
Yusha Liu, Yining Wang, Aarti Singh

Appendix of Smooth Bandit Optimization: Generalization to Hölder Space

A Auxiliary proofs for the main document

A.1 Proof of Lemma 2

Proof. Recall the definition of Hölder smoothness: |f(x)−T ly(x)| ≤ L‖x− y‖α∞. For a hypercube B, ‖x− y‖∞ ≤
∆

1
d ,∀x, y ∈ B. By definition, when the function smoothness exponent α ∈ (1, 2], l = 1. Notice that the Taylor

polynomial of degree l = 1 around y is a linear 12 function of x: T
(l=1)
y (x) = f(y)+ ∂f

∂x1
(y)(x1−y1)+ ∂f

∂x2
(y)(x2−

y2) + . . . ∂f∂xd (y)(xd − yd) = 〈θ, x〉. When α > 2, the Taylor polynomial can still be written as a linear function

but of higher-dimensional feature map of x: φ : [0, 1]d → [0, 1]d(α) which contains exponentiations of x, using the
operations defined for definition 1, φ(x) = {xs,∀s, s.t.|s| ≤ l}. Dimension of the feature satisfies

d(α) = |{s : 1 ≤ |s| ≤ l}| =
∑

1≤j≤l

(
j + d− 1

d− 1

)
= O(dl). (10)

When l = 1, φ(x) = x. The parameter θ is determined by the derivatives of f at y and the value of y. Therefore,
we know locally there exists a linear parameter in dimension θ∗ = arg minθ‖f − φ(x)T θ‖∞, x ∈ B, such that

‖f − 〈θ∗, φ(x)〉‖∞ ≤ ε = L∆
α
d ,∀x ∈ B. Also, note that ‖φ(x)‖22 ≤ d(α)

2
according to definition. When the

exponent α ∈ (0, 1], l is 0 and the Taylor polynomial is simply a constant. Therefore the same argument holds
for θ∗ for example when θ∗1 , . . . , θ

∗
d = 0 (a constant function).

A.2 Proof of Theorem 3

Proof. Throughout this proof, we assume that the assumptions A1∼3 hold. This proof is modified from that
in Dani et al. (2008). Some techniques are from Abbasi-Yadkori et al. (2011). We only present the parts which
we change. First we proof the following bound on simple regret at each step:

rt ≤ 2
√
βt‖A−1/2

t x‖+ 2ε

t−1∑
τ=1

‖xTA−1
t xτ‖. (11)

And then we will bound the sum of these two terms separately. In order to proof inequality 11, we start from
an important auxiliary theorem of confidence bound on θ∗, Theorem 9.

Theorem 9. Let βt = Cσ2d ln(1 + tκ2/d) ln(2t2

δ)
(

= O(d ln(t) ln(t
2

δ))
)

for a sufficiently large constant C, then

with probability 1− δ, θ∗ is contained in the confidence set:

C̃t = {θ̂t +
√
βtA

−1/2
t zd −A−1

t (

t−1∑
s=1

bsxs), ‖zd‖2 ≤ 1},

and as a result,

〈x, θ∗〉 ≤ 〈x, θ̂t〉+
√
βt‖A−1/2

t x‖+ ε

t−1∑
s=1

|xTA−1
t xs|.

The proof of Theorem 9 is in Appendix A.2.1. Now, if θ∗ ∈ C̃t, we have

rt = 〈x∗, θ∗〉 − 〈xt, θ∗〉
≤ 〈x∗, θ∗〉 − UCBt(x∗) + UCBt(xt)− 〈xt, θ∗〉
≤ UCBt(xt)− 〈xt, θ∗〉

≤ 2
√
βt‖A−1/2

t xt‖+ 2ε

t−1∑
s=1

|xTt A−1
t xs|.

12We slightly abuse the notation and define short-hand notation 〈θ, x〉 := θ0 +
∑d(α)
i=1 θixi.

Smooth Bandit Optimization: Generalization to Hölder Space

The first inequality is because our algorithm will only choose xt when UCBt(xt) ≥ UCBt(x∗). The last inequality
holds because

〈x, θ∗〉 ≥ 〈x, θ̂t〉+ min
zd∈Bd2

√
βt〈x,A−1/2

t zd〉 −
t−1∑
s=1

bsx
TA−1

t xs

≥ 〈x, θ̂t〉 −
√
βt‖A−1/2

t x‖ −
t−1∑
s=1

bsx
TA−1

t xs

≥ UCBt(x)− 2
√
βt‖A−1/2

t x‖ − 2ε

t−1∑
s=1

|xTA−1
t xs|.

By assumption on the mean reward function value, the absolute value of instant pseudo-regret |rt| is bounded
by 1 + ε. Therefore, combining inequality (11) and rt ≤ 2 + 2ε, we have that13

rt ≤ (2 + 2ε) ∧

(
2
√
βt‖A−1/2

t xt‖+ 2ε

t−1∑
τ=1

‖xTt A−1
t xτ‖

)

≤ 2
(

1 ∧
√
βt‖A−1/2

t xt‖
)

︸ ︷︷ ︸
#1

+2 ε

t−1∑
τ=1

‖xTt A−1
t xτ‖︸ ︷︷ ︸

#2

+2ε.
(12)

Sum of term #1 is bounded using bound (28) and Cauchy Schwartz inequality:

2

T∑
t=1

(1 ∧
√
βt‖A−1/2

t xt‖) ≤ 2

√√√√TβT

T∑
t=1

(1 ∧ ‖xTt A−1
t xt‖) =

√
8dβTT ln(1 + Tκ2/d). (13)

For sum of term #2, we first have

t−1∑
τ=1

xTt A
−1
t xτ ≤

√√√√t

t−1∑
τ=1

xTt A
−1
t xτxTτ A

−1
t xt

=

√√√√txTt A
−1
t (

t−1∑
τ=1

xτxTτ)A−1
t xt

≤

√√√√txTt A
−1
t (

t−1∑
τ=1

xτxTτ)A−1
t xt + xTt A

−1
t A−1

t xt

=

√√√√txTt A
−1
t (

t−1∑
τ=1

xτxTτ + Id)A
−1
t xt =

√
txTt A

−1
t xt.

Then the sum
∑T
t=1(

∑t−1
τ=1 x

T
t A
−1
t xτ) can be bounded by:

T∑
t=1

(

t−1∑
τ=1

xTt A
−1
t xτ) ≤

T∑
t=1

(

√
txTt A

−1
t xt)

≤

√√√√(

T∑
t=1

t)(

T∑
t=1

xTt A
−1
t xt).

Now, we need to bound
∑T
t=1 x

T
t A
−1
t xt with inequality (28). We know that A−1

t is a full-rank matrix. Therefore,

13a ∧ b = min(a, b)

Yusha Liu, Yining Wang, Aarti Singh

denote its eigenvalues and eigenvectors as λ1 . . . λd, v1 . . . vd. Then14

xTt A
−1
t xt = (c1v1 + · · ·+ cdvd)

T
A−1
t (c1v1 + · · ·+ cdvd)

= c21λ1 + · · ·+ c2dλd

≤ λmax(A−1
t)‖xt‖22 =

κ2

λmin(At)

≤ κ2

λmin(Id) + λmin(XT
t Xt)

≤ κ2.

The second last inequality holds due to Weyl’s inequality. Therefore,

T∑
t=1

xTt A
−1
t xt ≤ κ2

T∑
t=1

(xTt A
−1
t xt ∧ 1)

≤ κ2(2d ln(1 + Tκ2/d)).

Putting the above together,

T∑
t=1

(
2ε

t−1∑
τ=1

xTt A
−1
t xτ

)
≤ 2ε

√√√√(

T∑
t=1

t)(

T∑
t=1

xTt A
−1
t xt)

≤ 2εTκ
√

2d ln(1 + Tκ2/d).

(14)

Finally, plugging in κ2 = d gives the final results.

A.2.1 Proof of Theorem 9

Proof. Let θ̂t = A−1
t XT

t y denote the regularized least square estimator at time t. Matrix Xt has dimension
(t− 1)× d, where each row is a past action (until time t). We first define an unobserved variable θ̃t:

θ̃t = A−1
t XT

t (Xtθ
∗ + ηt) = θ̂t −A−1

t XT
t bt, (15)

here we abuse the notations and let ηt and bt be the (t − 1) × 1 vector containing noise and bias of each time.
Then we define the following confidence ellipsoid centered at θ̃t:

Ct = {θ : (θ − θ̃t)TAt(θ − θ̃t) ≤ βt}, (16)

and prove the following lemma as an analog to Theorem 5 of Dani et al. (2008):

Lemma 10. The true linear parameter θ∗ is contained in ellipsoid Ct, specifically, P(∀t, θ∗ ∈ Ct) ≥ 1− δ.

The proof is in Appendix section A.2.2. However, we do not observe the vector bt, so we cannot calculate Ct
in our algorithm. So instead, we define a larger C̃t that contains Ct, which will naturally contains θ∗ with high
probability. To construct C̃t, we first re-write Ct as

Ct = {θ̃t +
√
βtA

−1/2
t zd, ‖zd‖2 ≤ 1}, (17)

then plug in equation (15) to yield:

θ̃t +
√
βtA

−1/2
t z = θ̂t +

√
βtA

−1/2
t z −A−1

t XT
t bt

= θ̂t +
√
βtA

−1/2
t z −A−1

t (

t−1∑
s=1

bsxs).
(18)

Therefore, we know that with high probability,

θ∗ ∈ C̃t = {θ̂t +
√
βtA

−1/2
t zd −A−1

t (

t−1∑
s=1

bsxs)}. (19)

14This proof is extracted from a remark in proof of Theorem 3 in Abbasi-Yadkori et al. (2011)

Smooth Bandit Optimization: Generalization to Hölder Space

Therefore, we have a computable confidence bound for x:

UCBt(x) = max
θ∈C̃t
〈x, θ〉

= 〈x, θ̂t〉+ max
zd∈Bd2

√
βt〈x,A−1/2

t zd〉 −
t−1∑
s=1

bsx
TA−1

t xs

≤ 〈x, θ̂t〉+
√
βt‖A−1/2

t x‖ −
t−1∑
s=1

bsx
TA−1

t xs

≤ 〈x, θ̂t〉+
√
βt‖A−1/2

t x‖+ ε

t−1∑
s=1

|xTA−1
t xs|.

(20)

The first inequality is derived by Cauchy Schwartz inequality and the fact that zd is in unit ball.

A.2.2 Proof of Lemma 10

Proof. Lemma 10 is a parallel to Theorem 5 in Dani et al. (2008), with the difference of sub-gaussian noise,
ellipsoid centre θ̃t and misspecification in observation. The key idea is the same, namely to use induction to
bound the growth of Zt = (θ∗ − θ̃t)TAt(θ∗ − θ̃t) and proof that Zt ≤ βt, i.e. the θ∗ is contained in Ct, at each
time step t. The following analysis used the same notations and definitions as section 5.2 in Dani et al. (2008)
unless otherwise specified. Under Lemma 10’s definition of confidence set Ct, we have that:

Ht = At(θ̃t − θ∗) = XT
t ηt − θ∗, (21)

Zt = (θ∗ − θ̃t)TAt(θ∗ − θ̃t) = HT
t A
−1
t Ht. (22)

Equation 21 holds because of this key property:

θ̃t : Atθ̃t = XT
t Xtθ

∗ +XT
t ηt. (23)

And the rest of the proof in Dani et al. (2008) should go through by substituting Yt with Ht (defined above) and
µ̂ with our definition of θ̃ (centre of the confidence ellipsoid). Except, to accommodate the sub-gaussian noise
assumption that replaces their bounded noise assumption, we have to make two changes in the proof. Both are
in analyzing the growth of Zt in the induction. Recall that Dani et al. (2008) proved this relation:

Zt ≤ Z1 + 2

t−1∑
τ=1

ηt
xTt (θ̃t − θ∗)

1 + w2
t

+

t−1∑
τ=1

η2
τ

w2
τ

1 + w2
τ

. (24)

We first look at the concentration of the sum of martingale difference sequence that makes up Zt: same with Dani

et al. (2008), define Mt = 2ηt
xTt (θ̃t−θ∗)

1+w2
t

where wt
4
=
√
xTt A

−1
t xt. According to our assumption, the noise sequence

is a sub-gaussian martingale difference sequence with parameter σ2. Therefore, Mt is a sub-gaussian martingale

difference sequence. Specifically, we know that the square of subgaussian parameter is 4σ2(
|xTt (θ̃t−θ∗)|

1+w2
t

)2. By

definitions we know that Mt | Ht is (ν2
t = 4σ2(

|xTt (θ̃t−θ∗)|
1+w2

t
)2, at = 0) sub-exponential(definition 2.7 in Wainwright

(2019)) and therefore the sum
∑t
τ=1Mτ is also sub-exponential, with parameters (

√∑t
τ=1 ν

2
τ , a = maxτ aτ =

0)(Theorem 2.19 (1) in Wainwright (2019)). The following inequality is conditioned on the fact that from time

Yusha Liu, Yining Wang, Aarti Singh

τ = 1 . . . t, θ∗ is contained in Cτ (by the induction).

t∑
τ

ν2
t = 4σ2

t∑
τ=1

(
|xTτ (θ̃τ − θ∗)|

1 + w2
τ

)2

≤ 4σ2
t∑

τ=1

(

√
βτwτ

1 + w2
τ

)2

≤ 4σ2
t∑

τ=1

βτ (min(1/2, wτ))2

≤ 4σ2
t∑

τ=1

βτ min(1/4, w2
τ)

≤ 4σ2βt

t∑
τ=1

min(1, w2
τ)

≤ 4σ2βt
(
2d ln(1 + tκ2/d)

)
See bound 28

= 8σ2dβt ln(1 + tκ2/d).

The proof for the first three inequalities is the same as Lemma 7 and section 5.2.1 in Dani et al. (2008). Then we
apply a Bernstein-type concentration bound for sub-exponential martingale difference sequence (Theorem 2.19
(2) in Wainwright (2019)). Plugging in the values of a and

∑t
τ=1 ν

2
τ , we have that

P(|
t−1∑
τ=1

Mτ | ≥ s) ≤ 2 exp(
−s2

2
∑t−1
τ=1 ν

2
t

)

≤ 2 exp(
−s2

16σ2dβt ln(1 + (t− 1)κ2/d)
)

s=
βt
2= 2 exp

(
−βt

64σ2d ln(1 + (t− 1)κ2/d)

)
≤ δ

2t2
(Needed for union bound over all times).

(25)

Therefore, as long as βt is larger or equal to 64σ2d ln(1 + (t − 1)κ2/d) ln(4t2

δ),
∑t−1
τ=1Mτ ≤ βt

2 with probability

larger or equal to 1− δ
2t2 .

The second change is for the third quantity that makes up Zt:
∑t−1
τ=1 η

2
τ

w2
τ

1+w2
τ

. We need to bound maxτ≤t−1 η
2
τ

with high probability. By algebra calculations, we know that η2
τ is sub-exponential with parameters (ν =

32σ4, a = 4σ2)15. We can apply union bound with the tail bound of sub-exponential variables:

P(max
τ≤t−1

(η2
τ − E[η2]) ≥ z) ≤

t−1∑
τ=1

P((η2
τ − E[η2]) ≥ z)

≤ (t− 1) exp(− z

2a
) (Proposition 2.9 in Wainwright (2019))

≤ δ

2t2
(Needed for union bound over all times).

Set z = 8σ2 ln(2t3

δ) so that P(maxτ≤t−1 η
2
τ −E[η2] ≤ z) = P(maxτ≤t−1 η

2
τ ≤ z+E[η2]) ≥ 1− δ

2t2 . By the fact that

E[η] = 0, E[η2] = Var(η) ≤ σ2, which is a property of subgaussian variables. So P(maxτ≤t−1 η
2
τ ≤ z+σ2) ≥ 1− δ

2t2 .

15For this part, we borrowed the proof from Example 2.8 in Wainwright (2019) and http://proceedings.mlr.press/
v33/honorio14-supp.pdf

Smooth Bandit Optimization: Generalization to Hölder Space

The following holds with probability larger than 1− δ
2t2 :

t−1∑
τ=1

η2
τ

w2
τ

1 + w2
τ

≤ (max
τ≤t−1

η2
τ)

t−1∑
τ=1

min(w2
τ , 1)

≤ (max
τ≤t−1

η2
τ)2d ln(1 + tκ2/d)

= (8σ2 ln(
2t3

δ
) + σ2)2d ln(1 + (t− 1)κ2/d)

= 8σ2(ln(
2t3

δ
) +

1

8
)2d ln(1 + (t− 1))κ2/d)

= 16σ2d ln(1 + (t− 1)κ2/d)

(
ln(

2t3

δ
) +

1

8

)
.

Except the two changes above, one last thing to note is the quantity Z1 analyzed at the end of proof of Lemma
12 in Dani et al. (2008). In our assumption of the reward function value, we conclude that

Z1 = (θ∗ − 0)T I(θ∗ − 0) = ‖θ∗‖22

=

d∑
i=1

(eTi θ
∗)2 (ei is base vector of dimension i, note that ei ∈ X)

≤ d(1 + ε)2.

As a result, if it is satisfied that Zt ≤ Z1 + βt/2 + 16σ2d ln(1 + (t − 1)κ2/d)(ln(2t3

δ) + 1
8) ≤ βt, which enables

the induction in Lemma 14 in Dani et al. (2008), then the rest of the proof should go through smoothly. We

argue that setting βt = Cσ2d ln(t) ln(4t2

δ) for a large enough constant C suffices. This is under the reasonable
assumption that ε is O(1) and σ is a constant16.

It is worth mentioning17 that Dani et al. (2008) requires the relationship between t and δ to be approximately 0 <
1.05δ ≤ t2, hence their requirement18 of “for sufficiently large T” in Theorem 1 and 2. This is because of the last
step of their induction proof for Theorem 5 requires: Zt ≤ d+β2/2+2d ln(t) ≤ βt. In our setting, the requirement

in induction translates to this (second) constraint(plugging in κ2 = d): βt ≥ 2d(1+ ε)2 +32σ2d ln(t)(ln(2t3

δ + 1
8)).

Recall the first constraint on βt is βt ≥ 64σ2d ln(t) ln(4t2

δ), from bound (25). Therefore, C should first satisfy

C ≥ 64 and for the second constraint we need19: C ≥ 3(1+ε)2

4(ln(2))2σ2 + 3
2 ln(2) + 48. Therefore, the lower bound of C

should depend on values of ε and σ2. The choice of C = 128 in the main theorem is an example that requires
approximately 1+ε

σ ≤ 7.

A.3 Proof of Theorem 4

Let us treat the number of bins/local algorithms n as the input parameter to the algorithm. The regret bound
of UCB-Meta (equation 4) should be independent of the input dimension d, given the dimension of the linear
model d(α). Therefore, throughout this proof we will abuse the notations and let d denote the linear model
dimension for simplicity.

Proof. First, we define the “good event” Egood as an event where all confidence bound holds for all bins at

all times. For a fixed bin, if P(θ∗ /∈ C̃t,∃t) ≤ δ/n, as set in the algorithm, where C̃t = {θ̂t +
√
βtA

−1/2
t zd −

A−1
t (
∑t−1
s=1 bsxs)} (Theorem 9), then by union bound, P(θ∗k /∈ C̃k,t,∃k) ≤ δ, where C̃k,t is the confidence ellipsoid

of bin k at time t. The good event is Egood = {∀t,∀k ∈ [n], θ∗k ∈ C̃k,t}. It happens with probability P(Egood) ≥
1− δ, and the following proof will condition on it.

16Recall that according to Lemma 2, ε is bounded by the Lipschitz constant L and is therefore O(1)
17This remark is made by Abbasi-Yadkori et al. (2011).
18However, we believe that this should not translate to a constraint on t, but on δ instead. Because Zt ≤ βt is required

for every step t to complete the induction, so if it only holds for large t then the induction will fail as well.
19This is from the second constraint: Cσ2d ln(t) ln(4t2

δ
) ≥ 2

3
Cσ2d ln(t) ln(2t3

δ
) ≥ 2d(1 + ε)2 + 32σ2d ln(t)(ln(2t3

δ
+ 1

8
)).

Yusha Liu, Yining Wang, Aarti Singh

Here are some useful notations that make the proof easier to read: let Nk(t) denote the number of times
base-algorithm Alocalk has been selected by(including) time t; let k(t) denote the bin selected at time t; let xt
denote the action selected at time t; let {βk,·}, {Ak,·} and {θ̂k,·} denote the set of parameters kept by that
base-algorithm Alocalk .

The upper confidence bound on value of the local linear function achieved by sub-algorithms at round t is defined

as UCBk(t),t(x) = 〈x, θ̂k,Nk(t)〉+
√
βk,Nk(t)‖A

−1/2

k,Nk(t)
x‖+ ε

∑Nk(t)−1
τ=1 |xTA−1

Nk(t)
xτ | for any action x ∈ Bk. Using

the proof of Theorem 3, the good event hence indicates that for the base-algorithm selected at time t and any
action x ∈ Bk(t):

UCBk(t),t(x)− 2
√
βk,Nk(t)‖A

−1/2

k,Nk(t)
x‖ − 2ε

Nk(t)−1∑
τ=1

|xTA−1
Nk(t)

xτ | ≤ 〈x, θ∗k〉 ≤ UCBk(t),t(x).

By Lemma 2, the expected local function value f(x) is bounded by

UCBk(t),t(x)− 2
√
βk,Nk(t)‖A

−1/2

k,Nk(t)
x‖ − 2ε

Nk(t)−1∑
τ=1

|xTA−1
Nk(t)

xτ | − ε ≤ f(x) ≤ UCBk(t),t(x) + ε.

A common way to bound pseudo regret for stochastic bandit is via Wald’s equality: RT =
∑n
k=1 ∆kE[τk(T)]

where τk(T) is the number of times arm k gets pulled until time T , and ∆k is the reward gap. We cannot
trivially follow this, because the rewards of each bins are no longer i.i.d. Instead, we use this gap-independent
decomposition for each bin k:

Rk =
∑

t:bint=k

(f∗ − fxt∈Bk(xt))

=
∑

t:bint=k

(
f∗ − UCBAk(t),t + UCBAk(t),t − f(xt)

)
=

∑
t:bint=k

(
f∗ − UCBAk(t),t + UCBk(t),t(xt) + ε− f(xt)

)
≤

∑
t:bint=k

(
UCBk(t),t(xt) + ε− f(xt)

)

≤
∑

t:bint=k

2
√
βk,Nk(t)‖A

−1/2

k,Nk(t)
xt‖+ 2ε

Nk(t)−1∑
τ=1

|xTt A−1
Nk(t)

xτ |+ 2ε


=

Nk(T)∑
s=1

(
2
√
βk,s‖A−1/2

k,s xt‖+ 2ε

s−1∑
τ=1

|xTt A−1
s xτ |+ 2ε

)
.

(26)

The first inequality holds because of the algorithm’s bin selection rule: if bin Bk is chosen then f∗ ≤ UCBk∗,t ≤
UCBk(t). By the bounded function value assumption, f∗ − fxt∈Bk(xt) ≤ 2, therefore:

Rk ≤
Nk(T)∑
s=1

(
2
√
βk,s‖A−1/2

k,s xt‖+ 2ε

s−1∑
τ=1

|xTt A−1
s xτ |+ 2ε

)
∧ 2

≤
Nk(T)∑
s=1

2
(√

βk,s‖A−1/2
k,s xt‖ ∧ 1

)
︸ ︷︷ ︸

#1

+ 2ε

s−1∑
τ=1

|xTt A−1
s xτ |︸ ︷︷ ︸

#2

+ 2εNk(T).

(27)

Smooth Bandit Optimization: Generalization to Hölder Space

A.3.1 High probability regret bound part I (term #1)

First we establish this bound the same way as Dani et al. (2008). Namely, for any local misspecified linear bandit
algorithm that is ran T times with data (xt, yt)t=1...T ,

T∑
t=1

‖xTt A−1
t xt‖ ∧ 1 ≤ 2 ln(

T∏
t=1

(1 + xTt A
−1
t xt))

= 2 ln(

T∏
t=1

det(At+1)

det(At)
)

= 2 ln(
detAT+1

detA1
) ≤ 2 ln((1 + Tκ2/d)d)

= 2d ln(1 + Tκ2/d),

(28)

where we used Lemma 11. Now we can bound term #1 using bound (28).

Nk(T)∑
s=1

2(
√
βk,s‖A−1/2

k,s xt‖ ∧ 1)

≤

√√√√Nk(T)

Nk(T)∑
s=1

4(βk,s‖xTk,sA
−1
k,sxk,s‖ ∧ 1)

≤

√√√√4βk,Nk(T)Nk(T)

Nk(T)∑
s=1

‖xTk,sA
−1
k,sxk,s‖ ∧ 1

=

√√√√√4βk,Nk(T)Nk(T)2 ln

Nk(T)∏
s=1

(1 + xTk,sA
−1
k,sxk,s)


=

√
4βk,Nk(T)Nk(T)2 ln

(
det(ANk(T)+1)

det(A1)

)
=
√

8dβk,Nk(T)Nk(T) ln (1 +Nk(T)κ2/d)

κ2=d
=

√
8dβk,Nk(T)Nk(T) ln (1 +Nk(T)).

Lemma 11. For t ≥ 1, 1 + xTt A
−1
t xt = det(At+1)/ det(At). Also, det(At) ≤ (1 + (t− 1)κ2/d)d.

Proof of Lemma 11.

det(At+1) = det(At(Id +A−1
t xtx

T
t)) = det(At) det(Id +A−1

t xtx
T
t)

= det(At) det(I1 + xTt A
−1
t xt) = det(At)(1 + xTt A

−1
t xt).

The third equation uses Sylvester’s determinant theorem: det(Im +Am×nBn×m) = det(In +Bn×mAm×n). The
trace of a matrix is the product of its eigenvalues and the determinant is the sum of eigenvalues, and for the
trace of the positive definite matrix At we have,

tr(At) = tr(I +

t−1∑
τ

xτx
T
τ) = d+

t−1∑
τ

‖xτ‖22 ≤ d+ (t− 1)κ2.

Therefore, using the inequality of arithmetic and geometric mean, det(At) ≤ (1 + (t− 1)κ2/d)d.

Yusha Liu, Yining Wang, Aarti Singh

Summing over all the suboptimal bins, we have that

n−1∑
k=1

Nk(T)∑
s=1

2(
√
βk,s‖A−1/2

k,s xk,s‖ ∧ 1) ≤
n∑
k=1

√
8dβk,Nk(T)Nk(T) ln (1 +Nk(T))

≤

√√√√ n∑
k=1

Nk(T)

n∑
k=1

8dβk,Nk(T) ln (1 +Nk(T))

=

√√√√T

n∑
k=1

8dβk,Nk(T) ln (1 +Nk(T))

Nk(T)≤T
≤

√
8dTnβT ln (1 + T).

(29)

A.3.2 High probability regret bound part II (term #2)

Here we directly call previous result in bound (14), but replace the total number of step with Nk(T), the number
of pulls for one fixed bin k. We have for term #2,

Nk(T)∑
s=1

2ε

s−1∑
τ=1

|xTk,sA−1
k,sxk,τ | ≤ 2εNk(T)d

√
2 ln(1 +Nk(T)).

Summing over all suboptimal bins, we have that

n∑
k=1

2εNk(T)d
√

2 ln(1 +Nk(T))

Nk(T)≤T
≤ 2εd

√
2 ln(1 + T)

n∑
k=1

Nk(T)

= 2εdT
√

2 ln(1 + T).

(30)

A.3.3 Putting it together

Combining the decomposition in equation (27) and the results in subsections A.3.1 and A.3.2, we have a high
probability regret bound for the UCB-Meta-algorithm:

RT =

n∑
k=1

Rk

≤
√

8dTnβT ln (1 + T) + 2εdT
√

2 ln(1 + T) + 2εT

= O(d ln(T)
√
Tn ln(T 2n/δ) + εdT

√
ln(T) + εT).

(31)

The last step plugs in βT = O(d ln(T) ln(T 2n/δ)).

A.4 Proof of Theorem 5

Proof. Algorithm 3 executes Algorithm 2 for a sequence of pre-defined time periods, {Ti = 2i, i = 0, 1, . . . N}.
At the beginning of each period, the update history is cleared and the number of arms n is reset with respect to
the current horizon Ti. However, since we would like to acquire a high-probability regret bound after applying
the doubling trick, we need to set the fail probability of Meta-algorithms during period i to δi = 6δ/π2i2. Using
a union bound, we can conclude the following (Ri(Ti) denotes the regret incurred in time period i of length Ti

Smooth Bandit Optimization: Generalization to Hölder Space

only).

P(∀i, the bound hold for Ri(Ti))

= 1−
∑
i

P(the bound does not hold forRi(Ti))

= 1−
∑
i

6δ

π2i2
≈ 1− δ.

In the last step we use the fact that the sum of sequence
∑∞
i

1
i2 converges to π2

6 .

Now, the total regret is simply a summation over i. The following holds with probability 1− δ,

R(T) ≤
N∑
i=1

Ri(Ti)

≤
N∑
i=1

Õ(dTi
a) = Õ

(
d

N∑
i=1

2ia

)
≤ Õ

(
d2a(N−1)

)
= Õ(dT a).

(32)

At step 4, the number of time periods N is the smallest integer such that
∑N
i=0 2i ≥ T , so N = 1 + dlog2(T)e.

The sum of geometric sequence is 2adlog2(T)e = (2log2(T)+c)a = T a2ca for some constant c smaller than 1. Also,
note that step 2 holds even though the fail probability is changed to δi = 6δ/π2i is because as specified in
Theorem 4, the term δ appears in a log term and the maximum value of 1/δ is 1/δN = π2 log2(T)/6δ, therefore
the extra factor caused by smaller δ to the regret is still a log term of Ti and omitted in the proof here.

Bound (32) suffices to say that meta-algorithm with doubling trick has the same regret rate as meta-algorithm
with known horizon, with some additional constant factors suffered from restarting.

A.5 Proof of Theorem 6

Proof. Here we prove that Corral with smooth-wrapper is applicable to this task and achieves minimax expected
regret rate apart from log factors. We directly use the proof of Theorem 5.3 in Pacchiano et al. (2020) and
their notations. δ is the fail probability, M is the number of base-algorithms, ρ is the reciprocal of the smallest
possibility for base-algorithms over the T rounds and η is the learning rate. U(T, δ) is the high probability bound
of the selected base-algorithm. The regret of Corral with smooth wrapper is bounded by:

R(T) ≤ O(
M ln(T)

η
+ Tη) + δT + 8

√
MT log(

4TM

δ
)− E[

ρ

40η ln(T)
− 2ρU(T/ρ, δ) log(T)], (33)

and we know from Theorem 3 in our paper that the base algorithm (Algorithm 1) that locates in the global
maximum’s bin has anytime high probability regret bound U(T, δ) = Õ(εTd(α) + c(δ)d(α)

√
T), note that this is

because the dimension of the local linear parameter is d(α). Therefore,

R(T) = Õ(
√
MT +

M

η
+ Tη) + δT − E[

ρ

40η ln(T)
− 2ρÕ(d(α)

√
T/ρ+

εd(α)T

ρ
)])

= Õ(
√
MT +

M

η
+ Tη) + δT + Õ(εTd(α)) + E[Õ(d(α)

√
Tρ− ρ

η
)].

(34)

Firstly, we set δ = 1/T so that δT = O(1). Then we maximize this formulation over ρ by setting

ρ = Õ(η2d(α)
2
T), yielding the following bound on expected regret.

Õ(
√
MT +

M

η
+ Tη + εTd(α) + ηd(α)

2
T)

M=n,

ε=n−
α
d

= Õ(
√
nT +

n

η
+ n−

α
d Td(α) + ηd(α)

2
T).

(35)

Yusha Liu, Yining Wang, Aarti Singh

We minimize this by setting the derivative w.r.t n and η to zero, i.e. η = 1
d(α)

√
n
T and n = Õ(T

d
d+2α). As a

result the rate comes to Õ(d(α)T
d+α
d+2α).

A.6 Proof of Lemma 7

Proof. According to Theorem 4, the algorithm sets n = T
d

d+2α′ / ln(T)
2d

d+2α′ and ε = n
−α′
d . Note that we can only

use the result in Theorem 4 if the high probability upper confidence bound defined in line 4 of sub-procedure
Algorithm 2 holds honestly. When the input parameter α′ is larger than α, the calculated misspecification error

ε is smaller than the true ε∗ = Õ(T
−α
d+2α), which invalidates the confidence bound. Therefore, the regret bound

does not hold for when α′ > α. When the input parameter is smaller than α, we can simply use the fact that
functions that are α-Hölder smooth are also α′-Hölder smooth: H(α,L) ⊂ H(α′, L). Therefore, the regret of the

algorithm with input parameter α′ ≤ α is bounded by R(T) ≤ Õ(d(α′)(
√
Tn+ εT)) = Õ(d(α′)T

d+α′
d+2α′).

A.7 Proof of Theorem 8

Proof. There exists an α̂ ∈ G, s.t. α̂ ≤ α ≤ α̂+ R
log(T) , for any true α in (0, R]. There are two sources that made

up the cost of adaptation when using Corral. The first one is the cost of searching over a grid for the unknown
point α̂. The second one is the cost of approximation, specifically the difference between the rates achieved for
α̂ and the true α. We will first derive the cost of grid search.

As specified in the proof of Theorem 5.3 in Pacchiano et al. (2020), the following bound of regret of the Corral
algorithm holds with respect to any of its base-algorithm with high probability regret bound U(T, δ). The
notations were introduced in Appendix section A.5.

R(T) ≤ O(
M ln(T)

η
+ Tη)− E[

ρ

40η ln(T)
− 2ρU(T/ρ, δ) log(T)] + δT + 8

√
MT log(

4TM

δ
). (36)

Plugging the regret rate of base-algorithm in Lemma 7, the expected pseudo-regret of Corral with smooth
wrapper is therefore bounded by:

R(T)
α̂≤α
≤ Õ(

M

η
+ Tη +

√
MT) + δT − E[

ρ

40η ln(T)
− 2ρ(Õ(d(

T

ρ
)
d+α̂
d+2α̂)) log(T)]

δ=1/T
= Õ(

M

η
+ Tη +

√
MT)− E[Õ(

ρ

η
− ρd(

T

ρ
)
d+α̂
d+2α̂)]

= Õ(
M

η
+ Tη +

√
MT)− E[Õ(

ρ

η
− dT

d+α̂
d+2α̂ ρ

α̂
d+2α̂)].

(37)

Similarly, we first maximize over ρ by setting the derivative w.r.t ρ to zero by setting ρ = Õ(η
d+2α̂
d+α̂ d

d+2α̂
d+α̂ T).

Then the above rate comes to

R(T) ≤ Õ(
M

η
+ Tη +

√
MT + d

d+2α̂
d+α̂ Tη

α̂
d+α̂). (38)

However, since η is a parameter of the Corral algorithm which does not know α̂ or α, we will rely on the parameter

R specified by the user. Let us set η with repsect to α = R, i.e. η = Õ(d−1T−
d+R
d+2R), and plug in the number of

grid points (base-algorithms) M = dlog(T)e.

Õ(
M

η
+ Tη +

√
MT + d

d+2α̂
d+α̂ Tη

α̂
d+α̂)

= Õ(dT
d+R
d+2R + d−1T

R
d+2R + dT

d2+2Rd+Rα̂
(d+2R)(d+α̂))

= Õ(dT
d+R
d+2R + dT

d2+2Rd+Rα̂
(d+2R)(d+α̂)).

(39)

It is obvious that this rate is not the minimax optimal rate for class
∑

(α̂), this gap shows the cost of grid search.

Smooth Bandit Optimization: Generalization to Hölder Space

Next, let us consider the cost of approximation and how it is eliminated by using the linear grid (Hoffmann et al.
(2011)). Namely, we show that adaptation for α̂ is equivalent to adaptation for α:

Õ(dT
d+R
d+2R + dT

d2+2Rd+Rα̂
(d+2R)(d+α̂)) = Õ(dT

d+R
d+2R + dT

d2+2Rd+Rα
(d+2R)(d+α)). (40)

The equality holds because |α − α̂| ≤ R
log(T) . Let J = d2+2Rd+Rα

(d+2R)(d+α̂) and Q = d2+2Rd+Rα
(d+2R)(d+α) , then W

4
= TJ

TQ
≤

T
(d2+2Rd+Rα) R

log(T)
(d+2R)(d+α)(d+α̂) . Taking the log of W yields log(W) = R d2+2Rd+Rα

(d+2R)(d+α)(d+α̂) . Since both α and α̂ are bounded

by a constant range (0, 2], the term d2+2Rd+Rα
(d+2R)(d+α)(d+α̂) ≤ C for some constant C, W is therefore O(1) as well.

Therefore, for functions with Hölder exponent α < R, the second term in equation (40) is the dominant term

and the expected regret rate is Õ(dT
d2+2Rd+Rα
(d+2R)(d+α)). For functions with Hölder exponent α ≥ R, which essentially

belongs to a subset of
∑

(R,L), they will all have the same rate which is Õ(dT
d+R
d+2R). When α = R, this matches

the minimax rate for α.

B Additional algorithms for the main document

B.1 Doubling procedure for Algorithm 2

Algorithm 3 Doubling procedure for Algorithm 2

Require: Meta-algorithm Aglobal (Algorithm 2), fail probability δ
1: for i = 0 . . . do
2: Ti = 2i

3: Restart Aglobal with initialization parameters ni = bT
d

d+2α

i / ln(Ti)
2d

d+2α e and fail probability δi = 6δ/π2i2

4: Run Aglobal for Ti steps.
5: end for

B.2 The Corral Master algorithm

For easier reference, we include the copy of Algorithm 7 in Pacchiano et al. (2020).

Algorithm 4 Corral Master (Algorithm 7 in Pacchiano et al. (2020))

Require: Base algorithms {Bj}Mj=1, learning rate η.

1: Initialize: γ = 1/T, β = e
1

ln(T) , η1,j = η, ρj1 = 2M,pj
1

= 1

ρj1
, pj1 = 1/M for all j ∈ [M].

2: for t = 1, . . . , T do
3: Sample it ∼ pt.
4: Receive feedback rt from base Bit .
5: Update pt, ηt and p

t
to pt+1, ηt+1 and p

t+1
using rt via Corral-Update (takes input ηt, pt, β, lower bound

p
t

and current feedback rt).
6: for j=1, . . . , M do
7: Set ρjt+1 = 1

pjt+1

.

8: end for
9: end for

The corral update procedure is in Algorithm 5 and the smooth wrapper for the base-algorithms is in Algorithm
3 in Pacchiano et al. (2020).

