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Appendix

A Proof of Proposition 1

We first define that Ŵ s
n is a s-energy minimizing n-point configuration on Sd−1 uf 0 < s < ∞ (i.e., MHE

configuration) and Ŵ∞
n denotes a best-packing configuration on Sd−1 if s =∞ (i.e., MHS configuration). Since

we are considering s > 0, we only need to discuss the case of Ks(ŵi, ŵj) = ρ(ŵi, ŵj)
−s. Then we will have the

following equation:

εs(Sd−1, n)
1
s = Es(Ŵ

s
n)

1
s ≥ 1

δρn(Ŵ s
n)
≥ 1

δρn(Sd−1)
. (18)

Moreover, we have that

εs(Sd−1, n)
1
s ≤ Es(Ŵ∞

n )
1
s

=
1

δρ(Ŵ∞
n )

( ∑
1≤i6=j≤N

( δρ(Ŵ∞
n )

ρ(ŵ∞i , ŵ
∞
j )

)s) 1
s

≤ 1

δρ(Ŵ∞
n )

(
n(n− 1)

) 1
s

(19)

Therefore, we will end up with

lim
s→∞

sup εs(Sd−1, n)
1
s ≤ 1

δρ(Ŵ∞
n )

=
1

δρn(Sd−1)
. (20)

Then we take both Eq. (18) and Eq. (20) into consideration and have that

lim
s→∞

εs(Sd−1, n)
1
s =

1

δρn(Sd−1)
(21)

which concludes the proof.

B Proof of Proposition 2

We first choose ε > 0 and let Ŵn+1 = {ŵ1, ŵ2, · · · , ŵn+1} ⊂ Sd−1 be a configuration such that

εs(Sd−1, n+ 1) + ε > Es(Ŵn+1). (22)

Then we have for every i ∈ [1, n+ 1] and v ∈ Sd−1 that

Es
(
(Ŵn+1\{ŵi}) ∪ {v}

)
= Es(Ŵn+1\{ŵi}) + 2

∑
j:j 6=i

Ks(v, ŵj)

≥ εs(Sd−1, n+ 1)

> Es(Ŵn+1)− ε

= Es(Ŵn+1\{v}) + 2
∑
j:j 6=i

Ks(ŵi, ŵj)− ε

(23)

which leads to
min

v∈Sd−1
2
∑
j:j 6=i

Ks(v, ŵj) ≥ 2
∑
j:j 6=i

Ks(ŵi, ŵj)− ε (24)

Therefore, for a fixed i, we have that

Ps(Sd−1, n) ≥ Ps(Ŵn+1\{ŵi})

= min
v∈Sd−1

∑
j:j 6=i

Ks(v, ŵj)

≥
∑
j:j 6=i

Ks(ŵi, ŵj)−
ε

2

(25)
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Then we average the above inequalities for i = 1, · · · , n+ 1 and obtain

Ps(Sd−1, n) ≥ 1

n+ 1

n+1∑
i=1

∑
j:j 6=i

Ks(ŵi, ŵj)−
ε

2

≥ εs(Sd−1, n+ 1)

n+ 1
− ε

2

(26)

By letting ε approach to zero, we have that

Ps(Sd−1, n) ≥ εs(Sd−1, n+ 1)

n+ 1
(27)

Moreover, it is also easy to verify another inequality:

εs(Sd−1, n+ 1)

n+ 1
≥ εs(Sd−1, n)

n− 1
(28)

Therefore, we conclude the proof.

C Proof of Proposition 3

Given that s = −2, we first have that

P−2(Ŵn) = min
v∈Sd−1

(
−

n∑
i=1

‖v − ŵi‖2
)

= min
v∈Sd−1

n∑
i=1

(2v · ŵi − 2)

= min
v∈Sd−1

(
2v ·

n∑
i=1

ŵi − 2n

)
.

(29)

If
∑n
i=1 ŵi = 0, we will have that P−2(Ŵn) = −2n. If

∑n
i=1 ŵi 6= 0, then we have that

P−2(Ŵn) ≤ −2

∑n
i=1 ŵi

‖
∑n
i=1 ŵi‖

·
n∑
i=1

ŵi − 2n

= −2

∥∥∥∥∥
n∑
i=1

ŵi

∥∥∥∥∥− 2n

< −2n

(30)

Therefore, Ŵn is optimal if and only if
∑n
i=1 ŵi = 0

D Proof of Proposition 4

For any n-point configuration Ŵn ⊂ Sd−1, we have that

Ps(Ŵn) = min
v∈Sd−1

∑
u∈Ŵn

1

ρ(v,u)s

≥ 1

α(Ŵn)s

(31)

which leads to (
Ps(Sd−1, n)

) 1
s = max

Ŵn⊂Sd−1

Ps(Ŵn)
1
s

≥ max
Ŵn⊂Sd−1

1

α(Ŵn)

=
1

ηρn(Sd−1)
.

(32)
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Therefore, we have that

lim
s→∞

inf
(
Ps(Sd−1, n)

) 1
s ≥ 1

ηρn(Sd−1)
(33)

On the other hand, we have that

Ps(Ŵn) = min
v∈Sd−1

∑
u∈Ŵn

1

ρ(v,u)s

≤ n

α(Ŵn)

≤ n(
ηρn(Sd−1)

)s
(34)

Therefore, we end up with

lim
s→∞

sup
(
Ps(Sd−1, n)

) 1
s ≤ lim

s→∞

n
1
s

ηρn(Sd−1)
=

1

ηρn(Sd−1)
(35)

Combining with Eq. (33), we have that

lim
s→∞

(
Ps(Sd−1, n)

) 1
s ≥ 1

ηρn(Sd−1)
(36)

which concludes the proof.

E Proof of Proposition 5

We first define the order samples on S1. We denote the samples on S1 as θi. The angles are ordered such that
θi+1 < θi,∀i. Then we define the angle gap as follows:

di := θi+1 − θi, i = 1, 2, · · · , n− 1

dn := 2π − (θn − θ1)
(37)

The test statistic of range test is written as

Tn := 2π −max
i
di (38)

which rejects H0 for small values. Maximizing Tn with respect to the samples on S1 is equivalent to the following
objective:

max
{θ1,··· ,θn}

Tn ⇔ min
{θ1,··· ,θn}

max
i
di (39)

which is to minimize the largest neighbor angle gap. It is easy to verify that the optimum happens when the n
angle gaps are equally divided the unit circle S1.

For MHS on S1, the optimization is as follows:

max
{θ1,··· ,θn}

min
i 6=j

ρ(θi, θj) (40)

which is to maximize the smallest pairwise angles (i.e., the smallest neighbor angle gap on S1). The optimum
is attained when {θ1, · · · , θn} are equally divided the unit circle S1, which is equivalent to maximizing Tn with
respect to the samples on S1.

For MHC on S1, the optimization is as follows:

min
{θ1,··· ,θn}

max
v∈[0,2π)

min
i
ρ(v, θi). (41)

The optimum of maxv∈[0,2π) mini ρ(v, θi) is attained when v lies on the middle point of the largest angle gap.
Therefore, the optimum of MHC on S1 is achieved when {θ1, · · · , θn} are equally divided the unit circle S1, which
is also equivalent to maximizing Tn with respect to the samples on S1.
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F Proof of Theorem 2

We first let Ŵn = {ŵ1, · · · , ŵn} be an arbitrary vector configuration in Sd. We then have that

Λ(Ŵn) :=

n∑
i=1

n∑
j=1

‖ŵi − ŵj‖2

=

n∑
i=1

n∑
j=1

(2− 2ŵi · ŵj)

=2n2 − 2

∥∥∥∥∥
n∑
i=1

ŵi

∥∥∥∥∥
2

≤2n2

(42)

which holds if and only if
∑n
i=1 ŵi = 0. The vertices of a regular (n− 1)-simplex at the origin well satisfy this

condition. With the properties of the potential function f , we have that

Ef (Ŵn) :=

n∑
i=1

∑
j:j 6=i

f
(
‖ŵi − ŵj‖2

)
≥n(n− 1)f

(
Λ(Ŵn)

n(n− 1)

)
≥n(n− 1)f

(
2n

n− 1

) (43)

which holds true if all pairwise distance ‖ŵi − ŵj‖ are equal for i 6= j and the center of mass is at the origin (i.e.,∑n
i=1 ŵi = 0). Therefore, for the vector configuration Ŵ ∗

n which contains the vertices of a regular (n− 1)-simplex
inscribed in Sd and centered at the origin, we have that for 2 ≤ n ≤ d+ 2

Ef (Ŵ ∗
n ) = n(n− 1)f

(
2n

n− 1

)
≤ Ef (Ŵn).

(44)

If f is strictly convex and strictly decreasing, then Ef (Ŵn) ≥ n(n− 1)f( 2n
n−1 ) holds only when Ŵ ∗

n is a regular

(n− 1)-simplex inscribed in Sd and centered at the origin.
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G Proof of Theorem 4

Let ŵ∗1 , ŵ
∗
2 , · · · , ŵ∗n be the points in the MHE solution Ŵ ∗

n . Without loss of generality, we denote the indices k

and l such that ϑ(Ŵ ∗
n ) = ‖ŵ∗k − ŵ∗l ‖2. We also define z := (1 + n−

1
d−1 )ŵ∗k. We first introduce the following fact

about closed convex sets:

Proposition 6. Let K ⊂ Rp be a closed convex set. Then for every x ∈ Rp, there is a unique point yx in K
closest to x. Furthermore, for any z ∈K, we have ‖yxz‖2 ≤ ‖x− z‖2, where the equality holds if and only if
x ∈K.

Because the unit hyperball B(0, 1) is convex and ŵ∗k is the point in B(0, 1) closest to z, for 1 ≤ j ≤ n we have
the following inequality based on this proposition above:

‖ŵ∗k − ŵ∗j ‖2 ≤ ‖z − ŵ∗j ‖2, (45)

where 1 ≤ j ≤ n. Before we proceed, we need to introduce the following lemmas:

Lemma 1 ([40]). If 0 < s < d− 1 and Ŵ ∗
n = {ŵ∗1 , · · · , ŵ∗n} is a MHE solution on Sd−1, then for i = 1, 2, · · · , n,

we have that
1

n− 1

∑
j:j 6=i

1

‖ŵ∗i − ŵ∗j ‖s2
≤ Is[σd−1] (46)

where Is[µ] =
∫ ∫

1
‖x−y‖s2

dµ(x)dµ(y) and σd−1 is the normalized probability surface area measure on Sd−1.

Lemma 2 ([40]). We assume d− 2 ≤ s < d− 1, and then there is a constant θs,d and a positive integer m such

that for every x ∈ Rd with ‖x‖2 = 1 + n−
1

d−1 and any optimal MHE solution Ŵ ∗
n on Sd−1, we have

Us(x; Ŵ ∗
n ) ≥ Is[σd−1]− θs,d · n−1+ s

d−1 (47)

where n > m and Us(x; Ŵ ∗
n ) := 1

n

∑
y∈Ŵ ∗

n

1
‖x−y‖s2

for s > 0.

Using Lemma 1 above, we obtain that

Is[σd−1]− 1

nϑ(Ŵ ∗
n )s
≥ 1

n

( ∑
j:j 6=k

1

‖ŵ∗k − ŵ∗j ‖s2
− 1

‖ŵ∗k − ŵ∗l ‖s2

)
=

1

n

∑
j:j 6=k,l

1

‖ŵ∗k − ŵ∗j ‖s2

≥ 1

n

∑
j:j 6=k,l

1

‖z − ŵ∗j ‖s2

= Us(z; Ŵ ∗
n )− 1

n

( 1

‖z − ŵ∗k‖s2
+

1

‖z − ŵ∗l ‖s2

)
.

(48)

Because of n−
1

d−1 = ‖z − ŵ∗k‖s2 ≤ ‖z − ŵ∗l ‖s2, we have that

Is[σd−1]− 1

nϑ(Ŵ ∗
n )s
≥ Us(z; Ŵ ∗

n )− 2n−1+ s
d−1 (49)

Then according to Lemma 2, we have that

Is[σd−1]− 1

nϑ(Ŵ ∗
n )s
≥ Is[σd−1]− (θs,d + 2) · n−1+ s

d−1 (50)

which concludes that ϑ(Ŵ ∗
n ) ≥ λs,d · n−

1
d−1 where we define that λs,d = (θs,d + 2)−

1
s . Note that, the extended

and generalized version of this result can be found in [21, 12, 40].

H Proof of Theorem 5

The theorem comes directly from the result in [43] that every asymptotically optimal MHS sequence {Ŵ ∗
n}∞n=2 of

n-point configurations on Sd−1 is asymptotically optimal MHE solution for any 0 < s < d− 1.
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I Proof of Theorem 6

We first introduce the following lemma as the characterization of a unit vector that is uniformly distributed on
the unit hypersphere Sd−1.

Lemma 3 ([59]). Let v be a random vector that is uniformly distributed on the unit hypersphere Sd−1. Then v
has the same distribution as the following:{

u1√∑d
i=1 u

2
i

,
u2√∑d
i=1 u

2
i

, · · · , ud√∑d
i=1 u

2
i

}
(51)

where u1, u2, · · · , ud are i.i.d. standard normal random variables.

Proof. The lemma follows naturally from the fact that the Gaussian vector {ui}di=1 is rotationally invariant.

Then we consider a random matrix W̃ = {ṽ1, · · · , ṽn} where ṽi follows the same distribution of {u1, · · · , ud}.
Therefore, it is also equivalent to a random matrix with each element distributed normally. For such a matrix W̃ ,
we have from [72] that

lim
n→∞

σmax(W̃ ) =
√
d+
√
λd

lim
n→∞

σmin(W̃ ) =
√
d−
√
λd

(52)

where σmax(·) and σmin(·) denote the largest and the smallest singular value, respectively.

Then we write the matrix W as follows:

W = W̃ ·Q

= W̃ ·


1

‖ṽ1‖2 0 · · · 0

0 1
‖ṽ2‖2

. . . 0
...

. . .
. . .

...
0 · · · 0 1

‖ṽn‖2


(53)

which leads to
lim
n→∞

σmax(W ) = lim
n→∞

σmax(W̃ ·Q)

lim
n→∞

σmin(W ) = lim
n→∞

σmin(W̃ ·Q)
. (54)

We fist assume that for a symmetric matrix A ∈ Rn×n λ1(A) ≥ · · · ≥ λn(A). Then we introduce the following
inequalities for eigenvalues:

Lemma 4 ([54]). Let G,H ∈ Rn×n be positive semi-definite symmetric, and let 1 ≤ i1 < · · · < ik ≤ n. Then we
have that

k∏
t=1

λit(GH) ≤
k∏
t=1

λit(G)λt(H) (55)

and
k∏
t=1

λit(GH) ≥
k∏
t=1

λit(G)λn−t+1(H) (56)

where λi denotes the i-th largest eigenvalue.

We first let 1 ≤ i1 < · · · < ik ≤ n. Because W̃ ∈ Rd×n and Q ∈ Rn×n, we have the following:

k∏
t=1

σit(W̃Q) =

k∏
t=1

√
λit(W̃QQ>W̃>)

=

√√√√ k∏
t=1

λit(W̃
>W̃QQ>)

(57)
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by applying Lemma 4 to the above equation, we have that√√√√ k∏
t=1

λit(W̃
>W̃QQ>) ≥

√√√√ k∏
t=1

λit(W̃
>W̃ )λn−t+1(QQ>)

=

k∏
t=1

σit(W̃ )σn−t+1(Q)

(58)

√√√√ k∏
t=1

λit(W̃
>W̃QQ>) ≤

√√√√ k∏
t=1

λit(W̃
>W̃ )λt(QQ>)

=

k∏
t=1

σit(W̃ )σt(Q)

(59)

Therefore, we have that
k∏
t=1

σit(W̃Q) ≥
k∏
t=1

σit(W̃ )σn−t+1(Q) (60)

k∏
t=1

σit(W̃Q) ≤
k∏
t=1

σit(W̃ )σt(Q) (61)

Suppose we have k = 1 and i1 = n, then Eq. (60) gives

σn(W̃Q) ≥ σn(W̃ )σn(Q) (62)

Then suppose we have k = 1 and i1 = 1, then Eq. (61) gives

σ1(W̃Q) ≤ σ1(W̃ )σ1(Q) (63)

Combining the above results with Eq. (52) and Eq. (54), we have that

lim
n→∞

σmax(W ) = lim
n→∞

σmax(W̃ ·Q) ≤ lim
n→∞

(
σmax(W̃ ) · σmax(Q)

)
= (
√
d+
√
λd) ·max

i

1

‖ṽi‖1

lim
n→∞

σmin(W ) = lim
n→∞

σmin(W̃ ·Q) ≥ lim
n→∞

(
σmin(W̃ ) · σmin(Q)

)
= (
√
d−
√
λd) ·min

i

1

‖ṽi‖1

(64)

which concludes the proof.
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J Hyperspherical Uniformity from Zero-mean Gaussian Distributions

We show that zero-mean equal-variance Gaussian distributed vectors (after normalized to norm 1) are uniformly
distributed over the unit hypersphere with the following theorem.

Theorem 7. The normalized vector of Gaussian variables is uniformly distributed on the sphere. Formally, let
x1, x2, · · · , xn ∼ N (0, 1) and be independent. Then the vector

x =

[
x1

z
,
x2

z
, · · · , xn

z

]
(65)

follows the uniform distribution on Sn−1, where z =
√
x2

1 + x2
2 + · · ·+ x2

n is a normalization factor.

Proof. A random variable has distribution N (0, 1) if it has the density function

f(x) =
1√
2π
e−

1
2x

2

. (66)

A n-dimensional random vector x has distribution N (0, 1) if the components are independent and have distribution
N (0, 1) each. Then the density of x is given by

f(x) =
1

(
√

2π)n
e−

1
2 〈x,x〉. (67)

Then we introduce the following lemma (Lemma 5) about the orthogonal-invariance of the normal distribution.

Lemma 5. Let x be a n-dimensional random vector with distribution N (0, 1) and U ∈ Rn×n be an orthogonal
matrix (UU> = U>U = I). Then Y = Ux also has the distribution of N (0, 1).

Proof. For any measurable set A ⊂ Rn, we have that

P (Y ∈ A) = P (X ∈ U>A)

=

∫
U>A

1

(
√

2π)n
e−

1
2 〈x,x〉

=

∫
A

1

(
√

2π)n
e−

1
2 〈Ux,Ux〉

=

∫
A

1

(
√

2π)n
e−

1
2 〈x,x〉

(68)

because of orthogonality of U . Therefore the lemma holds.

Because any rotation is just a multiplication with some orthogonal matrix, we know that normally distributed
random vectors are invariant to rotation. As a result, generating x ∈ Rn with distribution N(0, 1) and then
projecting it onto the hypersphere Sn−1 produces random vectors U = x

‖x‖ that are uniformly distributed on the

hypersphere. Therefore the theorem holds.

K Orthogonality vs. Orthonormality

In the paper, we sometimes use the term “orthogonality” and “orthonormality” interchangeably, since we are mostly
considering the points lying in Sd. Hyperspherical uniformity only concerns with the angles among points (e.g.,
neurons), because all the magnitude are normalized to one before entering any hyperspherical uniformity objective.
Therefore strictly speaking, orthogonality is a more appropriate comparison to hyperspherical uniformity.
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L Experimental Details

Layer CNN-9 for CIFAR-100 ResNet-32 for CIFAR-100 ResNet-18 for ImageNet-2012

Conv0.x N/A [3×3, 64]
[7×7, 64], Stride 2

3×3, Max Pooling, Stride 2

Conv1.x
[3×3, 64]×3

2×2 Max Pooling, S2

[
3× 3, 64

3× 3, 64

]
× 5

[
3× 3, 64

3× 3, 64

]
× 2

Conv2.x
[3×3, 128]×3

2×2 Max Pooling, S2

[
3× 3, 128

3× 3, 128

]
× 5

[
3× 3, 128

3× 3, 128

]
× 2

Conv3.x
[3×3, 256]×3

2×2 Max Pooling, S2

[
3× 3, 256

3× 3, 256

]
× 5

[
3× 3, 256

3× 3, 256

]
× 2

Conv4.x N/A N/A

[
3× 3, 512

3× 3, 512

]
× 2

Final 256-Dim Fully Connected Average Pooling

Table 7: Our CNN and ResNet architectures with different convolutional layers. Conv0.x, Conv1.x, Conv2.x, Conv3.x and Conv4.x denote
convolution units that may contain multiple convolutional layers, and residual units are shown in double-column brackets. Conv1.x, Conv2.x
and Conv3.x usually operate on different size feature maps. These networks are essentially similar to [73] and [31], but with different number
of filters in each layer. The downsampling is performed by convolutions with a stride of 2. E.g., [3×3, 64]×4 denotes 4 cascaded convolution
layers with 64 filters of size 3×3, and S2 denotes stride 2.

z ∈ R128 ∼ N (0, I)
dense → Mg × Mg × 512

4×4, stride=2 deconv. BN 256 ReLU
4×4, stride=2 deconv. BN 128 ReLU
4×4, stride=2 deconv. BN 64 ReLU

3×3, stride=1 conv. 3 Tanh

(a) Generator (Mg = 4 for CIFAR10).

RGB image x ∈ RM×M×3

3×3, stride=1 conv 64 lReLU
4×4, stride=2 conv 64 lReLU
3×3, stride=1 conv 128 lReLU
4×4, stride=2 conv 128 lReLU
3×3, stride=1 conv 256 lReLU
4×4, stride=2 conv 256 lReLU
3×3, stride=1 conv. 512 lReLU

dense → 1

(b) Discriminator (M = 32 CIFAR10).

Table 8: GAN architecture for image generation on CIFAR-10. The architectures mostly follow [57].

General. For MHE, we use half-space MHE with s = 2. For the unrolling of MHP and MHC, we use one-step
gradient descent to approximate the inner optimization. For MHC, we use the relaxed formulation with γ = 5.
For MGD, we use Gaussian kernel with ε = 1. Typically, we search the best weighting hyperparameter for all the
regularizations from 10−8 to 107 (with 10 as the step size).

Multilayer perceptron. We conduct hand-written digit recognition task on MNIST with a three-layer multilayer
perceptron following this repository1 . The size of each digit image is 28 × 28, which is 784 dimensions after
flattened. Both hidden layers have 256 output dimensions, i.e., 256 neurons. The output layer will output 10
logits for classification. Finally, we use a cross-entropy loss with softmax function. We use the momentum SGD
optimizer with learning rate 0.01, momentum 0.9 and batch size 100. The training stops at 100 epochs.

Convolutional neural networks. The network architectures used in the main paper are specified in Table 7.
For all experiments, we use the momentum SGD optimizer with momentum 0.9. For CIFAR-100, we set the
mini-batch size as 128. The learning rate starts at 0.1, and is divided by 10 when the performance is saturated.
For ImageNet-2012, we use the mini-batch size 128 and the training starts with learning rate 0.1. The learning
rate is divided by 10 when the performance is saturated, and the training is terminated at 700k iterations. The
structure of ResNet-18 mostly follows [31]. Note that, for all the methods in our experiments, we always use the
best possible hyperparameters for the corresponding regularization (via cross-validation) to make sure that the
comparison is fair. The baseline has exactly the same training settings as the others. Standard `2 weight decay
(5e−4) is applied by default to all the methods.

Graph networks. We implement the all the hyperspherical uniformity regularizations for GCN in the official
repository2. All the hyperparameter settings exactly follow this official repository to ensure a fair comparison.

Point cloud networks. To simplify the comparison and remove all the bells and whistles, we use a vanilla
PointNet (without T-Net) as our backbone network. We apply OPT to train the MLPs in PointNet. We follow
the same experimental settings as [62] and evaluate on the ModelNet-40 dataset [82]. We exactly follow the

1https://github.com/hwalsuklee/tensorflow-mnist-MLP-batch_normalization-weight_initializers
2https://github.com/tkipf/gcn

https://github.com/hwalsuklee/tensorflow-mnist-MLP-batch_normalization-weight_initializers
https://github.com/tkipf/gcn
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same setting in the original paper [62] and the official repositories3. Specifically, we use the hyperspherical
uniformity regularizations to regularize all the 1×1 convolution layers and the fully connected layer (except the
final classifier). For the experiments, we set the point number as 1024 and mini-batch size as 32. We use the
Adam optimizer with initial learning rate 0.001. The learning rate will decay by 0.7 every 200k iterations, and
the training is terminated at 250 epochs.

Generative adversarial networks. The architecture we use for the GAN experiments is shown in Table 8.
For fair comparison, all the hyperparameter settings exactly follow [57]. We use leaky ReLU (LReLU) in the
newtork and set the slopes of LReLU functions to 0.1.

L.1 Experimental details for Fig. 2

For the experiment in Fig. 2, we use 200 3-dimensional neurons. The momentum SGD optimizer (with momentum
0.9) is used to optimize these hyperspherical uniformity objectives. The learning rate starts at 0.01 and is divided
by 10 at 5k iterations. The optimization stops at 8k iterations. In Fig. 2(a), the y-axis denotes the value of
hyperspherical energy. In Fig. 2(b), the y-axis denotes the value of separation distance. We did not visualize
MHP, since the true objective value of MHP is difficult (also time-consuming) to compute. For MHE, we use
half-space MHE with s = 2. For MHC, we use one-step gradient descent to approximate the inner optimization
and also adopt the relaxed formulation with γ = 5. For MGD, we use Gaussian kernel with ε = 1.

L.2 Experimental details for Fig. 3

For the visualization experiment in Fig. 3, we optimize 100 3-dimensional neurons on the unit sphere. The
training hyperparameters are the same as Section L.1.

3https://github.com/charlesq34/pointnet

https://github.com/charlesq34/pointnet

