
the best classifier h∗ obeys that ε(h∗) > 0, we introduce
a large family of learning problems that satisfy the so-
called the Tsybakov Noise Condition (TNC), under
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which we show that PATE is consistent with fast rates.
To understand TNC, we need to introduce a few more
notations. Let label y ∈ {0, 1} and define the regression
function r(x) = E[y|x]. The Tsybakov noise condition
is defined in terms of the distribution of r(x).
Definition 3 (Tsybakov noise condition). The joint
distribution of the data (x, y) satisfies the Tsybakov
noise condition with parameter τ ∈ [0, 1] if there exists
a universal constant C > 0 such that for all t ≥ 0

P(|r(x)− 0.5| ≤ t) ≤ Ct
τ

1−τ .

Note that when r(x) = 0.5, the label is purely random
and when r(x) = 0 or 1, y is a deterministic function
of x. The Tsybakov noise condition essentially is rea-
sonable “low noise” condition that does not require a
uniform lower bound of |r(x)−0.5| for all x. When the
label-noise is bounded for all x, e.g., when y = h∗(x)
with probability 0.6 and 1−h∗(x) with probability 0.4,
then the Tsybakov noise condition holds with τ = 1.
The case when τ = 1 is also known as the Massart noise
condition or bounded noise condition in the statistical
learning literature.

For our purpose, it is more convenient to work with
the following equivalent definition of TNC, which is
equivalent to Definition 3 (see a proof from (Bousquet
et al., 2004, Definition 7)).
Lemma 4 (Equivalent definition of TNC). We say
that a distribution of (x, y) satisfies the Tsybakov noise
condition with parameter τ ∈ [0, 1] if and only if there
exists η ∈ [1,∞) such that, for every labeling function
h,

Dis(h, hBayes) ≤ η(ε(h)− ε(hBayes))
τ . (1)

where hBayes(x) = 1(r(x) > 0.5) is the Bayes optimal
classifier.

In the remainder of this section, we make the assump-
tion that the Bayes optimal classifier hBayes ∈ H and
works with the slightly weaker condition that requires
(1) to hold only for h ∈ H and that we replace hBayes

by the optimal classifier h∗ ∈ H 1.

We emphasize that the Tsybakov noise condition is not
our invention. It has a long history from statistical
learning theory to interpolate between the realizable
setting and the agnostic setting. Specifically, prob-
lems satisfying TNC admit fast rates. For τ ∈ [0, 1],

1This slightly different condition, that requires (1) to
hold only for h ∈ H but with hBayes replaced by the optimal
classifier h∗ (without assuming that h∗ = hBayes) is all we
need. This is formally referred to as the Bernstein class
condition by Hanneke (2014). Very confusingly, when the
Tsybakov noise condition is being referred to in more recent
literature, it is in fact the Bernstein class condition — a
slightly weaker but more opaque definition about both the
hypothesis class H and the data generating distribution.

the empirical risk minimizer achieves an excess risk of
O(1/n1/(2−τ)), which clearly interpolates the realizable
case of O(1/n) and the agnostic case of O(1/

√
n).

Next, we give a novel analysis of Algorithm 3 under
TNC. The analysis is simple but revealing, as it not
only avoids the strong assumption that requires ε(h∗)
to be close to 0, but also achieves a family of fast rates
which significantly improves the sample complexity of
PATE learning even for the realizable setting.
Theorem 5 (Utility guarantee of Algorithm 3 under
TNC). Assume the data distribution D and the hypoth-
esis class H obey the Tsybakov noise condition with
parameter τ . Then Algorithm 3 with

T = Õ

(
4−3τ

√
m4−2τd2τ

n2τ ε2τ

)

K = O
( log(mT/min(δ, β))

√
T log(1/δ)

ε

)
obeys that with probability at least 1− β:

ε(ĥ) ≤ ε(h∗) + Õ

(
d

m
+

(
md2

n2ε2

) τ
4−3τ

)
.

Remark 6 (Bounded noise case). When τ = 1, the
Tsybakov noise condition is implied by the bounded noise
assumption, a.k.a., Massart noise condition, where the
labels are generated by the Bayes optimal classifier h∗
and then toggled with a fixed probability less than 0.5.
Theorem 5 implies that the excess risk is bounded by
Õ( d

2m
n2ε2 + d

m ), with K = Õ( dmnε2 ), which implies a sample
complexity upper bound of Õ(d

3/2

αε ) private data points
and Õ(d/α) public data points. The results improve
over the sample complexity bound from (Bassily et al.,
2018b) in the stronger realizable setting from Õ( d

3/2

α3/2ε
)

and Õ(d/α2) to Õ(d
3/2

αε ) and Õ(d/α) respectively in the
private and public data.

There are two key observations behind the improvement.
First, the teacher classifiers do not have to agree on
the labels y as in Lemma C.2; all they have to do is to
agree on something for the majority of the data points.
Conveniently, the Tsybakov noise condition implies
that the teacher classifiers agree on the Bayes optimal
classifier h∗. Second, when the teachers agree on h∗, the
synthetic learning problem with the privately released
pseudo-labels is nearly realizable. These intuitions can
be formalized with a few lemmas, which will be used
in the proof of Theorem 5. See Appendix B.
Remark 7 (Reduction to ERM). The main challenge
in the proof is to appropriately take care of ĥpriv. Al-
though we are denoting it as a classifier, it is in fact a
vector that is defined only on x1, ..., xm rather than a
general classifier that can take any input x. Since we
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are using the SVT-based aggregation Algorithm 2, ĥpriv

is only well-defined for the student dataset. Moreover,
these privately released “pseudo-labels” are not inde-
pendent, which makes it infeasible to invoke a generic
learning bound such as Lemma D.5. Our solution is to
work with the empirical risk minimizer (ERM, rather
than a generic PAC learner as a blackbox) and use
uniform convergence (Lemma D.4) directly. This is
without loss of generality because all learnable prob-
lems are learnable by (asymptotic) ERM (Vapnik, 1995;
Shalev-Shwartz et al., 2010).

3.2 Challenges and New Bounds under
Agnostic Setting

In this section, we present a more refined analysis of the
agnostic setting. We first argue that agnostic learning
with Algorithm 3 will not be consistent in general and
competing against the best classifier in H seems not
the right comparator. The form of the pseudo-labels
mandate that ĥS is aiming to fit a labeling function
that is inherently a voting classifier. The literature
on ensemble methods have taught us that the voting
classifier is qualitatively different from the individual
voters. In particular, the error rate of the majority
voting classifier can be significantly better, about the
same, or significantly worse than the average error rate
of the individual voters. We illustrate this matter with
two examples.

Example 8 (Voting fail). Consider a uniform distri-
bution on X = {x1, x2, x3, x4} and that the correspond-
ing label P(y = 1) = 1. Let the hypothesis class be
H = {h1, h2, h3} whose evaluation on X are given in
Figure 1. Check that the classification error of all three
classifiers is 0.5. Also note that the empirical risk min-
imizer ĥ will be a uniform distribution over h1, h2, h3.
The majority voting classifiers, learned with iid data
sets, will perform significantly worse and converge to a
classification error of 0.75 exponentially quickly as the
number of classifiers K goes to ∞.

x1 x2 x3 x4 Error
y 1 1 1 1 0
h1 1 1 0 0 0.5
h2 1 0 1 0 0.5
h3 1 0 0 1 0.5
ĥagg 1 0 0 0 0.75

Figure 1: An example where majority voting classifier
is significantly worse than the best classifier in H.

This example illustrates that the PATE framework
cannot consistently learn a VC-class in the agnostic set-
ting in general. On a positive note, there are also cases
where the majority voting classifier boosts the classi-

fication accuracy significantly, such as the following
example.
Example 9 (Voting win). If P[ĥ(x) 6= y|x] ≤ 0.5−∆,
where ∆ is a small constant, for all x ∈ X , then by
Hoeffding’s inequality,

P[ĥagg(x) 6= y|x] = P
[ K∑
k=1

1(ĥk(x) 6= y) ≥ k

2

∣∣∣x] ≤ e−2K∆2

.

Thus the error goes to 0 exponentially as K →∞.

These cases call for an alternative distribution-
dependent theory of learning that characterizes the
performance of Algorithm 3 more accurately.

Next, we propose two changes to the learning paradigm.
First, we need to go beyond H and compare with the
following infinite ensemble classifier

hagg
∞ (x) := 1

(
E
[ 1

K

k∑
k=1

ĥk(x)
∣∣∣x] ≥ 1

2

)
= 1

(
E[ĥ1(x)|x] ≥ 1

2

)
.

The classifier outputs the majority voting result of in-
finitely many independent teachers, each trained on
n/K i.i.d. data points. As discussed earlier, this classi-
fier can be better or worse than a single classifier ĥ1

that takes n/K data points, ĥ that trains on all n data
points or h∗ that is the optimal classifier in H. Note
that this classifier also changes as n/K gets larger.

Second, we define the expected margin for a classifier
ĥ1 trained on ñ i.i.d. samples to be

∆ñ(x) :=
∣∣∣E[ĥ1(x)|x]− 1

2

∣∣∣.
This quantity captures for a fixed x ∈ X , how likely
the teachers will agree. For a fixed learning problem
H,D and the number of i.i.d. data points ĥ1 is trained
upon, the expected margin is a function of x alone. The
larger ∆n/K(x) is, the more likely that the ensemble
of K teachers agree on a prediction in Y with high-
confidence. Note that unlike in Example 9, we do not
require the teachers to agree on y. Instead, it measures
the extent to which they agree on hagg

∞ (x), which could
be any label.

When the expected margin is bounded away from 0
for x, then the voting classifier outputs hagg

∞ (x) with
probability converging exponentially to 1 as K gets
larger. On the technical level, this definition allows
us to decouple the stability analysis and accuracy of
PATE as the latter relies on how good hagg

∞ is.
Definition 10 (Approximate high margin). We
say that a learning problem with n i.i.d. samples
satisfy (ν,∆)-approximate high-margin condition if
Px∼D[∆n(x) > ∆] ≤ ν.
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This definition says that with high probability, except
for O(νm) data points, all other data points in the
public dataset have an expected margin of at least
∆. Observe that every learning problem has ∆ that
increases from 0 to 0.5 as we vary ν from 0 to 1. The
realizability assumption and the Tsybakov noise condi-
tion that we considered up to this point imply upper
bounds of ν at fixed ∆ (see more details in Remark 14).
In Appendix F, we demonstrate that for the problem
of linear classification on Aadult dataset — clearly an
agnostic learning problem — (ν,∆)-approximate high
margin condition is satisfied with a small ν and large
∆.

The following proposition shows that when a problem
is approximate high-margin, there are choices T and
K under which the SVT-based PATE provably labels
almost all data points with the output of hagg

∞ .
Proposition 11. Assume the learning problem with
n/K i.i.d. data points satisfies (ν,∆)-approximate high-
margin condition. Let Algorithm 2 be instantiated with
parameter T ≥ νm+

√
2νm log(3/γ) + 2

3 log(3/γ) and

K ≥ max{ 2 log(3m/γ)
∆2 ,

3λ
(

log(4m/δ)+log(3m/γ)
)

∆ }2. Then
with high probability (over the randomness of the n iid
samples of the private dataset, m iid samples of the
public dataset, and that of the randomized algorithm),
Algorithm 2 finishes all m rounds and the output is the
same as hagg

∞ (xi) for all but T of the i ∈ [m].

This proposition provides the utility guarantee to Algo-
rithm 2 and generalizes Lemma B.4 from fixing ∆ = 1/6
into allowing much smaller ∆ at a cost of increasing ν.

Next, we state the learning bounds under the
approximate-high margin condition.
Theorem 12. Assume the learning problem with n/K
iid data points satisfies (ν,∆)-approximate high-margin
condition and let K,T be chosen according to Proposi-
tion 11, furthermore assume that the privacy parameter
of choice ε ≤ log(2/δ), then the output classifier ĥS of
Algorithm 3 in the agnostic setting satisfies that with
probability ≥ 1− 2γ

ε(ĥS)− ε(hagg
∞ ) ≤ min

h∈H
Dis(h, hagg

∞ ) +
2T

m
+ Õ

(√ d

m

)
≤ min
h∈H

Dis(h, hagg
∞ ) + 2ν + Õ

(√ d

m

)
.

The voting classifier ĥagg is usually not in the original
hypothesis class H, so we can take a wider view of
the hypothesis class and define the voting hypothesis
space Vote(H) where the learning problem becomes
realizable. Note if the VC dimension of H is d, then

2λ = (
√

2T (ε+ log(2/δ)) +
√

2T log(2/δ))/ε according
to Algorithm 2.

the VC dimension of VoteK(H) ≤ Kd. In practice, this
suggests using ensemble methods such as AdaBoost for
K iterations.

Theorem 13. Under the same assumption of Theo-
rem 12. Suppose we train an ensemble classifier within
the voting hypothesis space VoteK(H) in the student
domain, then the output classifier ĥS of Algorithm 3
in the agnostic setting satisfies that with probability
≥ 1− 2γ

ε(ĥS)− ε(hagg
∞ ) ≤ 4T

m
+

5(Kd+ log(4/γ))

m

= Õ
(
ν +

log(4/γ)

m
+

d
√
ν

∆
√
m

)
.

Remark 14. Whether the bounds in Theo-
rem 12 and 13 will vanish as m,n → ∞ depends
strongly on how parameter ν and ∆ change as n/K
gets larger. Intuitively, if the learner converges to a
single classifier h∗, as in the realizable case or under
TNC, then we can show that the learning problem
satisfy (ν,∆)-approximate high-margin condition with
∆ = 1/6 and ν ≤ Õ((dK/n)

τ
2−τ ). Substituting this

quantities into Theorem 12 and using the fact that
ν also bounds the disagreement between h∗ and hagg

∞
allows us obtain a bound that vanishes as n gets
larger. More generally, in the agnostic case, it is
reasonable to assume that the “teachers” will get more
confident in their individual prediction for most data
points as n/K →∞. We argue this is a more modest
requirement than requiring the “teachers” to get more
accurate.

3.3 PATE with Active Student Queries

In previous subsections, we have proved stronger learn-
ing bounds for PATE framework under TNC and in
agnostic setting. However, all these results are based
on the variant of PATE that aims passively releasing
almost all student queries. In this section we address
the following question:

Can we do better if we cherry-pick queries to label?

The hope is that this allows us to spend privacy budget
only on those queries that add new information for
the interest of training a classifier, hence resulting
in a more favorable privacy-utility tradeoff. Without
privacy constraints, this problem is known as active
learning and it is often possible to save exponentially in
the number of labels needed comparing to the passive
learning model.

In Algorithm 4, we propose a new algorithm called
PATE with Active Student Queries (PATE-ASQ) which
uses the disagreement-based active learning algorithm
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Algorithm 4 PATE-ASQ
Input: Labeled private teacher dataset DT , un-
labeled public student dataset DS , privacy pa-
rameters ε, δ > 0, number of splits K, max-
imum number of queries `, failure probability
γ.
1: Randomly and evenly split the teacher dataset DT

into K parts DT
k ⊆ DT where k ∈ [K]

2: Train K classifiers ĥk ∈ H, one from each part DT
k .

3: Declare “Labeling Service” ← Algorithm 1 with
ĥ1, ..., ĥK , `, ε, δ, with an unspecified “nature”.

4: Initiate an active learning oracle (e.g., Algorithm 7)
with an iterator over DS being the “data stream”,
hypothesis class H, failure probability γ. Set the
“labeling service” to be Algorithm 1 with parameter
ĥ1, ..., ĥK , `, ε, δ, and set the “nature” to be the
“request for label” calls in the active learning oracle.

5: Set ĥS to be the “current output” from active learn-
ing oracle.

Output: Return ĥS .

(Algorithm 7 in Appendix E) as the subroutine. Then
we provide its utility guarantee.
Theorem 15 (Utility guarantee of Algorithm 4). With
probability at least 1−γ, there exists universal constants
C1, C2 such that for all

α ≥ C1 max

{
η

2
2−τ

(dK log(n/d) + log(2K/γ)

n

) τ
2−τ

,

d log((m+ n)/d) + log(2/γ)

m

}
,

the output ĥS of Algorithm 4 with parameter `,K sat-
isfying

` = C2θ(α)
(
1 + log

( 1
α

))(
d log(θ(α)) + log

( log(1/α)
γ/2

))

K =
6
√

log(2n)(
√
` log(1/δ) +

√
` log(1/δ) + ε`)

ε

obeys that
ε(ĥS)− ε(h∗) ≤ α.

Specifically, when we choose

α = C1 max

{
η

2
2−τ

(dK log(n/d) + log(2K/γ)

n

) τ
2−τ

,

d log((m+ n)/d) + log(2/γ)

m

}
,

and also ε ≤ log(1/δ), then it follows that

ε(ĥS)− ε(h∗) = Õ

(
max

{(d1.5
√
θ(α) log(1/δ)

nε

) τ
2−τ ,

d

m

})
,

where Õ hides logarithmic factors in m,n, 1/γ.

Remark 16. The bound above resembles the learning
bound we obtain using the passive student queries with
Algorithm 2 as the privacy procedure, except for the
additional dependence on the disagreement coefficients.
Interestingly, active learning achieves this bound with-
out using the sophisticated (and often not practical)
algorithmic components from DP, such as sparse sec-
tor technique to save privacy losses. Instead, we can
get away with using simple Gaussian mechanism as in
Algorithm 1.
Remark 17 (Blackbox reduction, revisited). In con-
trary to our discussion in Remark 7, notice that we are
using Algorithm 1 instead of Algorithm 2 as the labeling
services, which allows us to reduce to any learner as
a blackbox. This makes it possible to state formally
results even for deep neural networks or other family
of methods where obtaining ERM is hard but learning
is conjectured to be easy in theory and in practice.

3.4 Further Discussion

One interesting observation from our analysis is that
using passive learning with a more advanced private
query-release technique (Algorithm 2) ends up hav-
ing qualitatively the same learning bound when us-
ing active learning with a simple private query-release
mechanism (Algorithm 1). Both approaches are doing
selection. Active learning selects those queries that
are near the decision boundary to be informative for
learning; the sparse-vector-technique approach essen-
tially selects those queries that are not stable to spend
privacy budget on.

One question is that are these data points that are
being selected substantially overlapping? If not, then
we might be able to combine the two and achieve even
better private-utility tradeoff.

4 CONCLUSIONS

Existing theoretical analysis shows that PATE frame-
work consistently learns any VC-classes in the realizable
setting, but not in the more general cases. We show
that PATE learns any VC-classes under Tsybakov noise
condition with fast rates. When specializing to the real-
izable case, our results improve the best known sample
complexity bound for both the public and private data.
We show that PATE is incompatible with the agnos-
tic learning setting because it is essentially trying to
learn a different class of voting classifiers which could
be better, worse, or comparable to the best classifier
in the base-class. Lastly, we investigated the PATE
framework with active learning for further saving of the
privacy budget. Future work includes understanding
the geometry of active learning further and to conduct
an empirical study on these algorithms.



Chong Liu, Yuqing Zhu, Kamalika Chaudhuri, Yu-Xiang Wang

Acknowledgments

The research is partially supported by a start-up grant
from the UCSB Computer Science Department and
generous gifts from NEC Labs and Google.

References
Martin Abadi, Andy Chu, Ian Goodfellow, H Bren-
dan McMahan, Ilya Mironov, Kunal Talwar, and
Li Zhang. Deep learning with differential privacy.
In Conference on Computer and Communications
Security (CCS-16), pages 308–318, 2016.

Noga Alon, Raef Bassily, and Shay Moran. Limits of
private learning with access to public data. In Neural
Information Processing Systems (NeurIPS-19), pages
10342–10352, 2019.

Raef Bassily, Adam Smith, and Abhradeep Thakurta.
Private empirical risk minimization: Efficient algo-
rithms and tight error bounds. In Symposium on
Foundations of Computer Science (FOCS-14), pages
464–473, 2014.

Raef Bassily, Om Thakkar, and Abhradeep Thakurta.
Model-agnostic private learning via stability. arXiv
preprint arXiv:1803.05101, 2018a.

Raef Bassily, Om Thakkar, and Abhradeep Guha
Thakurta. Model-agnostic private learning. In Neu-
ral Information Processing Systems (NeurIPS-18),
pages 7102–7112, 2018b.

Amos Beimel, Kobbi Nissim, and Uri Stemmer. Charac-
terizing the sample complexity of private learners. In
Innovations in Theoretical Computer Science Con-
ference (ITCS-13), pages 97–110, 2013.

Amos Beimel, Kobbi Nissim, and Uri Stemmer. Pri-
vate learning and sanitization: Pure vs. approximate
differential privacy. Theory of Computing, 12(890):
1–61, 2016.

Stéphane Boucheron, Olivier Bousquet, and Gábor
Lugosi. Theory of classification: A survey of some
recent advances. ESAIM: probability and statistics,
9:323–375, 2005.

Olivier Bousquet, Stéphane Boucheron, and Gábor
Lugosi. Introduction to statistical learning theory.
Advanced Lectures on Machine Learning: ML Sum-
mer Schools, pages 169–207, 2004.

Mark Bun and Thomas Steinke. Concentrated dif-
ferential privacy: Simplifications, extensions, and
lower bounds. In Theory of Cryptography Conference
(TCC-16), pages 635–658, 2016.

Mark Bun, Kobbi Nissim, Uri Stemmer, and Salil Vad-
han. Differentially private release and learning of
threshold functions. In Symposium on Foundations of
Computer Science (FOCS-15), pages 634–649, 2015.

Kamalika Chaudhuri and Daniel Hsu. Sample com-
plexity bounds for differentially private learning. In
Annual Conference on Learning Theory (COLT-11),
pages 155–186, 2011.

Kamalika Chaudhuri, Claire Monteleoni, and Anand D
Sarwate. Differentially private empirical risk mini-
mization. Journal of Machine Learning Research, 12
(3):1069–1109, 2011.

Yuval Dagan and Vitaly Feldman. Pac learning with
stable and private predictions. In Annual Conference
on Learning Theory (COLT-20), pages 1389–1410,
2020.

Cynthia Dwork and Vitaly Feldman. Privacy-
preserving prediction. In Annual Conference on
Learning Theory (COLT-18), pages 1693–1702, 2018.

Cynthia Dwork and Aaron Roth. The algorithmic
foundations of differential privacy. Foundations and
Trends in Theoretical Computer Science, 9(3–4):211–
407, 2014.

Cynthia Dwork, Frank McSherry, Kobbi Nissim, and
Adam Smith. Calibrating noise to sensitivity in
private data analysis. In Theory of Cryptography
Conference (TCC-06), pages 265–284, 2006.

Cynthia Dwork, Guy N Rothblum, and Salil Vadhan.
Boosting and differential privacy. In Symposium on
Foundations of Computer Science (FOCS-10), pages
51–60, 2010.

Úlfar Erlingsson, Vasyl Pihur, and Aleksandra Ko-
rolova. Rappor: Randomized aggregatable privacy-
preserving ordinal response. In Conference on Com-
puter and Communications Security (CCS-14), pages
1054–1067, 2014.

Steve Hanneke. Theory of disagreement-based active
learning. Foundations and Trends in Machine Learn-
ing, 7(2-3):131–309, 2014.

Moritz Hardt and Guy N Rothblum. A multiplicative
weights mechanism for privacy-preserving data anal-
ysis. In Symposium on Foundations of Computer
Science (FOCS-20), pages 61–70, 2010.

Shiva Prasad Kasiviswanathan, Homin K Lee, Kobbi
Nissim, Sofya Raskhodnikova, and Adam Smith.
What can we learn privately? SIAM Journal on
Computing, 40(3):793–826, 2011.

Ashwin Machanavajjhala, Daniel Kifer, John Abowd,
Johannes Gehrke, and Lars Vilhuber. Privacy: The-
ory meets practice on the map. In International
Conference on Data Engineering (ICDE-08), pages
277–286, 2008.

Enno Mammen and Alexandre B Tsybakov. Smooth
discrimination analysis. The Annals of Statistics, 27
(6):1808–1829, 1999.



Revisiting Model-Agnostic Private Learning: Faster Rates and Active Learning

H Brendan McMahan, Daniel Ramage, Kunal Talwar,
and Li Zhang. Learning differentially private recur-
rent language models. In International Conference
on Learning Representations (ICLR-18), 2018.

Anupama Nandi and Raef Bassily. Privately answering
classification queries in the agnostic pac model. In
International Conference on Algorithmic Learning
Theory (ALT-20), pages 687–703, 2020.

Kobbi Nissim, Sofya Raskhodnikova, and Adam Smith.
Smooth sensitivity and sampling in private data anal-
ysis. In Symposium on Theory of Computing (STOC-
07), pages 75–84, 2007.

Nicolas Papernot, Martín Abadi, Úlfar Erlingsson, Ian
Goodfellow, and Kunal Talwar. Semi-supervised
knowledge transfer for deep learning from private
training data. In International Conference on Learn-
ing Representations (ICLR-17), 2017.

Nicolas Papernot, Shuang Song, Ilya Mironov, Ananth
Raghunathan, Kunal Talwar, and Úlfar Erlingsson.
Scalable private learning with pate. In International
Conference on Learning Representations (ICLR-18),
2018.

Shai Shalev-Shwartz, Ohad Shamir, Nathan Srebro,
and Karthik Sridharan. Learnability, stability and
uniform convergence. Journal of Machine Learning
Research, 11(90):2635–2670, 2010.

Abhradeep Guha Thakurta and Adam Smith. Differ-
entially private feature selection via stability argu-
ments, and the robustness of the lasso. In Annual
Conference on Learning Theory (COLT-13), pages
819–850, 2013.

Alexander B Tsybakov. Optimal aggregation of classi-
fiers in statistical learning. The Annals of Statistics,
32(1):135–166, 2004.

Vladimir N Vapnik. The nature of statistical learning
theory. Springer, 1995.

Yu-Xiang Wang, Stephen Fienberg, and Alex Smola.
Privacy for free: Posterior sampling and stochastic
gradient monte carlo. In International Conference
on Machine Learning (ICML-15), pages 2493–2502,
2015.

Yu-Xiang Wang, Jing Lei, and Stephen E. Fienberg.
Learning with differential privacy: Stability, learn-
ability and the sufficiency and necessity of erm princi-
ple. Journal of Machine Learning Research, 17(183):
1–40, 2016.

Chicheng Zhang and Kamalika Chaudhuri. Beyond
disagreement-based agnostic active learning. In Neu-
ral Information Processing Systems (NeurIPS-14),
pages 442–450, 2014.

Zhengli Zhao, Nicolas Papernot, Sameer Singh, Neoklis
Polyzotis, and Augustus Odena. Improving differ-

entially private models with active learning. arXiv
preprint arXiv:1910.01177, 2019.


	INTRODUCTION
	PRELIMINARIES
	Symbols and Notations
	Differential Privacy and Private Learning
	PATE and Model-Agnostic Private Learning

	MAIN RESULTS
	Improved Learning Bounds under TNC
	Challenges and New Bounds under Agnostic Setting
	PATE with Active Student Queries
	Further Discussion

	CONCLUSIONS
	Related Work
	Theory of Private Learning
	Weaker Private Learning Models
	Private Learning with an Auxiliary Public Dataset
	Privacy-Preserving Prediction
	Statistical Learning Theory

	Deferred Proofs of Some Technical Results
	Results and Analysis from bassily2018arxiv and the Analysis of Standard PATE
	Technical Lemmas
	Additional Information
	Differential Privacy
	Disagreement-Based Active Learning

	Simulation with Adult Dataset

