Noisy Gradient Descent Converges to Flat Minima for Nonconvex
Matrix Factorization:
Supplementary Materials

1 Preliminaries

We first introduce some important notions and results which can be used in the following proof.

Assuming {u, Uy, ..., Ug,—1} and {v., 01, ...,04,_1} are two sets of standard orthogonal basis of R% and R4
respectively, we can then rewrite Vo € R4 and Vy € R% as

dy—1
z2ogu,+ Y A,
i=1
dz—l
y 2, + > Y5,
j=1
where o = 2T uy, o =y v, BY’) =2 "7; and 5§j) = yTij, VO <i<d; —1,0<j <dy— 1. For simplicity, we
denote B, = ( 121)’ . ,gdk_l))T where k =1, 2.

With the notions above, we can rewrite the Perturbed GD update as

a1 =a1 — N < VoF (T + &1,y + Eo,t), Us >,
Qi1 =0 — N < VyF (s + &1, Ye +E2,t), 00 > .

Note that the optimal solutions to (2) satisfy ' My = 1. Thus, in our proof, we need to characterize the update
of " My, which can be re-expressed as

fE:HMytH = O01,t4+102 t+1
= (a1t — N < VaF(ze+ &0 + &), ue >) (o —n < VyF(zp + &1t Ye + E2,t), U4 >)
=gy — 1 (g < VoF (2 + &, ye + E2,) e > oy < VyF (2 + 81,0,y + 82,0), Vs >)
07 < VoF (@ + e, Yo + E2i) e >< VyF (2 + e,y + E2) v > . (1)

For simplicity, we denote

A 2oy < VuF (T + &y + Eot)y e > +an s < VyF (2 4 &1ty Yt + E00), U >,
By < Vo F (0 + €ty + &)y s >< VyF (T 4 &1, Yt + Eo,0), Vs >

Then the update of 2" My = ajas can be expressed in a more compact way as follows.
0 14102 441 = O t0o — DAL + n° B;. (2)
Similarly, the update of (z" My — 1)? can be re-expressed as

)
(1 ¢p100 441 — 1)2
= (a2 — 1 —nA 4+ 0°By)?
= (o020 —1)* + A7 + ' B
- 277At(al,ta2,t - 1) - 27]3AtBt + QT]QBt(()q,taQ’t - 1) (3)

(T Mypr — 1) =



Furthermore, since the balanced optima satisfy =" u, = y ' v,, we further explicitly write down the update of
((#"uy)? - (yTv*)2)2 as follows.

2
((x;r+1u*)2 - (l/tT-HU*)Q) = (a%,t-u - ag,t+1)2

= (a?, —a3,)" +40°D} + ' F}
—dnDy (af , — a3 ,) — 4’ DoF, + 20 Fy (of 4 — o3 ,) (4)

where D; and F} is defined as
Dy & ayy < VoF (@ + 1, e + Eat)s U > —aoy < VyF(mp + g,y + Eat), v >,

By 2< Vo F (2 + & ye + &)y s >2 — <V F (g + &1, Y1 + Ea,0), 04 >3

Next we are going to calculate < VF(x¢ + €14, Yt + €2,¢), us >, the gradient projection along the direction of the
optimum .

< VoF(ze + &1,y +E2t), us >

= UIVI}—(% + &+ E2t)
w) (@ + &) (e + &) T — war)) (ye + Eo,t)

= o ¢(0d + [|B2ll3) — ozt + 2004y o0 — v o +ul G403, + 1| B2 3)
+2u] &0y Eo + o ll€olP 4wl €1 il 6o
2 ap (a3, + [1B24lI3) — 024 + g (5)

where g, = 2014y, Ea, — v Eap +ulE1e(3, 4 [|Bell3) + 20 €14 Eop + anpl|€oel? + ulEnell€2e]l?

Similarly, we have

< VyF(xe + &,y +E2.t), 05 >
= ags(af, + [|Brell3) — one + 20,1 €1 —ul €1 + UISQ,t(Oéit + 1181.¢113)
+ 20, &,4m) &1+ || €n P+ 0] Sl el
£ age(af, + 11B1el3) — e + gy, (6)

where g, = o4 + 20001 &0 — ) &1+ 0] Ear(0F , + 1B1elI3) + 20) Cof €1 e 4 o ill€r el + 0] o ell€a el

2 Proof of Lemma 1, Lemma 2 , and Lemma 3

2.1 Proof of Lemma 1

Proof. By setting the gradient of F to zero we get

)5y = M "z, (7)
lyll3z = My. (8)
Recall that M = u*v;'— and
d1—1
v 2 ogu,+ Y A,
i=1
do—1



Substitute x and y in (7) and (8) by their expansion, we then have

dy—1
(@ + > (8))az = an,
=1
d271
(03 + > (8Y)})ar = 0o,
1=1
d1—1 ) .
@2+ > (BMHBY =0,vj = 1,...,dy — 1,
=1
d2—1

(a3 + > (B8 = 0¥ =1,....d1 — 1.
The above equalities yield the following two types of stationary points.

o (a2 + X172 (02 + " Y(857)2) £ 0,8, = 0,8, = 0. This leads to ayay = 1. Thus, zy’ =
O U5V T = M, and .7-'(041u>,k7 aov,) = 0. Then we have global optima (au*7 Sv ) for a #£ 0.

e Either (o + Zdl (8! )) )=0and az =0, or (a3 + Zdz 1(52i))2) = 0 and a; = 0. We next show that

stationary points satlsfy these conditions are strict saddle points. We only consider the first case, and the
second case can be proved following similar lines. We first calculate the Hessian matrix as follows.

2 _ Hy”%‘[dl 2xy"l' -M
ViFzy) = <2yﬂ —MT i3, )

j=1

VQf(x,y)(ZUb L)) T, _é”>

For any a € R* b e R%,
a do—1 ,
(@7 P27 () = 3 8)Plal} — 20720
=1

For (a,b) = (w;,v;), this quantlty is positive. For (a,b) = (u, Zdz 1(62 )?v,), this quantity is negative.
Thus, z =0, y = ZdQ ! 62 v]satlsﬁes strict saddle property. We conclude that for any € R4,y € R%
such that o Tu, =y v, = 0, we have strict saddle points (z,0) and (0, y).

2.2 Proof of Lemma 2

At z = auy,y = év*,

1 51 M
v27_- dy
(au*, av*) < MT Oé2.[d2> ’

One can verify that V2F (au., 2v,) has eigenvalues o + 23, a?, ;. The largest eigenvalue is \; = o? + 25 and

the smallest eigenvalue is )\d1+d2 = min{a?, 2} Thus, the condition number can be easily calculated as follows.

1 1
K (Vz]: (au*, av*>> = max{a4, @} + 1.



2.3 Proof of Lemma 3

Proof. Recall that M = u,v, and

d;—1

v 2 ogu,+ Y A,
=1
do—1

y2 .+ Y Y
j=1

By setting the gradient of F to zero we get

(I3 + drof)y = M,
(lyll3 + d2o3)x = My.

From the equations above, we can verify that (x,y) = (0,0) is a stationary point. Furthermore, left multiplying
the equations above by '17; and u, respectively, we will get that BY)’S and 5§J )’s are all zeros. Similarly, by left

multiplying the equations above by v, and u, respectively, we will get

(af + drof)as

2

= 20,
2 2
(a5 4 dooj)af = ajas.

Then, with some algebraic manipulations, we get

dla
O[% = d ; —d10'1,
205
dyo
2 202 2
ay = dQO' .
2 le’% 2

Specifically, when dy0? = v2d203 < v, we have

o = yap = £4/7 — 72da03.

Next, we are going to show that (0,0) is a strict saddle point and (z., y«) = 4 (a1 us, azv,) are global optima.
We first calculate the Hessian matrix as follows.

2T _ ((IylI3 + d203) 14, 20y’ — M
\Y% .F(.’L‘,y) - ( ny'l' _MT (Hx”% +d10’%) Id2 .

Since the injected noise is small, we have ajas =1 — \/dla%dgog > (0. For any a € R% and b € R?%, we have
(@07 V2 F o) ()
= (a3 + dao3)|lall3 + (F + dio?)[1b]13 + 2(2c1 a2 — 1) (a " w.) (b v.)

>(a3 + d203)||al3 + (af + dio?)|[b]l3 — 2/2(1 — \/drofd203) — 1| [lallz [1B]|2

2
dlal
2
da03

2
d20'2
2
dioy

> a3 + 6113 = 2llallz [[b]12,

where the last inequality comes from the fact that dyo? and dz03 should be small enough such that

0<1— \/dla'%dga'% < 1.



Note that

d20'2 d10’1

L1015 — 2alla [0l = (%l — (2%, )
2 a2 2 — dlUl 2 d2 2 .

Thus, as long as dyo? d202 < 1, we have V2F, ., (2, y.) is positive definite (PD). Thus (2., y.) is global minimum
and 80 18 (—Zx, —Yx)-

|| I3+

Similarly, for any a € R% and b € R%, we have
(@07 V27,0y(0,0) () = dacFlalf + ool - 20w 07 0.)

It is easy to show that for (a,b) = (u.,v.), the quantity is negative when noise is small enough. But for
(a,b) = (u;,v;), this quantity is positive. Thus, (0,0) is a strict saddle point. Here, we prove Lemma, 3. O

3 Proof of Theorem 1

3.1 Boundedness of Trajectory

We first show that the solution trajectory of Perturbed GD is bounded with high probability, which is a sufficient
condition for our following convergence analysis.

Lemma 1 (Boundedness of Trajectories). Given zy € R% | yy € R%, we choose 01,09 > 0 such that o2 =
E [[[&1115] = E[[I€2]13] and [lzol|3 + llyoll3 < 1/02. For any § € (0,1), we take

n < m = Cro°(log((di + dp)/8) log(1/8)) ™"
for some positive constant C;. Then with probability at least 1 — &, we have |lz¢||3 + |ly:]|3 < 2/0? for any
t<Ty=0(1/n?).
Proof. We first define the event where the injected noise for both x and y is bounded for the first ¢ iterations.
At:{|§(”| |§(J)}<a(\/2log ((d1 + d)~2) + /1og( 1/5) Vr<ti=1,. dl,jzl,..,dg}. 9)

By the concentration result of the maximum of Gaussian distribution, we have P(A; /,2) > 1 — 4. Moreover, we use
H, to denote the event where the first ¢ iterates {(x,,y,)} r<; is bounded, i.e., H, = {H.Z‘T”% + [ly- 13 < U%, Vr < t} .
Let F; = o{(z+,y-), 7 < t} denote the o—algebra generated by that past ¢ iterations.

Under the event H; and Ay, we have the following inequality on the conditional expectation of ||z¢4113 + [|yer1]|3-

E [([@r1ll5 + lyes1l3) La,na, | Fe]
={(1 = 200®) (llzell5 + lel13) — 4n (lell3]: 115 — = Mye) } 13,4,

+ B, 6o, IVaF (@0 + €t ye + E20)lI5 + IVy F (@0 4+ &0,y + 2.0 [13] Ta,na,
<{(1=200") (lzll5 + lwell3) — 4n (lzel3lyell3 = llzell2llyell2) } Tagna,

2
+ 772]E£1,t7£2,t “ %(xt + gl,t) - M(yt + €2,t)H2} ]lHtﬂAt

2
+7°Ee, 6, “ e + E1ell3(we + E2,0) — M T (zy + 51,t)||2} Tr,na,
< {0 =210?) ([lzell3 + l9l12) = 4n (lzell3lyel3 = Nzell2llyell2) } Lrna,
+20°Ee, 0 [lye + Eallallze + €013+ 1M (ye + E2,0)115] Taina,
+ 2172E§1,t7€2,t [th + gl’tH%”yt + 62,75”3 + ||MT(xt + 61715)”3] ]}'Htht
< {0 =200%) (lell3 + l9l13) +n+n°Co} Lagyra,,
where the second inequality comes from the fact that 2> — 2 > —1 for all 2 € R and Co = (02 + 1/0?%)(2/0* +
6/dy + 6/dy + 60) in the last inequality. We take n < 1/Cy, then we have
E [(ze41]3 + llyesalls = 1/0*) Launa, | Fe] < (1=200%) (l2e]l3 + [lell3 = 1/0%) Tr,na,
< (1=210") ([lze3 + llyell3 = 1/0%) Lo, yra, - (10)



If we denote Gy = (1 — 2102) " (||lzev1ll3 + llyes1ll3 — 1/0?), Gilgy,_,na,_, is then a super-martingale according
o (10). We will apply Azuma’s Inequality to prove the bound and before that we have to bound the difference
between Gyy1ly,n4, and E[Gyi11s,na, | Fi)-

deyr = |Grralp,na, — E[Gealag,na, | F|

= (1=2n0%) """ 2z (2 + E10) (e + Ea,e) T — M](ye + E2,0))

—20Be, 0 (2] (@ + €00 (e + E2.0) T — M(ye + €2,0))]
+ 20y (e + E1.0) (e + 20) T = M]T (2 + 1))
—20Be, , 6o, [yf (1 +&00) (ye + E20) T — M7 (20 + &10))]
+ 02| [lye + Eaull3 (e + €1,e) — M (ye + Ez,t)“z

~ 0By |[[lve + ol + €1.0) = Mye + €[]

+ 02 || 1z + Eell3(ye + €o0) — M T (24 + 51,t)||;

2
—7Ee, 0, {||||1’t + &3y + o) — M T (20 + ﬁl,t)HJ

3 7
<C/(1—=2n0?) "t lno=2 <<log dl+d2> + <10g (15) > ,
n

where C;’ is some positive constant. Denote r; = \/Zle d?. By Azuma’s inequality, we have

ﬂfo, NA¢

1
2

1
P (thmmtl - Go > 01y, (108 55 ) ) < 00r9).

Then when with probability at least 1 — O(n?§), we have

(el + lyesl3)Lrena, < 1/0% + (1 —no®) (lwoll3 + llyoll3 — 1/0%)

+0(1)(1 —1o?)'r:(log

L1
n25)2

dy+dy\ 2 1) 2 1
< 2 —2 1 2 -
<1/6“+0+0 <\/ﬁa <(log77 > + <log 6) )) (1ogn26>

<2/0?,

W=

when n = O ((logdléﬂlog %)71>. In order to satisfy n < 1/Cs at the same time, we take n < 1, =

(0] (06 (log % log %)71) to make sure that all inequalities above hold.

The above inequality shows that if ;1 N A;_; holds, then H; N A; holds with probability at least 1 — O(n?J).
Hence with probability at least 1 — 4, we have (||x¢||3 + ||ly¢||3)1.4, , <2/0? for all t < Ty = O(1/n?). Recall that

P(A1/n2) >1-04.

Thus, we have with probability at least 1 — 26, ||z4||3 + ||y:||3 < 2/0? for all t < Ty = O(1/n?). By properly
rescaling §, we prove Lemma 1. O

3.2 Proof of Lemma 4

Proof. We only prove the convergence of ||31 ¢||3 here. The proof of the convergence of ||32 |3 follows similar lines.

For notational simplicity, we denote é;l) = ( %22 s ey ftl))T, vVt > 0. We first bound the conditional expectation



of ||B1.¢+1]13 given Fy:

-1
E (181041 1317] = 18101 + 7B, o, [y + a3 Bue + €5V 13] = 20 (lyell + o)
< (1 =210%)[|B1ell3 + 1°Ca, (11)

where Cy = (02 + 1/02)(2/0* + 6/d; + 6/dy + 60*). The bound on the second moment comes from the
boundedness of ||y;||3, which has been shown in Lemma 1. Define G; = (1 — 2no?)~¢ (Hﬁ“H% - "—CQ) , and

202
& = { 2> 1% } . By (11), we have

= 52

E [Gt.:,.l]lg, ’]:t] S Gt]lé't S Gt]lgt—l'

Hence, by Markov inequality we have

C E [[|B,ll31e,
pe) =P (Ielfte., > 152 ) < E1Pite]

ag

C
- (=202 (IBroll3 — 32) + 45

p— @
2 1 3

<(A-2noH)—4-< =

s(=2me)mr 3=
when ¢t > 5—-— log C . We take t = 1og Ty 1O make sure the inequality above holds. Thus with probability
at leas , such that || +]|3 < % Thus, with probability at least 1 — §, we can
find a 7 such that |31 - ||3 § 770022, where

1 8 1 1 1 1
<TM=————log—1log—-=—F"—— (1 1 log= =0 1 l
TS Tog (@73 8 Can 05 log(4/3)no? ("g AR 77) 5 <n By 6)

We next show that with probability at least 1 —d, for V¢ > 71, we have || ¢[|3 < 2%. This can be done following
the similar lines to the proof of Lemma 1. We first restart the counter of the time and assume |13 < 2.

= 0-2
Denote H; = {VT <t]B1-3 < QZ#} Then by (11), we have
E [Gri1la,na | Fi] < Gillayna, < Gela,_ina,_,-

The difference of Gi4119,n4, and E[Giy114,04, }]-"t} can be easily bounded as follows

1 1
_ di+da\? 1\?2
Dyy1 = |Grirla,na, — E[Griily,na, | F]| = Co'n’o™? ((1082 1772> + <log 6> ) )
where C5’ is some constant. Then by applying Azuma’s inequality and following the similar lines to the proof of

Lemma 1, we show that when
di+dy, 1\
n < Cs'o® <log L2 1og ) :

1 0
with probability at least 1 — §, we have

C
1814113 < 222,

for any 7 <t < Ty = O(1/n?). O
3.3 Proof of Lemma 5

We prove this lemma in three steps.

e Step 1: The following lemma shows that after polynomial time, with high probability, the algorithm can move
out of the O(n) neighborhood of the saddle point.



Lemma 2 (Escaping from the Unique Saddle Point). Suppose ||31]13 < 2252 and ||82.]3 < 2770—6;2 hold for all

o2
t > 0. For V¢ € (0,1), we take
di+dy 1\
n:O(o”(log 1-§ 2log(s) )

Then with probability at least 1 — §, there exists a 7 < 79, such that

&
»TIM?JT > 977074,
where 7o = m% log % log %.

Proof. Let’s define the event H; = {z.] My, < 9770%, V7 < t}. Following the proof of Lemma 1, we can refine the
bound on the conditional expectation of ||z41]|3 + [|yi+1]13 given H;. Specifically, we have

E [(lzer1l3 + lyesr113) a0, | Fe] = {1 = 200%) (I3 + lwell3) — 4n (lzel3llwell3 — 2 Mye) } Ly,
+ 772]E£1,t,§2,t [va]:(wt +&1,6, Y + 52,t)||§ + [IVyF(ws +&1es ys + f2,t)|\%} 1y,
<{(1 = 2n0®) (lell3 + llyell3) + 34Con*c™*)} Ly,

Denote Gy = (1 — 2no?) =" (||z¢]13 + [|y¢[|3 — 17Cono %) . Then we have
E[Gi411y,] < Gily, < Gily, .
Thus, by Markov inequality, we have
(1 = 2no®)*(||lzol3 + llyoll3 — 17Cano—"%) + 17Cono—°

P 2 H1 > 34Cyno %) <
(o + e, > 34Cane™) < e
<3
— 4
when t > ﬁlog %. Thus with probability at least 1 — §, there exists a 7 < 7 = 277502 1og%log% =
O(m%log % log $), such that

(13 + ly-l13) 19, -, < 34Cano~".

Following the exactly same proof of Lemma 1, we can show that with probability at least 1 — 4, for all
T <t<T) = O(n%), we have

. . di +d>? 1) 2 1
(el + ), < 17+ 34)Camo 6+0<\/ﬁ0 : ((lgn) + (10 3) )) (102 25

dl +d2 % 1 % 1 %
_ / 12 / 2 1 oL e 1 - 1 -
=Cyno Cs'V/no <(og n ) <og5> ) (Ogmé)

di+dy | 1\
<Gy (log 1+ 2log) + C7'ot,

W=

4] ]

/ / li ! ay
where Cy', C5', Cg’ and C;’ are some positive constants, and when

-1
n=20 <012 <log d §d2 log (15) ) .

We next show that for large enough ¢, with high probability, H;_; does not hold. We prove by contradiction: if
‘H:—1 holds for all ¢, the solution trajectory stays in a small neighborhood around 0. If so, we can show that with
constant probability, |a; ¢ + ag,| will explode to infinity, which is in contradiction with the boundedness. Here
follows the detailed proof.

Assuming H;_1 holds for all t < 7 = O(%logn%log%), by the analysis above we have ||z¢|3 + [Jy:||3 <
Cs' (log dl%‘d? log %)_1 + C7'o* holds for Vt < 7.



Note that with at least some constant probability,

‘al,tJrl + 042,t+1‘ — ‘al,t + Qo ¢

:‘al,t tag =N (< VeF (@ + &1yt +E2,0), us > + < VyF (2 + &1ty +Eot), Vs >) ’ - ‘Oél,t + agy

>Cy'n(oy + 02),

>

where Cg’ is some positive constant. This means we can find a 7 = O(log %) < To, such that ’aLT + g,

Cs'n(o1 + 02), with probability at least 1 — 8. We will use this point as our initialization for the following proof.
We next give a lower bound on the conditional expectation of |aq ;41 + @2 141

E [Joa,t41 + az,e41] ’ft]

Z‘E [(al,tJrl + a2,t+1)|]:t]

:’ (1401 —0? = aqp004)) (01, + 2s) — 0 ([|Brell3az, + [|B2e 3010 ’
1 1

2C, di+do\ 2 1\2

> (14 1(1 = 0 = a1 402, [+ a2, — 200 22 ((h)g : 2> . (1og5)
1 220 d d
2(1+2n> ‘Oélt+042t 7209'770 2 <<10g1j7_2) log )

where Cy’ is some positive constant. This is equivalent to the following 1nequahty

L2¢; di +do)\?
o R 409/% ((10g 1772> log

1.2

> 1+177 ’a1t+a2t 746’9’77 s log d1+d2 + log1

2 o3 n )

1\t 1.2 dv 4 do\ 2 1\ 2
>\ 1457 ‘al,o + 042,0‘ — 46y & log = TEBY) L log -

2 o3 n 1

1 \!*! 1.2 3
> (14 3) (Cs'n(dl +y) a0y <<1og o)

> Ci9'n(o1 + 02) exptn/2
> Co'n(o//di + o/ \f
= Cyo’ 1/\/>1+1/\/>27

where C}¢ is some positive constant and last inequality holds when ¢t > 2 log % Note that here we still take

N———

|

+
o=

o

oe
| =
N———
[N
N———
N———

1
n=0 (012 (log dl%SdQ log %)71), which makes sure that ’7 <(10g d1+d2) (log (15)5) is small enough to
make the fourth inequality hold.

For fixed dy and da, if we let § and o go to zero (which guarantees that 1 goes to zero), we will have the conditional
expectation of |aq 441 + @241/ stays in a neighborhood around a positive constant. However, by our assumption,
| ze41]13+ lye+1]|3 stays in a very small neighborhood around zero, which makes o ;1 +03 ;11 < [[zeq1ll3+ 1yes1]l3
also very small. This implies that |a ;41 + @2 41| can be arbitrarily small as long as we make § and o small
enough, which is the desired contradiction.

Thus, we know that, with probability at least 1 — ¢, there exists a t satisfying 7 < t < 79 + T2 < 279, such that

H: does not hold. Re-scale 75 and we prove the result. O

e Step 2: The following lemma shows that after step 1, with high probability, the algorithm will continue move
away from the saddle point and escape from the saddle point at some time.



Lemma 3. Suppose x4 Myy > 9%. We take n as in Lemma 5. Then there almost surely exists a 7 < 75 =

2 log nC , such that

1
x] My, > 3 + 0.

Proof. Suppose x,] My; < % + o2 holds for all ¢ < 75. We next give a lower bound on the conditional expectation
of |y s 41 + 2 p41]-

E o141 + ages1]|F] = ’ (o141 + ag,41)| F]

’ (1+n(1 =0 —ar o)) (a1 + a2s) — 0 (181302, + [|B2el301,¢) ‘

2C.
> (1+ 77) ‘al,t+a2,t‘ — 4 42~
2 o

This implies that

E ['O‘““ +og |- 877042\% > (1 + 277) <’a1,t + am‘ - 8’7042> .
7702_

The above inequality further implies a lower bound on the conditional expectation of |a1 441 + @2 +1] — 8 =

C 1\’ C.
E |:|al,t+1 + Oé2,t+1| - 8770_42:| > <1 + 277) <‘O¢1)0 + 06270’ - 8?70_42>

1 2
><1+n) 2
2 o o

when t =7 = %log % On the other hand,

87702}@/5
=T,

E [al,t+1 +agy1| —
which leads to a contradiction unless
P(z, My; < 2+U Vit < 75)=0.
We prove the result. O

e Step 3: We then show that the algorithm will never iterate back towards the saddle point after escaping from
it. Then Lemma 5 is proved.

Lemma 4. Suppose there exists a time step 7 such that for some positive constant ¢ < %
xIM yr > 2c¢,

then V4§ € (0,1), with probability at least 1 —§, V7 <t < T} £ 0(77—12),

(@1, 91) € {(z,y)|lz" My > c} .
By taking ¢ = %, we can prove Lemma 5 from Lemma 4.

Proof. We consider two cases:
(1) if g 42 > 2(1 — ¢), then aq 411000441 > 2¢ w.p.1L.
(i) if a1 pavoy < 2(1 —¢), then, V6 € (0,1) and Vt <Tj = 0(712), w.p. at least 1 — 0,

(10, a) € {(a1, a2)| (aras —1)* < (1 —¢)%}.



Note that (a1 02 — 1)2 <(1- 0)2 implies that aq sa2 ¢ > ¢, thus we can prove Lemma 4. Further note that the
injected noise is upper bounded with high probability, we assume in the following 77 = O(n%) steps,

Ielloo < 72 o (V20g((ds + dz) ) + v/10g(1/3) ) -

Case (i): By plugging (5) and (6) to (2), we get

ani10 1 = o gy — 1 (Qgi(ar(ad, + [|B2,113) — azr + g2) + an(aai(@f , + 1814]13) — are + 9y))
07 (a1,e(03 ; + [1B2,e]l3) — 2t + ga) (e (03, + [|B1ll3) — 1t + gy)

= 2c+ (a1pa2,0 — 2¢) = lage(ari(@3, + [B2.4ll3) — aze + g2) + ar(aze(ad, + [1B14]13) — a1 + gy)
+n(ari(e3, + 1B2.13) — o2 + go) (e (0F , + [1Brell3) — o1e + )],

First note that by Lemma 3 we can always find such 0 < ¢ < 1 in the condition. As ajas;—2¢ > 2(1—c) —2c =
2(1 — 2¢) > 0, we can prove (i) by choosing 1 small enough.

By Lemma 1, ait + ag’t is bounded by % and we can know g, and g, are at most of order

(0] (% (\/Iog dlﬂ%d? + \/log %)) from the following upper bound:

2nC
7722) + %209, 4 a1 y) +5°,

92| < 603, + 2000000 + 1+ .

2nC
222) +6° (2010 + az4) + 7.

gyl <T(aF, + 200 1020 + 1+
It is easy to show that for properly selected

1
. 1 1 1
n<m=0 (044'02 ( log(dy + dz2) + log5>> )

the last two terms are greater than zero. Thus, w.p.1, aq 141002,41 > 2c.
Case (ii): Without loss of generality, we place the time origin at t, and thus we have 2¢ < aa9 < 2 — 2c.

Ee[Ai] = Eglany < VaF(xp + &1,y + &o,t) s s > o < VyF(me + 10,y + 62,0), 04 >
By plugging (5) and (6) in the above equation, we have
E¢[Ad] = azi(ari(ad, + [1B2.3) — az + @1,40%) + arplaz(ad , + [|Brell3) — a1y + aze0?)
= (agons — 1)(ad, +af ,) + az,01,1(20% + [|B1e]13 + | B2,e13)-
Again, by plugging (5) and (6) to (3) and taking expectation conditioning on F;, when a; ;a9 > ¢, we will get
El(arer102,41 — 1)%| 7] = (o a0, — 1)? — 2nE¢[A](ar sany — 1)
+ 0 Ee[A7] + 0 E¢[Bf] — 20°E¢[A: By] + 20°E¢[Bi] (a1 paz,e — 1)
= (1 - 277(04§,t + O‘%,t)) (a1, — 1)2
— 2oz o g (o pony — 1)(20% + || Brell3 + 11B2.4113)

+ °Ee[AF] + n*Ee[BE] — 20°Ee[ALBy] + 20°Ee [Bi] (o pn s — 1)
2 27702 27702

1 ~
) 2
< (1 —4ne) (1o —1)° + 2771(20 T2 T2 )+ Cin
2nC =
< (1—4ne) (a1 a0 — 1)? +n(o® + 1 2) +Cin,

o2

where 6’1 =0 (% (log dl%}"b)) , if a1 raa s is of constant order. Note that here we choose 1 < 7j; as mentioned in
A W(U2+2"§2)+51772

(i). Denote v = e

E[{(o1, 4102041 —1)* —=7}F] < (1 —4ne) {(on 00 — 1) — 7} (12)

, the inequality above can be re-expressed as



We denote Gy = (1 —4nc)~H{ (a1 razs —1)2 =~} and & £ {¥7 < t: (a1 a2, —1)% < (1—¢)?}. Since a1 ;az, > ¢
can be inferred from (o yas . —1)? < (1 — ¢)?, we can get

E[Giy1le, | F] < Gilg, < Gilg, .

This means {G;1g, ,} is a supermartingale. To use Azuma’s inequality, we need to bound the following difference

dip1 £ |Griale, — E[Giale, | F|
= (1 —4ne) (o 102,001 — 1)? — E[(r, 14100041 — 1)%|F|Le,
<(1- 4776)7757162,

where Cy = O (n% (\/log dln%dz + \/log %)) Again, here we choose 7 < 77;. We further define r, £ \/Zf 142,

and by Azuma’s inequality we have

O(1)rf log (7)
2 Zz 0 z

P <Gt]l£t1 —Go>0()r, log% (%)) <exp | — =0 (7726) .

Thus, with probability at least 1 — O(n?9),

1 1
(o008 — 1)2 —Yg, , < (1 —4ne) ((a1,0a2,0 — 1)2 + O(1)r¢log? (W))

< (041’00[270 - 1)2 + 0] ((1 — 4776)t7‘t log% (ié))
<(1-c*+(1-2¢)2—(1

o e ()

When &;_; holds, w.p. at least 1 — 0(7726), we will have

(o pags —1)% < (1— (1—2¢)?

(e ) e

s (1 —2c)? — (1 — ¢)? is some negative constant, by choosing n < 72 = O (04(log 5) (log d1+d2) ) and o
small enough, we can make sure the sum of last four terms is negative. Now we know that if £&_; holds, & holds

w.p. at least 1 — O(n?§). It is easy to show that the Perturbed GD updates satisfy (a1 a2 —1)* < (1 —¢)? in
the following O( > ) steps w.p. at least 1 — 4. O

3.4 Proof of Lemma 6

We partition this lemma into two parts: Lemma 5 shows that after polynomial time, the algorithm enters
{(z,y)|(z" My — 1)? < 4y}, where  is a small constant depending on o, and Lemma 6 shows that the algorithm
then stays in {(z,y)|(z" My — 1)® < 67}. It is easy to prove Lemma 6 from Lemmas 5 and 6.

Lemma 5. Suppose V¢ < T} £ O(n%)7
(we, 1) € {(m,y)\xTMy > C} )
then V6 € (0, 1), with probability at least 1 — §, there exists a time step 7 < 73 = O(% log % log %) such that
(x] My, — 1) < 47,
where 7 = O(c?).



Lemma 6. Suppose there exists a time step 7 < 73 £ O(% log é log %) such that
(] My, — 1) < 47,

and Vt < T1 2 O(5),

(Z‘t,yt) € {(a:,y)\mTMy > C} )

then V4§ € (0,1), with probability at least 1 — §,Vt < T} £ 0(77—12),

(Cﬂuyt)e{(%y”( TMy_l <6’Y}
Here follows proof of Lemmas 5 and 6.

2
log((al’oai'o 1)

Proof. Define H; & {¥Vr <t: (1,00, —1)% > 49}, for t > Tne

, we have

AE[ly,] < El(ar oo, — 1)2 — 7] < (1 —4ne)t ((a170a270 — 1)2 — ’y) + v < 27,
where the first inequality comes from the definition of H; and the second one comes from (12). Thus, if

lo,
we choose t = O ( g(n 2)> and recursively applying the inequality above O(log(5)) times, we will get, for
3 =0 (% log(%)log(,w?)) =0 (% log L log %>7

P(Hs,) < (=

2)10g(%) =4

Thus, w.p. at least 1 — 4, there exists a 7 < 73 s.t. (a1 a2, — 1)? < 47. Here, we finish the proof of Lemma 5.

Without loss of generality, we place the time origin at 7, i.e. (a1 0a20 — 1)? < 4. We next prove Lemma 6.
Denote A £ {(a1,as)|(a1az — 1)? < 67} and A, £ {¥7 < t: (a1,,a2,) € A}, again note that a; e, > ¢ can
be inferred from (aj sz — 1)? < 69 < (1 — ¢). Thus, without any assumption, we can get

E[Gi1la,|Fe] < Gila, < Gila,_, .

This means {G1 4,_, } is a supermartingale. To use Azuma’s inequality, we need to bound the following difference
dip1 2 |Gipala, — E[Giala, |7
= (1 —4ne) " (10,01 = 1) = E[(onpr102,001 — 1)%|F 14,
S (1 - 4770)%7153,
~ ~ ~2
where C5 = O(/7C2). Further define 7, £ 4/ Zle d; , by Azuma’s inequality we have

O(1)72 log (35
25 g di

1 1
P (GtﬂAtl — Gy > O(1)7r; log? (W)) < exp =0 (n*).

Thus, with probability at least 1 — O(n?9),

(a1,p0,0 = 1) =) la, ., < (1 — dne)’ ((al,oarz,o —1)2+ O(1)7 log? (ié))
< (010020 = 1" + (1—4nc)rtlog ( . ))
<47+O< <\/7 F)log ( 25))




When &1 holds, w.p. at least 1 — O(n?3)

Cs . 1( 1
(0517,5042715 — 1)2 < 5’74— 0] <\/% IOg2 <7’]2(5)> < G’Y,

di+do +d2 )

by choosing n < 73 = O <a6 (log )~ (log ) we can guarantee the last term is smaller than . Now we

know that if A;_; holds, A; holds w.p. at least 1 —O(n?d). It is easy to show that the Perturbed GD updates
satisfy (aq ¢zt — 1) < 67 in the following O( ) steps w.p. at least 1 — 4. O

3.5 Proof of Lemma 7

Lemma 7. Suppose (z] My; — 1) < 67 holds for all t, where v is as defined above. For any § € (0,1) and any
A > 0, if we choose o0 = O ((log %)_%) and take step size

n<m=0 (O'IOA) ,
then with probability at least 1 — §, we have
2
(2, 0) € { (@) ((@Tu)? = (y70)?)" <6A},
for all t’s such that 74 < ¢t < T}, where T} = O(n%) and 74 £ O(n02 log Llog 5)

Again, we partition this lemma into two parts. It is easy to prove Lemma 7 from Lemmas 8 and 9.
Lemma 8. Suppose Vt < T = O(n%)7

(w¢, ) € {(x,y)l( TMy—1) < 6’7}

then Vo € (0,1), with probability at least 1 — 0, there exists a time step 7 < 74 = O(no2 log Llog 5) such that

(2T w)? — (T v)?)” <4,
where A = O(-15).

Proof.

Ee[Dy] = Eelon s < VoF (@ + &,y +E&ot) e > —aay < VyF (2 + &1,y + E2,0), Ui >]
ar (o (03, 5) — s +o140%) —ag(ag(af , 4+ [1Brell3) — a1 + a20”)
2 2

=o(af; =03 ,) + (o ,|Baell3 — a3, [1B1el3).

Thus, we have

Ee[Di)(af — a3,) = 0*(af, — a3,)* + (of ; — 03 )(aF 1[|B2,ell3 — 03 | Br.elI3)

2nCy
> 02(a%,t - a%,t)2 —2(1+ vy 67)2 >

2nC.

> 02(0@,75 — ozg,t)2 — 377—22.

The last inequality can be achieved by choosing v < (7V/) Plugging (5) and (6) into (4), taking expectation
conditioning on previous trajectory F; and plugging the equation above in, we get

g

E[(aitﬂ - a%,t-&-l) |Fi] = (041 it 042 t) — 4AnEe[Dy ](ait - a%,t)
+ 40*Ee[DF] + n'Ee[F?] — An°Ee[DyFy) + 20°Ee[Fy] (o, — 03 )

C’
< (1 - 47702) (O‘%,tﬂ - Ofg,tﬂ) + 247) + C'477 )



2
~ 24 c
where Cy = 0(0—14 (\/Iog dln%dz + \/log %) ). Denote A £ UET;M the inequality above can be re-expressed
as

E[{(O‘?,Hl - ag,t+1)2 — A}F] < (1 - 47702) {(O‘%,t - a%,t)Q — A}

(( 1,0~ "‘20)2)

Denote B; £ {Vr <t: ((oF, — a3 ,)? > 4A}, for t > log Tno? , we have

4AE[1p,] < E[(a?,t —a3,)? = Al < (1—4no)'((afp — a3p)” — A) + A <24,

s

where the first inequality comes from the definition of B; and the second one comes from calculation above.

Thus, if we choose t = O(logf]?)) and recursively applying the inequality above log(%) times, we will get, for
71 = O(557 1og(3) 1og(552)) = O3z log(3) log()),

P(5.,) < (3

)log(%) — 4.
Thus, w.p. at least 1 — 4, there exists a 7 < 74 s.t. (af , a2 .)? < 4A. Here, we finish the proof of Lemma 8. [

Lemma 9. Suppose there exists a time step 7 < 74 = O(W log ﬁ log %) such that
2
(@7 ua)? = (y7 v.)?)” < 44,

then V6 € (0,1), with probability at least 1 — 4, V¢ < T1 = O(55),

(@, 44) € {(x,y)| ((JCTU*)Z — (yTv*)Q)2 < 6A}.

Proof. Without loss of generality, we place the time origin at 7, i.e. (aio - 043,0)2 < 4A. Denote D £

{(a1,a2)|(a? — a3)? < 6A} and D, £ {Vr <t: (a1, as,) € D}. Note that (a; ;a2 — 1)? < 6 still holds with
high probability. Defining H; £ (1 —4no?)~*{(a}, — a3 ,)* — A}, we can get

E[Hi11p,|F] < Hlp, < Hlp, ,.

This means {H¢1p,_, } is a supermartingale. To use Azuma’s inequality, we need to bound the following difference

dit1 £ |Hip1lp, — E[Hepi1p,| 7|
=(1- dno® )7 1|(041 41 a%,tﬂ)z - ]E[(Oé%,tﬂ - ag,t+1)2|}—t]|ﬂpt
< (1—4ne?)~t71Cs,

where C = O(r]% (\/Iog dliifb + \/log %)) Further define 7, £ 4/ 22:1 Jf, by Azuma’s inequality we will get

e o) 1og( ) ,
P (H,gllpt1 — Hy > O(1)7, log? (25)> <exp | — = =0 (n*0).
g QZZ 0 d

Thus, with probability at least 1 — O(n?d), we have
_ 1 1
(0= a3, = Aty < (1= o) (g — a3 + O logh (7))

1 1
<(O[10—04202+ (1-47’]0’ T'tlog§ (%))

(P (5 e ()




When D;_; holds, w.p. at least 1 — O(n?6), by the inequality above we have

(et ()

Note that to make sure last terms is smaller than A, we need

il ditds | fiogt)togh (1) =
VA log po + log6 log 75 =0(1).

As A = O(5%5), we know that as long as 7 is polynomial in o, choosing o = O((log %)_%) is sufficient. Now we
know that if D;_; holds, D; holds w.p. at least 1 — O(n?§). It is easy to show that the Perturbed GD updates
satisfy (of ; — a3 ,;)? < 6A in the following O( ) steps w.p. at least 1 — 4. O

(ait — a;t)Q <5A+0 (

With Lemmas 1, 6 and 7, we can prove Lemma 7. Here follows a brief proof.

Proof.
11— | < (142 w)l — 2w
= 1= (2] w)? + a) wav]y, - xtTU*”;ryt|
< 1= 2] wol gl + (@] w)? — 27wl g

=1 -z Myt| +xt “*|xt U _U;ryt|

V2
<|1—a) My,| + 7|T/tTU* — vyl

ENGERNGN

The last inequality comes from Lemmas 6 and 9. Together with Lemma 1 we can get

2 C
e =l = (1 = ) + 1813 < (V67 + VR +20% — 0(0% + ).

ol0

Note that we use Cy = O(Z5) when calculating the order. Similarly, we have

C
lye — vell? < (\/6y + = \/GA +2”2_0( + 1.

T 10
Then, for any ¢ > 0, by choosing ¢ = O(y/¢) and n < 15 = O(c'%), we will have [|z; — u.|* < € and
lye — vall® < e O

4 Proof of Theorem 2

Recall that the gradient of F takes the following form.
VxF(X,Y)= (XY = M)Y — dyo?X,
VyF(X,Y)= (XY = M)T X — dyo}Y.
Suppose (U, V) is a stationary point. Then we have
(UVT — M)V — dyo2U = 0, (13)
UVt —M)"U - dyolV = 0. (14)

e Step 1: To prove the first statement, simply left multiply each side of (13) by UT and each side of (14) by
VT, and we have the following equations.

U'UVTV —U"MV —dyo3U'U =0,
VIVU'U - VMU - da?VTV =0.



Note that the following equation naturally holds.
UTUvVTV —UTMV = (VIVUTU -VTMTU)

Combine these three equations together and we have

dio?

LVIVT =42VTV.

Trr
UTU =55

e Step 2: We next show that ([7, ‘7)R is a stationary point, where

Nl=

(0.7) = (VFA(E — 10213, %B(E 1021,)

where R € R"*" is an orthogonal matrix. We only need to check (13) and (14). In fact, we have

);

N 1 .
VxF(UR,VR) = —702ABTWB(2 v62I) R + 0\ /FA(E — v021,)* R
= —0?FA(E —v02L,): R + 0> JFA(E —70°1,): R
= 0,
and

I 1
VyF(UR,VR) = —y0>BAT JYA(E — y0°1,)? R+ 02y ﬁB(z—w%)%R

= —0?v\/7B(X — v0? ) R+ o*y/4B(Z — 70’]) R
=0.
Combine the above equations together and we know that ([7 , XN/) is a stationary point.

e Step 3: We next show that {(5' , V)R‘R € R™" orthogonal} are the global minima and all other stationary
points enjoy strict saddle property. Without loss of generality, we assume v = 1.

We first calculate the Hessian V2F (X,Y). The Hessian can be viewed as a matrix that operates on vectorized
matrices of dimension (d; 4 da) x 7. Then, for any W € R(41+42)x7 the Hessian defines a quadratic form

W) .
2 1(Z1, Z2) Zolk, 1|, V21, Zo € Rld1tdz2)xr
[v f( 1 2 Z 8Wz J 8Wk ” [7’3.]] 2[ ) ]a v 1,42 €

We can then express the Hessian V2F (W) as follows:
[VEFX YA, A) =2 < XY = M, ApA > +|UA] + ApVT|[; + 0% AulE + ol Av |,

U

X

where A = [iU] , Ay € R4*" and Ay € R%*", We further denote W = {Y] , W= , and M= ﬁV/T,
1%

R= argmin W — WR’H.

R’/€R"*7 orthogonal

We then have the following lemma.

Lemma 10. Let 0y, (M) be the smallest singular value of M. Suppose dio? = dy03 = 02, and 02 < opmin(M).

For Y(U,V) € (R%,R) such that VF(U,V) = 0, we denote A = g_ gﬁ , then we have
[V2F(UV)I(A,A) < =[[UVT = M|} = 30*|ATU = BTV][}. (15)

Moreover, [V2F (U, V)|(A,A) < 0 if

U, V) ¢ {(UV)R|R eR™",RRT =R"R =1,}.



Proof. Recall that the quadratic form defined by the Hessian can be written as follows.
[VEF(U, V(A A) =2 < UV’ — M, ApAy > +H[UA) + AgVT |+ 02| Av|E + o Av]E.  (16)
We start from the second term [|[UA{, + Ay V |2, Similar to the proof of Claim B.5 in Du et al. (2018), we have
(UAY + ApVT I = [AvA) +UVT — M
— JAGAVZ+ UV = M|24+2 < AgAL, UV =M >
= |AGAT|Z+|UVT = M|2+2 < AgAL, UV — M > 42 < AgA}, M — M >
= |AGAT|Z +|UVT = M|24+2 < AgAL, UV — M > 4202 < AgA,, ABT >
Plugging this equation into (16), we have
[V2F(U,V)(A,A) =4 < UV = M,ApA} > +|ApA |3+ [UVT — M]3
+0? (|AulE + [AvIE +2 < ApAy, ABT >).
Note that using the fact VF(U, V) = VF(U,V) = 0, one can easily verify that
4<UVT = MAUA] > =4 <UVT = MM > =20* (JAuli} + [AvIE) + 202 (1T + V]
= A|UVT —M|2 —40® < ABT,M ~UV" >
+20% (D113 + 1712 — TR ~ IVI2)
Thus,
V2EU,V)IA,A) = ~4[UVT = D2 + | AuATIE + UV — |12

= |IAvlE + |AvIE -2 < ApA), ABT >

=2 (IIR + IVIE ~ IUIR - IVIE) +4< ABT,.M-UVT > . (7)
We then have the following two claims:
Claim 1. —4|UVT — M|2 + |ApAL|2 + |[UVT = M|2 < —[|lUVT — M|2.
Proof. Similar to the proof of Claim B.5 in Du et al. (2018), we have
1
[AuAY|# < ZIIAATII%
1 —
<SIww? - ww T
— ~ - 1 1 e e
=2UVT = Ml — [UTU = VTV + SIUTU = VTV + S |UTU = VTV
=2UVT M|~ |[UTT -V V|
<2uvT — M|2.
Thus,

—4lUVT = M|2 + |AgA|E +[UVT = M|2 < —4|lUVT = M|2 +2|UVT — M|2 + |UVT — M|
=—|uvT - M|2.

Claim 2. U2+ [VIE = [U|} = V3 +2 < ABT,M —UVT >= |[ATAy — BTAv|f3.



Proof. First, the LHS of the equation can be rewritten as follows.
UG+ IVIE = 1TIE = IVIz +2< ABT", M -UV" >
=|UI3 + IV} —2< AB",M+UV" > +4 < AB",M > —|U|} - |[V|}
=|Ul§ +IVI[F —2< AB",M + UV > +4|U|[% - U = |IVI%
=R+ IVIE+ U3+ VIE -2 < ABT, M+ UV >,

where we use the fact N _ -
<AB" M >=|U|z = [|V|3.

On the other hand, the RHS of the equation can be rewritten as follows.
IATAy = BTAv[E = |Avlf + |Av]E -2 < ApAY, ABT >
= U+ IVIE+ 1T + IVIIF -2 < ABT, M +UVT >
—2tr(U(UR)") = 2tr(V(VR) ") + 2tr(U(UR) ") + 2tr(V(VR) ")
= U+ IVIE+ 1T + IVIIF -2 < ABT, M +UVT >
= UIE+ VIR - 1T - VIR +2< ABT,M UV >.

Plugging the conclusions in Claims 1 and 2 into (17), we have
(VPFUV)A,A) < —[UVT — M|z ~30°[ATAy — BT Ay .

Note that since ATUR = BT‘~/R, we have ATAy — BTAy = ATU — BTV. To justify our last statement, we
have the following claim.

Claim 3. [[UVT — M||2 + 30*|ATU — BTV||2 = 0 if and only if
(U.V) = (U V)R,
where R € R™*" is an orthogonal matrix.
Proof. |[UVT = M|2 + 302||ATU — BTV||2 = 0 if and only if
uvT =M, (18)
ATU=B"V. (19)
Left multiplying each side of (18) by AT, we have
ATUVT = (2 -o’I)B" & B'VV' =(2 - o?*I)B"
s VVI =B - I)B'
&V =B(X-¢)’R=VR
The last equivalent argument comes from Theorem 4 in Li et al. (2019). Plugging V = VR’ back to (19), we have
U=UR. O
As a direct result of Claim 3, for stationary point (U, V) ¢ {(U, XN/)R"R' ER™ R'R'T = RTR = I}, we have
[V2F(U,V)](A,A) < 0.
We prove the lemma. O

Lemma 10 directly implies that {((7, ‘7)R"R’ €R™" R'R'T = R'TR' = I,} contains all the global optima, and
all other stationary points enjoy strict saddle property.



5 Perturbed GD

The detail of the Perturbed GD algorithm is summarized in Algorithm 1.

Algorithm 1 Perturbed Gradient Descent for Rank-1 Matrix Factorization.

Input: step size 7, noise level 0y, 09, matrix M € R%*% number of iterations 7.
Initialize: initialize (zo,yo) arbitrarily.
fort=0...T—1do
Sample &1 4 ~ N(0,0%14,) and &4 ~ N(0,0314,).
Tr=x+ &1, Y=Y + &t
T4l = Tt — U(ftﬂgr - M)y:.
Yer1 = ye — NGT — M 7).
end for

6 Figures

F(z,y)

Global Optima

2" Global Optima
+(0.95, 0.95)

) (d)

Figure 1: The visualization of objective functions F(z,y) = (1 — zy)? and F(z,y) with z,y € R and ol =03=

0.0975. For F(x,y), any (x,y) that satisfies xy = 1 is a global minimum (as shown in (a)). F(z,y) only has
global minima close to +(1,1) (as shown in (c)).
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Figure 2: P-GD with balanced noise (a, b and ¢), P-GD with unbalanced noise (g) and GD (d,e and f) for the
rank-1 matrix factorization problem. (a) and (d) use small initializations (o, = o, = 1072) and balanced step
size (1, =mn, = 1072). (b) and (e) use large initializations (¢, = 0, = 10~!) and balanced step size. (c) and (f)
use small initializations and unbalanced step size (1, = 0.5n, =5 x 1073).
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Figure 3: P-GD with balanced noise (a, b and ¢) and GD (d,e and f) for rank-10 matrix factorization problem.
(a) and (d) use small initializations (o, = o, = 1072) and balanced step size (1, = n, = 1072). (b) and (e) use
large initializations (o, = o, = 107!) and balanced step size. (c) and (f) use small initializations and unbalanced
step size (1, = 0.5n, =5 x 1073).
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Figure 4: Algorithmic behaviors of P-GD and GD. For P-GD, phase transition happens around the first 30~40
iterations, as shown in (a,b,c). GD does not show phase transitions.
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Figure 5: The visualization of objective F(z,y) = (1 — 2y)2. All the global optima are connected and form a
path. The landscape around the path forms a valley. Around unbalanced optima, the landscape is sharp in some
directions and flat in others. Around balanced optima, the landscape only contains flat directions.
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Figure 6: Algorithmic behaviors of Perturbed GD and GD for d = 4. For Perturbed GD, phase transition happens
around the first 2 x 103 iterations.
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