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A Additional Background

A.1 ReLU Neural Network in Matrix Notation

Given a sample {yi,xi}ni=1, the neural network predictions fn×1 = [f(x1), . . . , f(xn)]> can be
represented as a n × 1 vector in terms of its weight matrices. This matrix representation is math-
ematically convenient and provides important insight into how the data flow through the layers to
interact with different components of the model. Interestingly, under the ReLU activation function,
fn×1 can be written as a linear product of model weight matrices despite the fact that f(x) itself
is an nonlinear model. To keep the notation simple, in this section we will omit the bias term b0.
However we note that it can always be added back to the model by augmenting the feature matrix
Φn×K (defined below) with a column vector of 1’s.

We first consider the one-layer ReLU network f(x) = β>σ(W1x). For a single hidden unit, the
ReLU activation output is σ(W1,kx) = I(W1,kx > 0) ∗ W1,kx, and the ReLU output of the entire
K-unit hidden layer is aK×1 vector σ(W1x) = S1,xW1x, where S1,x is aK×K diagonal matrix
with indicator functions I(W1,kx > 0) on the diagonal. As a result, the one-layer ReLU network
evaluated at a single observation xi is:

f(xi) = β>S1,xiW1xi.

To express fn×1 = [f(x1), . . . , f(xn)]>, we define data matrix X, weight matrix W1 and activation
matrix S1 such that:

fn×1 = ΦWβ = (XW1S1)β, (1)
where we have defined ΦW ,n×K = XW1S1 the matrix of hidden features, and

X =

x1 0 . . . 0
0 x2 . . . 0
. . .
0 0 0 xn


n×nP

, W1 =W1 ⊗ In =

W1 0 . . . 0
0 W1 . . . 0
. . .
0 0 0 W1


nP×nK

, S1 =


S1,x1

S1,x2

...
. . .
S1,xn


nK×K

.

To express fn×1 for a deep ReLU network f(x) = β>(σWL . . . (σW1x)), we notice a L-layer
ReLU neural network evaluated at a single observation is expressed as:

f(x) = β>(

1∏
l=L

Sl,xWl) x

using the short-hand notation
∏1
l=LMl = MLML−1 . . .M2M1. Here Sl,x is a K × K diagonal

matrice with indicator functions I(Wl,kσWl−1 . . . σW1x > 0) on the diagonal. As a result:

fn×1 = ΦWβ =
(
X(

L∏
l=1

WlSl)
)
β, (2)

where ΦW,n×K = X(
∏L
l=1 WlSl) is the matrix of hidden features at the output layer, and we have

denoted Wl =Wl ⊗ In and {Sl}L−1
l=1 , SL as:

Sl =

Sl,x1
0 . . . 0

0 Sl,x2
. . . 0

. . .
0 0 0 Sl,xn


nK×nK

, SL =


SL,x1

SL,x2

...
. . .
SL,xn


nK×K

.

It is worth noting that the gradient function of a ReLU network ∂pfn×1 =

[ ∂
∂xp

f(x1), . . . , ∂
∂xp

f(xn)]> can also be expressed as a linear product of matrices. Specifi-

cially, since ReLU network is expressed as f = Φβ with Φ = X(
∏L
l=1 WlSl)β, its derivative can

be written as:

∂pfn×1 = (∂pΦ)β =
(
W1,pS1(

L∏
l=2

WlSl)
)
β

2



where W1,p is a n×nK matrix such that W1,p = In⊗W1,p. Correspondingly, the empirical norm
of the gradient function can be written as:

ψp(f) = || ∂
∂xp

f ||2n =
1

n
||∂pfn×1||22 =

1

n
β>(∂pΦ)>(∂pΦ)β,

which is of a quadratic form with respect to a K ×K “gradient kernel matrix” (∂pΦ)>(∂pΦ).

A.2 ReLU Network in the RKHS

It is important to notice that the function space F(L,K,B) corresponds to a reproducing kernel
Hilbert space (RKHS) [2, 3]. Specifically, notice that if we focus on the output layer, then every
f ∈ F(L,K,B) can be written as

f(x) = φW(x)>β =

K∑
k=1

βkφk(x|W),

where φk(x|W) =Wk,L

[
◦L−1
l=1 (σWl) ◦ x

]
are the K “basis functions” at the output layer that are

formed by the hidden neurons.

Consequently, F(L,K,B) corresponds to a RKHS H equipped with positive definite kernel
kW(x,x′) = φW(x)>φW(x′) =

∑K
k=1 φk(x|W)φk(x′|W), and the hidden weights W can be

regarded as the hyper-parameters for this RKHS kernel [3]. For two functions in this RKHS
f(x) = φW(x)>βf and g(x) = φW(x)>βg , the inner product inH is defined as:

〈f, g〉H = β>f βg,

i.e., we can interpret the output-layer weights β as a “representer” of f inH. It is important to verify
that the above definition of 〈., .〉H indeed gives rise to the reproducing property:

〈f, k(x, .)〉H = β>f φW(x) = f(x),

which can be seen easily by noticing that kW(x, .) = φW(x)>φW(.) is an element inH with its “β”
being φW(x). Finally, the quadratic norm in this space is defined by ||f ||2H =

∑K
k=1 β

2
f,w = ||βf ||22

[2].

To compute the kernel function kW and the corresponding kernel matrix KW for a ReLU network,
we recall that, for the single-layer ReLU network f(x) = βσ(W1x), the corresponding basis func-
tion is a K × 1 vector φW(x)K×1 = σ(W1x) = S1,xW1x. so we can write kW in terms of φW
as:

kW(x,x′) = φW(x)>φW(x′) = x>W>1 S1,x S1,x′W1x
′.

Similarly, kW for a L-layer ReLU network is:

kW(x,x′) = φW(x)>φW(x′) = x>(

1∏
l=L

Sl,xWl)
>(

1∏
l=L

Sl,x′Wl)x
′.

To express the kernel matrix KW,n×n, recall the matrix of basis functions ΦW,n×K =
[φW(x1), . . . , φW(xn)]> can be expressed compactly as ΦW = XW1S1 for a single-layer net-
work, and Φn×K = X(

∏L
l=1 WlSl) for a deep ReLU network. So the kernel matrices KW for a

single-layer and a deep ReLU network are, respectively:

KW = ΦΦ> = XW1S1S
>
1 W>

1 X>, KW = ΦΦ> = X(

L∏
l=1

WlSl)(

L∏
l=1

WlSl)
>X>.

A.3 Bayesian Learning of Deep ReLU Neural Network

It is well-known that for some common choices of Π(β), Π(f) corresponds to a (conditional) Gaus-
sian process (GP) [15]. Specifically, by placing independent and identically distributed (i.i.d.) Gaus-
sian prior N(0, 1

K ) on β and N(0, σ2
b0

) on b0, the neural network model f(.) = φW(.)>β is equal

3



in distribution to Gaussian process with kernel function kW(x,x′) = 1
KφW(x)>φW(x′)+σ2

b0
, i.e.,

Π(f |W) = GP (f |0, kW).

As a result, under the conditional Gaussian process (GP) representation, the prior distribution for f
can be written as:

Π(f,W) = Π(f |W)Π(W) = GP (f |0, kW)Π(W), (3)

The conditional GP representation in (3) is important for analyzing the asymptotic behavior of the
Bayesian neural network. It suggests that, if the behavior of the conditional posterior Πn(f |W)
does not change drastically under Πn(W), then the asymptotic behavior of Πn(f,W) is analogous
to that of a Gaussian process, whose theoretical properties are well-understood in the literature
[21, 7]. In Section D.1 - D.2, we take advantage of this representation to show an BvM phenomenon
(i.e. asymptotic normality) for the posterior distribution of variable importance for a wide range of
choices for Π(W).

B Proofs for Posterior Consistency

B.1 Proof for Theorem 1

Proof. Denote An = {f : ||f − f0||2n > Mnεn} and Bn = {f : |ψp(f)−Ψp(f0)| > Mnεn}, then
showing the statement in Theorem 1 is equivalent to showing Πn(Bn)→ 0.

Specifically, we assume below three facts hold:

Fact 1 |ψp(f)− ψp(f0)| ≤ || ∂∂xp f −
∂
∂xp

f0||2n

Fact 2 supp∈{1,...,P} || ∂∂xp f −
∂
∂xp

f0||2n ≤ C ∗ ||f − f0||2n for some constant C.

Fact 3 supp∈{1,...,P} |ψp(f0)−Ψp(f0)| . ||f − f0||2n.

Because if above facts hold, we then have

sup
p∈{1,...,P}

|ψp(f)−Ψp(f0)| ≤ sup
p∈{1,...,P}

|ψp(f)− ψp(f0)|+ sup
p∈{1,...,P}

|ψp(f0)−Ψp(f0)|

≤ sup
p∈{1,...,P}

|| ∂
∂xp

f − ∂

∂xp
f0||2n + sup

p∈{1,...,P}
|ψp(f0)−Ψp(f0)|

≤ C ∗ ||f − f0||2n + sup
p∈{1,...,P}

|ψp(f0)−Ψp(f0)|

. ||f − f0||2n,

it then follows that:

E0Πn

(
sup

p∈{1,...,P}
|ψp(f)−Ψp(f0)| ≥Mnεn

)
. E0Πn

(
||f − f0||2n ≥M ′nεn

)
→ 0.

We now show Facts 1-3 are true:

• Fact 1 follows simply from the triangular inequality:

|ψp(f)− ψp(f0)| =
∣∣∣|| ∂
∂xp

f ||2n − ||
∂

∂xp
f0||2n

∣∣∣
= max

{
|| ∂
∂xp

f ||2n − ||
∂

∂xp
f0||2n, ||

∂

∂xp
f0||2n − ||

∂

∂xp
f ||2n

}
≤ || ∂

∂xp
f0 −

∂

∂xp
f ||2n.

• Fact 2. First establish some notation. Given data {xi, yi}ni=1, denote f and f0 the n×1 vectors with
their elements being f(xi), f0(xi), respectively. We then have ||f−f0||2n = 1

n ||f−f0||22 where ||.||2
is the matrix 2-norm. Furthermore, since f, f0 ∈ F(L,W,B), there exists sets of weight matrices
{Wl,Sl}Ll=1, {W0,l,S0,l}Ll=1 and output weights β,β0 such that f = XW1S1(

∏L
l=2 WlSl)β
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and f0 = XW0,1S0,1(
∏L
l=2 W0,lS0,l)β0. To keep the notation simple, we write for f its the input

weights as W, and the product of weight matrices after the input layer as D = S1(
∏L
l=2 WlSl)β,

such that f and f0 can be written as:
f = XWD, f0 = XW0D0

where recall X is a n × nP block diagonal matrix with 1 × P vectors xi’s on the diagonal. Fur-
thermore, by the definition of gradient functions for ReLU network, we can write the n× 1 vectors
of gradient functions as:

∂pf = WpD, ∂pf0 = W0,pD0,

where Wp = In ⊗ wp,W0,p = In ⊗ w0,p are n × nK block diagonal matrices. Notice that
|| ∂∂xp f −

∂
∂xp

f0||2n = 1
n ||∂pf − ∂pf0||

2
2, also define define X = X>X + cI for a small positive

constant c.

Consequently:

sup
p∈{1,...,P}

|| ∂
∂xp

f − ∂

∂xp
f0||2n ≤

P∑
p=1

|| ∂
∂xp

f − ∂

∂xp
f0||2n

=
1

n

P∑
p=1

||WpD−W0,pD0||22 =
1

n
||WD−W0D0||22.

Also notice that:
||WD−W0D0||2 = ||X−1X(WD−W0D0)||2 = ||X−1(X>X + cI)(WD−W0D0)||2

= ||X−1(X>X)(WD−W0D0) + X−1(cI)(WD−W0D0)||2
≤ ||X−1(X>X)(WD−W0D0)||2 + ||X−1(cI)(WD−W0D0)||2, (4)

where in the second term of the above expression, we have X−1(cI) = c∗ (X>X+ cI)−1 ≺ I, this
is because the eigenvalues of c ∗ (X>X + cI)−1 are always smaller than 1. As a result, it is always
true that ||X−1(cI)(WD −W0D0)||2 < ||WD −W0D0||2. Therefore there exists a positive
constant ρc < 1 that upper bounds ||X−1(cI)||2, such that

||X−1(cI)(WD−W0D0)||2 = ρc ∗ ||WD−W0D0||2.
Plugging the above expression into (4), move the second term on the right-hand side to the left,
square both sides and finally multiply both sides by 1

n , we have:
1

n
(1− ρc)2||WD−W0D0||22 ≤

1

n
||X−1X>X(WD−W0D0)||22

≤ 1

n
||X−1X>||22 ||X(WD−W0D0)||22

=
1

n
||(X>X + cI)−1X>||22 ||X(WD−W0D0)||22

= ||(X>X + cI)−1X>||22 ||f − f0||2n. (5)

Notice that in (5), the matrix inside the first term ||(X>X + cI)−1X>||22 is the ”projection matrix”
for the coefficient of a Ridge regression estimator (i.e., β̂ = (X>X + cI)−1X>y), and the 2-norm
of this term is upper bounded by its largest singular value, i.e.,

||(X>X + cI)−1X>||2 ≤ max
λ>0

(
λ

λ2 + c
) ≤ 1

2
√
c
,

where the last inequality is obtained by noting that λ =
√
c is the solution to the above maximiza-

tion problem. Using this fact, we can write (5) as:
1

n
||WD−W0D0||22 ≤

1

4c(1− ρc)2
||f − f0||n.

Denoting C = 1
4c(1−ρc)2 and noting that it is a constant, we have shown that

sup
p∈{1,...,P}

|| ∂
∂xp

f − ∂

∂xp
f0||2n ≤

1

n
||WD−W0D0||22 ≤ C ∗ ||f − f0||2n,

which is the statement of Fact 2.
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• Fact 3 follows from standard Bernstein-type concentration inequality (see, e.g. Lemma 18
of [18]). Specifically, for | ∂∂xp f0(x)|2 a random variable with respect to probability measure

P (x) that is bounded by L. Given n i.i.d. samples {| ∂∂xp f0(xi)|2}ni=1, recall that ψ̂(f0) =
1
n

∑n
i=1 |

∂
∂xp

f0(xi)|2 and ψ(f0) = E( ∂
∂xp

f0), then with probability 1− η:

|ψ̂(f0)− ψ(f0)| ≤ n− 1
2 ∗
(
2
√

2 ∗ L ∗ log(2/η)
)
,

that is, |ψ̂(f0) − ψ(f0)| → 0 at rate of O(n−
1
2 ). Notice that O(n−

1
2 ) is the optimal parametric

rate that cannot be surpassed by the convergence speed of the ReLU networks (recall the typical
convergence rate is εn � n−

β
2β+δ ∗ log(n)γ for some δ > 0 and γ > 1). Therefore we have:

sup
p∈{1,...,P}

|ψp(f0)−Ψp(f0)| . ||f − f0||2n.

C Proofs for BvM Phenomenon

C.1 Background: Semi-parametric BvM Theorem for Smooth Functionals

In this section, we provide background on a general semi-parametric BvM theorem for smooth
nonlinear functionals [8]. In nonparametric regression, the regression function f ∈ F is infinite-
dimensional and the asymptotic distribution of f in this case is in general difficult to characterize
[10]. However, in practical applications, we are mostly interested in a finite-dimensional parameter
ψ : F → Rd whose asymptotic distribution is easier to reason with. For example, a cumulative
distribution function at a fixed point F (x0) =

∫
I(x < x0)f(x)dx [17].

To this end, a series of work by [4, 17, 8] provided general sufficient conditions for BvM theorem for
smooth functionals under general models. These results show that, if the functional of interest ψ and
the model log likelihood ln both satisfy certain smoothness conditions, then the marginal posterior
of ψ(f) concentrates at the rate O(n−1/2), and furthermore, the marginal posterior distribution of√
n(ψ(f)− ψ̂) converges weakly to a N(0, V0) under the data-generation distribution P0, where ψ̂

is an efficient estimator of ψ(f0). Such properties have the implication that it allow the construction
of credible regions for which have correct asymptotic frequentist coverage [7].

The main conditions for BvM theorem for smooth functionals are as below:

1. Locally Asymptotic Normal (LAN) Expansion of Likelihood Function ln(f):

ln(f)− ln(f0) = −n
2
||f − f0||2n +

√
nWn(f − f0). (6)

2. Smoothness Expansion of Functional ψ(f):

ψ(f)− ψ(f0) = 〈ψ1, f − f0〉n +
1

2
〈ψ2(f − f0), f − f0〉n + op(

√
n). (7)

3. Relation between ln(f) and ψ(f):
For a posterior distribution Πn(f) = Π(f |{yi,xi}ni=1) that concentrates around f0 at rate εn, i.e.
Πn(f : ||f − f0||n ≤ εn) = 1 + op(1), define An as the sequence of sets that receive majority of
probability mass from Πn, i.e.

Πn(An) = Πn(f ∈ An : ||f − f0||n ≤ εn) = 1 + op(1).

Assume there exists wn ∈ F such that Wn adopts a decomposition

Wn(f) = 〈wn, f〉n + ∆n(f),

where wn is the ”representor” of Wn such that 〈wn, f〉n retains majority of information from
Wn(f), and ∆n(f) is the corresponding residual term. It is required that both of these terms are
sufficiently regular in the sense that they satisfy below two conditions:

〈wn, ψ2(ψ1)〉n + εn||wn||n = op(
√
n), (8)

sup
f∈An

|∆n(ψ2(f − f0))| = op(1). (9)
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Then under some mild additional conditions, BvM is valid in below sense:
Theorem C.1 (Semiparametric BvM Theorem). Let Wn, wn and ψ, ψ1, ψ2 as defined above. Fur-
thermore, denote

ft = f − t√
n

(
ψ1 +

1

2
ψ2(f − f0)

)
− t

2n
ψ2(wn)

and

ψ̂ = ψ(f0) +
Wn(ψ1)√

n
+

1

2

〈wn, ψ2(wn)〉n
n

, V0,n =
∣∣∣∣∣∣ψ1 −

1

2

ψ2(wn)√
n

∣∣∣∣∣∣2
n

Then the moment generating function (MGF) of
√
n(ψ(f) − ψ̂) under posterior distribution Πn

evaluated at the set An such that Πn(An) = 1 can be written as:

En(et
√
n(ψ(f)−ψ̂)|An) = eop(1)+t2V0,n/2 ∗ In, where In =

∫
An

eln(ft)−ln(f0)dΠ(f |W)∫
An

eln(f)−ln(f0)dΠ(f |W)

Moreover, if V0,n = ||ψ1||2n+op(1) and In = op(1), then the posterior distribution
√
n(ψ(f)− ψ̂p)

is asymptotically normal with mean zero and variance ||ψ1||2n, i.e.

Πn

(√
n(ψ(f)− ψ̂p)

)
 N(0, ||ψ1||2n) (10)

Proof. [8], Theorem 2.1.

Although the original theorem is stated under the scalar case, the generalization to multivariate case
is possible, i.e., one need to generalize V0 to the corresponding matrix form following the definitition
of ψ1 [8].

C.2 Preliminary I: Notations and Basic Setup

In this section, we set up the basic notations for showing semi-parametric BvM theorem for a gen-
eral smooth functional ψp(f) in a nonparametric regression model. We will first verify the model
likelihood ln(f) = − 1

2

∑n
i=1(yi−f(xi))

2 and the functional ψ(f) = 〈Hp(f), f〉n satisfy the three
conditions for Theorem C.1, and by doing so, identify the expression for the technical terms Wn,
wn, ψ1, ψ2 that are relevant for deriving the asymptotic distribution of

√
n(ψ(f)− ψ̂).

First verify the LAN condition (6) for model likelihood ln(f) and derive expression for Wn. Un-
der independent Gaussian assumption, the likelihood for nonparametric regression adopts the LAN
expansion:

ln(f)− ln(f0) = −n
2
||f − f0||2n +

√
nWn(f − f0)

where ||f − f0||2n = 1
n

∑n
i=1(f(xi)− f0(xi))

2, and Wn is:

Wn(f) = 〈
√
nε, f〉n =

1

n

n∑
i=1

√
nεi ∗ f(xi) (11)

Now verify the rest of the two conditions, we consider two cases: the univariate case where ψp(f) =

|| ∂∂xp f ||
2
n, to be used by the univariate BvM Theorem 2, and the multivariate case ψ(f)P×1 =

[|| ∂∂x1
f ||2n, . . . , || ∂

∂xP
f ||2n]>, to be used by the multivariate BvM Theorem 3..

Univariate Case

Now verify (7) the smoothness condition for functional of interest ψc(f) and derive expressions for
ψ1, ψ2. The centered quadratic norm of gradient ψcp(f) = 〈Hp(f), f〉n−E(〈Hp ω, ω〉n) adopts the
smoothness expansion:

ψcp(f)− ψcp(f0) = 〈ψ1, f − f0〉n +
1

2
〈ψ2(f − f0), f − f0〉n + op(

√
n),

7



in which ψ1, ψ2 take the form:

ψ1 = 2Hp(f0), ψ2(f) = 2Hp(f),

where Hp = D>p Dp for Dp : f → ∂
∂xp

f the differentiation operator and D>p the adjoint of Dp.

Given data {xi, yi}ni=1, recall the definition of Φ, ∂pΦ (Section A) and denote Φ+
K×n the gen-

eralized inverse of Φ, the operator Dp can be evaluated in matrix form as Dp = ∂pΦΦ+, and
Dp(f) can be evaluated as Dpf = (∂pΦΦ+)Φβ = ∂pΦβ for f ∈ F(L,K,B). Correspond-
ingly, the operator Hp adopts matrix reprentation Hp = D>p Dp = (Φ+)>∂pΦ

>∂pΦΦ+, such that
〈Hp(f), f〉 = (HpΦβ)>Φβ = (∂pΦβ)>(∂pΦβ).

Finally, for the decompositionWn(f) = 〈ω, f〉n+∆n(f), we will define ω = PF (ε) the projection
of ε to F , and ∆n(f) = 〈P⊥F (ε), f〉. Given observations {xi, yi}ni=1, the projection operator P⊥F
can be evaluated by computing the projection matrix PF = UU> and P⊥F = I − UU> for
Φn×K = Un×KDK×KV>K×K . By noticing that PF is a rank K matrix, it is then easy to see that
the two conditions (8) and (9) are satisfied since ||ω||n = O(K) . O(

√
n) and P⊥F (ε) is orthogonal

to ψ2(f − f0) ∈ FW .

As an aside, we note that due to the existence of the bias term at the output layer, the actual feature
matrix is Φ1 = [1,Φ]. However, this does not impact the expression of Dp or Hp, since Dp =

∂pΦ1Φ
+
1 = [0, ∂pΦ][(1+)>, (Φ+)>]> = ∂pΦΦ+ where 1+

n×1 is a vector that is orthogonal to
1n×1 and Φ+

n×K .

Multivariate Case

Now we consider the multivariate case for ψ(f) = [|| ∂∂x1
f ||2n, . . . , || ∂

∂xP
f ||2n]> by changing ψ1 and

ψ2 to their multivariate counterparts. Specifically, define the operator H:

H(f) = [H1(f), . . . ,HP (f)]>,

where Hp = D>p Dp for Dp : f → ∂
∂xp

f , so that the functional of interest ψc(f) can still be
expressed as ψc(f) = 〈H(f), f〉n − E

(
〈H(ω), ω〉n

)
.

Now verify (7) the smoothness condition for functional of interest ψ(f) and derive expressions for
ψ1, ψ2. The centered quadratic norm of gradient ψc(f) adopts the smoothness expansion:

ψ(f)− ψ(f0) = 〈ψ1, f − f0〉n +
1

2
〈ψ2(f − f0), f − f0〉n + op(

√
n)

in which ψ1 and ψ2 are two P × 1 vectors that take the form:

ψ1 = 2H(f0), ψ2(f) = 2H(f)

Given data {xi, yi}ni=1, recall that the operator Dp can be evaluated in matrix form as
Dp = ∂pΦΦ+ and Hp can be evaluated as Hp = D>p Dp = Φ+>∂pΦ

>∂pΦΦ+. Cor-
respondingly, H(f) adopts matrix reprentation Hfn×P = [(H1f)n×1, . . . , (HP f)n×1] =

[Φ+>∂1Φ
>∂1Φβ, . . . ,Φ+>∂PΦ>∂PΦβ], such that 〈Hp(f), f〉n is evaluated as ψP×1 =

(Hfn×P )>fn×1 =
[
||∂1Φβ||22, . . . , ||∂PΦβ||22

]>
.

C.3 Preliminary II: Proof Strategy and Preliminary Theorems

Recall that under a deep ReLU neural network, the prior distribution adopts a conditional Gaussian
process representation (Section A.3):

Π(f,W) = Π(f |W)Π(W) = GP (f |0, kW)Π(W).

This decomposition suggests that a neural network model can be treated as a Gaussian process with
an adaptive kernel function kW , whose hyperparametersW follows a prior distribution Π(W).

Consequently, we use a two-step strategy to show BvM phenomenon for ReLU network:
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• Step 1, fix hidden weightW and show BvM phenonmenon hold forGP (f |0, kW). This essentially
corresponding to performing Bayesian inference for a randomized neural network whose hidden
weights are sampled a priori from certain fixed distribution [16]. Then

• Step 2, we show that such BvM phenonmenon for Πn(f |W) still holds under the posterior distri-
bution of hidden weightsW ∼ Πn(W).

Theorem C.2 establishes Step 1. Notice that in the fixed-W case, f ∈ F follows an exact GP with
effective model dimension K (i.e. the rank of the kernel matrix), for whom the BvM phenonmenon
are known to hold under suitable regularity conditions [6, 7]. Therefore it is expected that BvM to
hold for randomized neural network f ∈ FW , provided K does not grow too fast with respect to
n (i.e. Assumption 1) and the functional ψp(f) is sufficiently smooth (i.e. satisfying (7)), which is
true for ψp(f) = || ∂∂xp f ||

2
n:

Theorem C.2 (Bernstein-von Mises (BvM) for ψcp, Fixed Hidden Weights). For f ∈
FW(L,W, S,B) a deep ReLU network with hidden weight fixed to W , denoting f0,W the pro-
jection of f0 to FW , and assume the posterior distribution Πn(f |W) contracts around f0,W at rate
εn. Denote DW,p : f → ∂

∂xp
f the differentiation operator in FW , and HW,p = D>W,pDW,p the

corresponding self-adjoint operator. For ωW = ProjFW (ε) the projection of ε to FW , define:

ψ̂W,p = ||DW,p(f0 + ωW)||2n = ψW,p(f0,W) + 2〈HW,pf0,W , ωW〉n + 〈HW,pωW , ωW〉n, (12)

Define ψ̂cW,p = ψ̂W,p − η̂W,n where η̂W,n = tr
(
ĤW,p)/n. Then ψ̂cW,p is an unbiased estimator of

ψW,p(f0), and the posterior distribution for ψcW,p(f) is asymptotically normal surrounding ψ̂cW,p,
i.e.

Π
(√

n(ψcW,p(f)− ψ̂cW,p)
∣∣∣{xi, yi}ni=1,W

)
 N(0, 4||HW,pf0,W ||2n), (13)

The proof is delayed to Section D.1. It should be stressed that both operators DW,p and HW,p are
defined strictly with respect to FW , such that given data, the operator DW,p is estimated in matrix
form as D̂W,p = ∂pΦWΦ+

W , and HW,p is evaluated as ĤW,p = (Φ+
W)>∂pΦ

>
W∂pΦWΦ+

W . In
comparison, the original Dp and Hp defined Section C.2 are with respect to the optimal solution
f0 ∈ F .

C.4 Proof for Theorem 2

We now prove Theorem 2, which establishes Step 2 of the proof strategy outlined in Section C.3.

Our goal is to show that the BvM phenomenon in Theorem C.2 still holds under the adaptive case
(i.e. W is not fixed but follows the posterior distribution Πn(W)), and furthermore, the whole
posterior distribution of

√
n(ψcp(f) − ψ̂cp(f)) converges to N(0, 4||Hpf0||2n) where Hp is defined

with respect to the optimal solution f0 ∈ F .

Proof. Our goal is to show:

Π
(√

n(ψcp(f)− ψ̂cp)
∣∣∣{xi, yi}ni=1

)
 N(0, 4||Hpf0||2n).

First notice that by Theorem C.2, the asymptotic distribution of the marginal posterior distribution
can be represented as a mixture of Gaussian:

Πn

(√
n(ψcp(f)− ψ̂cp) ≤ z

)
=

∫
W

Πn

(√
n(ψcp(f)− ψ̂cp) ≤ z|W

)
dΠn(W)

=

∫
W

Πn

(√
n(ψcp(f)− ψ̂cW,p) ≤ z +

√
n(ψ̂cp − ψ̂cW,p)|W

)
dΠn(W)

=

∫
W

Φ
((
z +
√
n(ψ̂cp − ψ̂cW,p)

)
/
√
VW,0

∣∣W)dΠn(W) (14)
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where the last line follows from Theorem C.2, where VW,0 = 4||HW,pfW,0||2n and Φ is the standard
Gaussian cumulative distribution function (CDF).

Clearly, for BvM to hold in the case of (17), it is sufficient to show below two conditions [8]:

|VW,0 − V0| = op(1),
√
n|ψ̂cp − ψ̂cW,p| = op(1). (15)

The first condition follows from the continuous mapping theorem for V (Hpf0) = 2||Hpf0||2n, along
with the fact that :

||HW,pfW,0 −Hpf0||n ≤ ||(HW,p −Hp)f0||n + ||HW,p(fW,0 − f0)||n
= O(||HW,p −Hp||n) +O(||fW,0 − f0||n),

= O(
1√
n
||HW,p −Hp||F ) + op(1)

= O(
K√
n

) + op(1) = op(1),

where the first equality follows from the boundedness of ‖f0‖∞ and ‖HW,p‖∞ (by assumption in
main article and also Proposition 3), the second equality follows from the definition of ||.||n for
matrix and the fact about posterior concentration of ||f − f0||2n in the statement of Theorem 2. The
last line follows since ||Hp||F = O(K) by Proposition 3 and the assumption that K = op(

√
n)

(Assumption 1 in the main article).

The second condition in (15) is the important no-bias condition which ensures that under W ∼
Πn(W), all the conditional posterior ψcp|W converges toward the same target ψ̂cp [8, 19]. Recall
that ψ̂cp = ψp(f0) + 2〈Hpf0, ω〉n + 〈Hpω, ω〉n −E(〈Hpω, ω〉n), then the second condition can be
written as:

√
n|ψ̂cp − ψ̂cW,p| ≤

√
n|ψp(f0)− ψW,p(fW,0)|+ 2

√
n|〈Hpf0, ω〉n − 〈HW,pfW,0, ωW〉n|+

√
n|〈HW,pωW , ωW〉n − 〈Hpω, ω〉n|+

√
n|E(〈HW,pωW , ωW〉n)− E(〈Hpω, ω〉n)|,

(16)

where all four terms are op(1) since they are all Op(K/
√
n) and the model dimension K is by

assumption not too large (i.e. K = o(n1/2)). We delay the detailed arguments to the end of the
proof.

Consequently, since both conditions in (15) are satisfied, the expression in (17) converge uniquely
to a normal distribution under the posterior distribution Πn(W), i.e.,

Πn

(√
n(ψcp(f)− ψ̂cp) ≤ z

)
=

∫
W

Φ
((
z +
√
n(ψ̂cp − ψ̂cW,p)

)
/
√
VW,0

∣∣W)dΠn(W)

=

∫
W

Φ
((
z + op(1)

)
/
√
V0 + op(1)

∣∣W)dΠn(W)

= Φ
(
z/
√
V0

)
, where V0 = 4||H0f0||2n (17)

which implies the statement of interest:

Π
(√

n(ψcp(f)− ψ̂cp)
∣∣∣{xi, yi}ni=1

)
 N(0, 4||Hpf0||2n).

We are only left to show that all four terms in the expression (16) are op(1). Specifically, recall that
Hp = D>p Dp such that 〈Hpa, b〉n = 〈Dpa,Dpb〉n for any a, b ∈ F , then:

10



• First Term: Recall ψp(f0) = 〈Hpf0, f0〉n = ||Dpf0||2n, then the first term can be expressed as:
√
n|ψp(f0)− ψW,p(fW,0)| =

√
n
∣∣∣||Dpf0||2n − ||DW,pfW,0||2n

∣∣∣
≤
√
n
(
||Dp||2n||f0||2n + ||DW,p||2n||fW,0||2n

)
=
√
n
(
Op(||Dp||2n) +Op(||DW,p||2n)

)
=

1√
n

(
Op(||Dp||2F ) +Op(||DW,p||2F )

)
= O(

K√
n

) = op(1)

where on the third line, the first equality follows since f0 and fW,0 are both bounded, the second
equality follows by the definition of the matrix Euclidean norm ||M||2n = 1

n

∑
i,j M2

i,j = 1
n ||M||

2
F .

On the last line, the first eqality follows by ||DW,p||2F = tr(HW,p) = O(K) due to Proposition 3,
and the second equality follows by Assumption K = op(n

1/2).

• Second Term: Similarly, the second term can be expressed as:
√
n|〈Hpf0, ω〉n − 〈HW,pfW,0, ωW〉n| =

√
n
∣∣〈Dpf0, Dpω〉n − 〈DW,pfW,0, DW,pωW〉n

∣∣
≤
√
n
(
||Dp||2n||f0||n||ω||n + ||DW,p||2n||fW,0||n||ωW ||n

)
=
√
n
(
Op(||Dp||2n) +Op(||DW,p||2n)

)
= Op(

K√
n

) = op(1)

where the equality on the third line follows from the fact that f0,W is bounded and ω = ProjF (ε)
is a random variable with bounded variance. The rest of the equalities follow similarly as those in
the First term.

• Third and Fourth Terms are similar to the first term except for f0 is replaced by ω. As a result:
√
n|〈HW,pωW , ωW〉n − 〈Hpω, ω〉n| =

√
n
∣∣∣||DW,pωW ||2n − ||Dpω||2n

∣∣∣
=
√
n
(
Op(||Dp||2n) +Op(||DW,p||2n)

)
= Op(

K√
n

) = op(1)

√
n|E(〈HW,pωW , ωW〉n)− E(〈Hpω, ω〉n)| =

√
nOp

(
|〈HW,pωW , ωW〉n − 〈Hpω, ω〉n|

)
= Op(

K√
n

) = op(1)

C.5 Proof for Theorem 3

To prepare for the multivariate BvM theorem (Theorem 3), below theorem extends Theorem C.2 to
the multivariate case for ψ(f) = [|| ∂∂x1

f ||2n, . . . , || ∂∂xp f ||
2
n]>.

Theorem C.3 (Multivariate BvM for ψc, Fixed Hidden Weights). For f ∈ FW(L,W,S,B), as-
suming the posterior distribution Πn(f) contracts around f0,W at rate εn. For ωW = ProjFW (ε),
denote ψ̂cW = [ψ̂cW,1, . . . , ψ̂

c
W,P ] for ψ̂cW,p as defined in Theorem C.2.

Then ψ̂cW is an unbiased and efficient estimator of ψW(f0), and the posterior distribution for ψcW(f)

asymptotically converge toward a multivariate normal distribution surrounding ψ̂cW , i.e.

Π
(√

n(ψcW(f)− ψ̂cW)
∣∣∣{xi, yi}ni=1

)
 MVN(0, V0,W), (18)

where V0,W is a P × P matrix such that (V0,W)p1,p2 = 4〈HW,p1f0,W , HW,p2f0,W〉n.
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The proof is in Section D.2. We are now ready to prove Theorem 3.

Proof. Our goal is to show:

Π
(√

n(ψc(f)− ψ̂c)
∣∣∣{xi, yi}ni=1

)
 N(0, V0). (19)

We show the convergence of above multivariate normal distribution by invoking the Cramér-Wold
theorem [5], i.e. we show that for all t ∈ RP :

Π
(√

n (t>ψc(f)− t>ψ̂c)
∣∣∣{xi, yi}ni=1

)
 N(0, t>V0t).

Similar to the scalar case, the asymptotic distribution of the marginal posterior distribution can be
represented as a mixture of Gaussian:

Πn

(√
n(t>ψc(f)− t>ψ̂c) ≤ z

)
=

∫
W

Πn

(
t>
√
n(ψc(f)− t>ψ̂cp) ≤ z|W

)
dΠn(W)

=

∫
W

Πn

(√
n(t>ψc(f)− t>ψ̂cW,p) ≤ z +

√
n(t>ψ̂cp − t>ψ̂cW,p)|W

)
dΠn(W)

=

∫
W

Φ
((
z +
√
n(t>ψ̂cp − t>ψ̂cW,p)

)
/
√
t>VW,0t

∣∣W)dΠn(W) + op(1)

(20)

where the last line follows from Theorem C.3, where (V0,W)p1,p2 = 4〈HW,p1f0,W , HW,p2f0,W〉n
and Φ is the standard Gaussian CDF.

Therefore it is sufficient to show below two conditions [8]:

t>(VW,0 − V0)t = op(1),
√
n|t>ψ̂c − t>ψ̂cW | = op(1). (21)

However, both conditions follows from the coordinate-wise convergence
√
n|ψ̂cp − ψ̂cW,p| = op(1)

and ||HW,pfW,0 −Hpf0||n = op(1), which were established in the proof for Theorem 2.

Consequently, the expression in (20) converge uniquely to a normal distribution under the posterior
distribution Πn(W), i.e.,

Πn

(√
n(t>ψc(f)− t>ψ̂c) ≤ z

)
=

∫
W

Φ
((
z +
√
n(t>ψ̂cp − t>ψ̂cW,p)

)
/
√
t>VW,0t

∣∣W)dΠn(W) + op(1)

=

∫
W

Φ
((
z + op(1)

)
/
√
t>V0t+ op(1)

∣∣W)dΠn(W) + op(1)

= Φ
(
z/
√
t>V0t

)
+ op(1), where (V0)p1,p2 = 4〈Hp1f0, Hp2f0〉n

which implies the statement of interest in (19).
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D Additional Proofs

D.1 Proof for Theorem C.2

Proof. Our goal is to show asymptotic normality

Πn

(√
n(ψcW,p(f)− ψ̂cW,p)|W

)
 N(0, ||ψ1||2n).

First derive the expressions for ft, ψ̂W,p, V0,n and In. The expression for ft is:

ft = f − t√
n

(
ψ1 +

1

2
ψ2(f − f0,W)

)
− t

2n
ψ2(ωW)

=
(
I − t√

n
∗Hp

)
(f)− t√

n
∗Hp

(
f0,W + ωW

)
. (22)

where I : f → f is the identity operator. The expressions for ψ̂W,p and V0,n are (recall ωW =
ProjFW (ε)):

ψ̂W,p = ψW,p(f0,W) +
Wn(ψ1)√

n
+

1

2

〈ωW , ψ2(ωW)〉n
n

= ψW,p(f0,W) + 2〈HW,pf0,W , ωW〉n + 〈HW,pωW , ωW〉n,

V0,n =
∣∣∣∣∣∣ψ1 −

1

2

ψ2(ωW)√
n

∣∣∣∣∣∣2
n

= 4 ∗
∣∣∣∣∣∣HW,pf0,W + op(1)

∣∣∣∣∣∣2
n
,

and the expression for In is:

In =

∫
An

eln(ft)−ln(f0,W)dΠ(f |W)∫
An

eln(f)−ln(f0,W)dΠ(f |W)
.

It then follows from the Theorem C.1 that

En(et
√
n(ψcW,p(f)−ψ̂cW,p)|An,W) = eop(1)+t2V0,n/2 ∗ In. (23)

Therefore to show asymptotic normality Πn

(√
n(ψcW,p(f)− ψ̂cW,p)|W

)
 N(0, ||ψ1||2n), we only

need to show In → 1 for some suitable choice of An so that En(et
√
n(ψcW,p(f)−ψ̂cW,p)|An,W) →

et
2V0/2. To this end, we consider the standard choice An =

{
f
∣∣∣||f − f0,W ||2n ≤ Mnεn

}
for some

sufficiently large Mn →∞ and εn the given rate of posterior convergence.

To analyze the asymptotic behavior of In, analogous to the Theorem 3.1 of [8], we consider the
asymptotically equivalent term I ′n:

I ′n =

∫
f∈An e

ln(ft)−ln(f0,W)dΠ(f |W)∫
eln(f)−ln(f0,W)dΠ(f |W)

where the denominator
∫
An

in In is replaced by
∫

(i.e., integration over the entire space). I ′n is
asymptotically equivalent to In since Πn(An) = 1 + op(1).

Notice that I ′n can be written as:

I ′n = Jn ∗ Kn =

∫
eln(ft)−ln(f0,W)dΠ(f |W)∫
eln(f)−ln(f0,W)dΠ(f |W)

∗
∫
f∈An e

ln(ft)−ln(f0,W)dΠ(f |W)∫
eln(ft)−ln(f0,W)dΠ(f |W)

where we have denoted:

Jn =

∫
eln(ft)−ln(f0,W)dΠ(f |W)∫
eln(f)−ln(f0,W)dΠ(f |W)

, Kn =

∫
f∈An e

ln(ft)−ln(f0,W)dΠ(f |W)∫
eln(ft)−ln(f0,W)dΠ(f |W)

. (24)

Therefore in order to show In → 1, it is sufficient to show Jn → 1 and Kn → 1.

We showJn → 1 by first performing change of variables f → ft on the numerator, and then analyze
the asymptotic behavior of the resulting expression. To this end, notice that the conditional prior

13



Π(f |W) is a Gaussian process prior with kernel function kW(x,x′) =
∑K
k=1 φk(x|W)φk(x′|W)+

σ2
b0

, and correspondingly, the kernel matrix evaluated at {xi, yi}ni=1 is KW = ΦWΦ>W + σ2
b0

I

for Φn×K = X(
∏L
l=1 WlSl) (see Section A.1). Therefore given observations {yi,xi}ni=1, the

conditional prior distribution for f = [f(x1), . . . , f(xn)]> ∈ Rn is a multivariate Gaussian with
covariance matrix KW :

dΠ(f|W) ∝ |KW |−
1
2 e−

1
2 f
>K−1
W f

where |KW |, K−1
W are the determinant and inverse of KW , respectively. To perform change of

variable, we denote ft ∈ Rn as ft in (22) evaluated at {yi,xi}ni=1, we can write ft = Bt,nf − t√
n
an

such that

dΠ(ft|W) ∝ |Kn,W |−
1
2 e
− 1

2 (f+ t√
n
an)>K−1

n,W(f+ t√
n
an)

= dΠ(f |W) ∗ exp
[
− 1

2
log
( |Kn,W |
|KW |

)
− 1

2
f>
(
K−1
n,W −K−1

W
)
f +

t√
n

a>nK−1
n,W f − t2

2n
a>nK−1

n,Wa>n

]
where

Kn,W = Bt,nKWBt,n = KW −
t√
n

[
KWHp + HpKWBt,n

]
= KW −

t√
n
dKW ,

where Bt,n = I − t√
n
Hp, an = Hp

(
f0,W + ωW

)
, and we have denoted dKW = KWHp +

HpKWBt,n.

Consequently, the expression of Jn after the change of variable becomes:

Jn =

∫
eln(ft)−ln(f0,W) ∗ e−Lt,n dΠ(ft|W)∫

eln(f)−ln(f0,W)dΠ(f |W)
,

where

Lt,n =
1

2
log
( |Kn,W |
|KW |

)
+

1

2
f>
(
K−1
n,W −K−1

W
)
f − t√

n
a>nK−1

n,W f +
t2

2n
a>nK−1

n,Wa>n . (25)

Therefore in order to show Jn → 1, it is sufficient to show that all terms in Lt,n = op(1) are
asymptotically vanishing toward zero as n→∞. We defer the detailed arguments to the end of this
proof. If this is true, then it holds that Lt,n = op(1) and

Jn =

∫
eln(ft)−ln(f0,W)+op(1) dΠ(ft|W)∫

eln(f)−ln(f0,W)dΠ(f |W)
→ 1. (26)

We show Kn → 1 by noticing that Lt,n = op(1) implies:

Kn =

∫
f∈An e

ln(ft)−ln(f0,W) dΠ(f |W)∫
eln(ft)−ln(f0,W)dΠ(f |W)

=

∫
f∈An e

ln(ft)−ln(f0,W)+op(1) dΠ(ft|W)∫
eln(ft)−ln(f0,W)+op(1)dΠ(ft|W)

Notice that in the above expression, the event f ∈ An is equivalent to ft ∈ An,t for:

An,t =
{
ft

∣∣∣||f − f0||2n ≤Mnεn

}
=
{
ft

∣∣∣||f − f0||2n ≤Mnεn, ||ft − f0||2n ≤ ||ft − f ||2n + ||f − f0||2n
}

⊇
{
ft

∣∣∣||ft − f0||2n ≤ ||ft − f ||2n +Mnεn

}
=
{
ft

∣∣∣||ft − f0||2n ≤ O(n−1) +Mnεn

}
=
{
ft

∣∣∣||ft − f0||2n ≤M ′nεn
}

= A′n

where on the fourth line, the equality follows since ||ft−f ||2n = 1
n ||ft−f ||22 = t√

n
||Hpf+an||22/n ≤

t√
n

(||Hp||22||f ||22/n+ ||an||22/n) = O(n−
1
2 ) since ||Hp||22 = Op(1) by Proposition 3, and the facts

14



that ||f ||22/n = Op(1) and ||an||22/n = ||Hp(f0,W + ωW)||2/n = Op(1) due to boundedness of f ,
f0 and the fact that ωW is a random variable with finite variance. Also, on the last line, the equality
follows since n−1 . εn, i.e. the learning rate εn is expected to be slower than O(n−1). As a result,
we see that since the set A′n =

{
f
∣∣∣||f − f0||n ≤ M ′nεn

}
is of the same form as An, we have that

Πn(A′n)→ 1 + op(1) due to the posterior convergence of f to f0. Consequently:

Kn =

∫
ft∈An,t e

ln(ft)−ln(f0,W)+op(1) dΠ(ft|W)∫
eln(ft)−ln(f0,W)+op(1)dΠ(ft|W)

≥

∫
ft∈A′n

eln(ft)−ln(f0,W)+op(1) dΠ(ft|W)∫
eln(ft)−ln(f0,W)+op(1)dΠ(ft|W)

→ 1

(27)

Finally, since we have shown both Jn → 1 and Kn → 1, it then follows by Theorem C.1 that the
posterior distribution of

√
n(ψcW,p(f) − ψ̂cW) converge toward a normal law with mean zero and

variance ||ψ1||2n = 4||HW,pf0,W ||2n, i.e. we have shown the statement of the interest:

Π
(√

n(ψcW,p(f)− ψ̂cW)
∣∣∣{xi, yi}ni=1,W

)
 N(0, 4||HW,pf0,W ||2n). (28)

We are only left to show thatLt,n = op(1), i.e. all the four terms in (25) are asymptotically vanishing
toward zero. We achieve this by analyzing the asymptotic behavior of the four terms one by one:

• First term: log
(
|Kn,W |
|KW |

)
= log|Kn,W | − log|KW |

Performing Taylor Expansion on log|Kn,W |: 1 2

log|Kn,W | = log
∣∣∣KW − t√

n
dKW

∣∣∣
= log|KW | −

t√
n
tr(K−1

W dKW) +
t2

n
Op
(
tr(K−1

W dKW)2
)
. (29)

where
t√
n
tr(K−1

W dKW) =
t√
n
tr
(
K−1
W (KWHW,p + HW,pKW −

t√
n

HW,pKWHW,p)
)

=
2t√
n
tr(HW,p)−

t2

n
tr(K−1

W HW,pKWHW,p)

≤ 2t√
n
tr(HW,p)

=
t√
n
Op(K). (30)

In the above expression, the inequality follows from the fact that K−1
W HW,pKWHW,p is positive

semi-definite, and the last line follows from Proposition 3, i.e., tr(HW,p) = Op(K).

By combing (29) and (30):

log|Kn,W | − log|KW | = −
t√
n
tr(K−1

W dKW) +
t2

n
Op
(
tr(K−1

W dKW)2
)

= t ∗Op(
K√
n

) = op(1).

(31)

where recall Op( K√n ) = op(1) since K = op(n
1/2).

1For the log pseudo-determinant function f(X) = log|X|, we can compute its gradient function as
∇Xf(X) = X+ Hessian HXf(X) = X+ ⊗X+.

2The second-order term in Taylor expansion is vec(dKW)>(K−1
W ⊗ K−1

W )vec(dKW). Using property
of Kronecker product (C> ⊗ A)vec(B) = vec(ABC), the second-order term can also be written as
vec(dKW)>vec(K−1

W dKWK−1
W ) = tr(dKWK−1

W dKWK−1
W ) = tr((K−1

W dKW)2) ≤ tr(K−1
W dKW)2,

where the last inequality follows from the fact that K−1
W dKW is positive semidefinite.
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• Second term: f>
(
K−1
n,W −K−1

W
)
f

Bound this term using the Cauchy-Schwarz inequality f>
(
K−1
n,W − K−1

W
)
f ≤ ||K−1

n,W −
K−1
W ||∞||f ||2∞. Notice that by applying the inversion formula (A + B)−1 = A−1 −A−1B(A +

B)−1 [12], we have K−1
n,W −K−1

W = t√
n

(K−1
W dKW)K−1

n,W , and further manipulation reveals that:

K−1
W dKWK−1

n,W = K−1
W (KWHW,p + HW,pKWBt,n)(B+

t,nK−1
W B+

t,n) = HW,pB
+
t,nK−1

W B+
t,n + K−1

W HW,pB
+
t,n

Then, by triangular inequality, we can bound ||K−1
n,W ||∞ as:

||K−1
n,W −K−1

W ||∞ =
t√
n
||K−1
W dKWK−1

n,W ||∞

≤ t√
n

(
||HW,pB+

t,nK−1
W B+

t,n||∞ + ||K−1
W HW,pB

+
t,n||∞

)
=

t√
n

(
||B+

t,nHW,pK
−1
W B+

t,n||∞ + ||K−1
W HW,pB

+
t,n||∞

)
≤ t√

n

(
||HW,pK−1

W ||∞||B
+
t,n||2∞ + ||K−1

W HW,p||∞||B+
t,n||∞

)
=

t√
n

(
||HW,pK−1

W ||∞ + ||K−1
W HW,p||∞

)
=

2t√
n
||K−1
W HW,p||∞

≤ 2t√
n
||K−1
W ||∞ ∗ ||HW,p||∞ = t ∗Op(n−1/2), (32)

where the second equality follows since HW,pB
+
t,n = B+

t,nHW,p due to the fact that B+
t,n =

H+
W,p(H

+
W,p −

t√
n
I)+ = (H+

W,p −
t√
n
I)+H+

W,p. The third equality follows since ||B+
t,n||∞ ≤

||B+
t,n||2 = ||(I − t√

n
HW,p)

+||2 = 1 due to the fact that HW,p is not full-column rank, and the

last line follows by the facts that ||K−1
W ||∞ ≤ ||K

−1
W ||2 = Op(1) due to KW = ΦWΦ>W + σ2

b0
I

and ||HW,p||∞ ≤ ||HW,p||2 = op(1) due to Proposition 3.

Finally, we know ||f ||2∞ = C2
f = op(1) due to assumption that ||f0||∞ < Cf . As a result, the term

f>
(
K−1
n,W −K−1

W
)
f can be bounded as:

f>
(
K−1
n,W −K−1

W
)
f ≤ ||K−1

n,W −K−1
W ||∞||f ||

2
∞ = t ∗Op(n−

1
2 ) = op(1). (33)

• Third and fourth term: t√
n
a>nK−1

n,W f and t2

2na>nK−1
n,Wa>n .

First notice that:

||K−1
n,W ||∞ = ||B+

t,nK−1
W B+

t,n||∞ ≤ ||K−1
W ||∞||B

+
t,n||2∞ = ||K−1

W ||∞ = Op(1)

where the second equality follows since ||B+
t,n||∞ ≤ ||B+

t,n||2 = ||(I− t√
n
HW,p)

+||2 = 1 due to

the fact that HW,p is not full-column rank. The final equality follows from the fact that ||K−1
W ||∞ ≤

|K−1
W ||2 = σ−2

b0
= Op(1) due to KW = ΦWΦ>W + σ2

b0
I.

Also notice that

||an||∞ = ||HW,p(f0,W + ωW)||∞ ≤ ||HW,p||∞||f0,W ||∞ + ||ωW ||∞
≤ ||HW,p||2||f0,W ||∞ + ||ωW ||2 = Op(1)

since ||ωW ||2 = Op(1), ||f0,W ||∞ = Cf = Op(1) and ||HW,p||2 = Op(1) by Proposition 3. Also

||f ||∞ = ||X(

L∏
l=1

WlSl)β||∞ ≤ ||X||∞ ∗
L∏
l=1

(||Wl||∞||Sl||∞) ∗ ||β||∞ = Op(1)

since ||Wl||∞ ≤ B ≤ 1, ||β||∞ ≤ B ≤ 1, and the fact that elements in X and Sl are bounded
between (0, 1).
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Therefore we can bound t√
n
a>nK−1

n,W f as:

t√
n

a>nK−1
n,W f ≤ t√

n
||an||∞||K−1

n,W ||∞||f ||∞ ≤ t ∗Op(n
− 1

2 ) = op(1). (34)

Similarly, we can bound the fourth term t2

2na>nK−1
n,Wa>n as:

t2

2n
a>nK−1

n,Wa>n ≤
t2

2n
||an||2∞||K−1

n,W ||∞ ≤ t
2 ∗Op(n−1) = op(1). (35)

Consequently, by combining the asymptotic bounds for the four terms (31), (33), (34) and (35), we
have that

Jn =

∫
eln(ft)−ln(f0,W) ∗ e−Lt,n dΠ(ft|W)∫

eln(f)−ln(f0,W)dΠ(f |W)
= e
− t√

n
op(K) → 1,

where the last equality follows since K/
√
n = op(1) due to Assumption 1.

D.2 Proof for Theorem C.3

Proof. Our goal is to show the asymptotic normality

Πn

(√
n(ψcW(f)− ψ̂cW)

∣∣W) MVN(0, V0,W).

First derive the expressions for ft, ψ̂W , V0,n and In. For t = [t1, . . . , tP ] ∈ RP , the expression for
ft is:

ft = f − t>√
n

(
ψ1 +

1

2
ψ2(f − f0,W)

)
− t>

2n
ψ2(ωW)

=
(
I − t>√

n
∗HW

)
(f)− t>√

n
∗HW

(
f0,W + ωW

)
. (36)

The expressions for ψ̂W and t>V0,nt are:

ψ̂W = ψ̂(f0,W) +
Wn(ψ1)√

n
+

1

2

〈ωW , ψ2(ωW)〉n
n

= ψ̂(f0,W) + 2〈HWf0,W , ωW〉n + 〈HWωW , ωW〉n,

t>V0,nt =
∣∣∣∣∣∣t>(ψ1 −

1

2

ψ2(ωW)√
n

)
∣∣∣∣∣∣2
n

= 4 ∗
∣∣∣∣∣∣t>HWf0,W + op(1)

∣∣∣∣∣∣2
n
,

and the expression for In is:

In =

∫
An

eln(ft)−ln(f0,W)dΠ(f |W)∫
An

eln(f)−ln(f0,W)dΠ(f |W)
.

It then follows from the Theorem C.1 that

En(et
>√n(ψcW(f)−ψ̂cW)|An,W) = eop(1)+t>V0,nt/2 ∗ In.

Therefore to show asymptotic normality, we only need to show In → 1 for some suitable choice of
An so that En(et

>√n(ψ̂cp(f)−ψ̂c)|An,W)→ et
>V0,W t/2.

To this end, we consider the standard choiceAn =
{
f
∣∣∣||f−f0,W ||n ≤Mnεn

}
for some sufficiently

large Mn → ∞ and εn the given rate of posterior convergence. Similar to the proof for Theorem
C.1, it is sufficient to show the terms Jn → 1 and Kn → 1, where

Jn =

∫
eln(ft)−ln(f0,W)dΠ(f |W)∫
eln(f)−ln(f0,W)dΠ(f |W)

, Kn =

∫
f∈An e

ln(ft)−ln(f0,W)dΠ(f |W)∫
eln(ft)−ln(f0,W)dΠ(f |W)

.
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The argument for Kn → 1 is essentially the same as those in the proof for Theorem C.2 (i.e., (27)).
We show Jn → 1 by performing change of variables f → ft on the numerator, and then analyze the
asymptotic behavior of the resulting expression. Similar to the proof for Theorem C.1, by noticing
the conditional prior Π(f |W) is a Gaussian process prior with kernel matrix KW = ΦWΦ>W+σ2

b0
I

for Φn×K = X(
∏L
l=1 WlSl), we see that given observations {yi,xi}ni=1, the conditional prior

distribution for f = [f(x1), . . . , f(xn)]> ∈ Rn is a multivariate Gaussian with covariance matrix
KW :

dΠ(f|W) ∝ |KW |−
1
2 e−

1
2 f
>K−1
W f .

To perform change of variable, we denote ft ∈ Rn as ft in (36) evaluated at {yi,xi}ni=1, we can
write ft = Bt,nf − 1√

n
an such that

dΠ(ft|W) ∝ |Kn,W |−
1
2 e
− 1

2 (f+ 1√
n
an)>K−1

n,W(f+ 1√
n
an)

= dΠ(f |W) ∗ exp
[
− 1

2
log
( |Kn,W |
|KW |

)
− 1

2
f>
(
K−1
n,W −K−1

W
)
f +

1√
n

a>nK−1
n,W f − 1

2n
a>nK−1

n,Wa>n

]
where Bt,n = I− 1√

n
Ht, an = Ht

(
f0,W + ωW

)
for Ht =

∑P
p=1 tpHp, and

Kn,W = Bt,nKWBt,n = KW −
1√
n

[
KWHt + HtKWBt,n

]
= KW −

1√
n
dKW ,

where we have denoted dKW = KWHt + HtKWBt,n.

Consequently, the expression of Jn after the change of variable becomes:

Jn =

∫
eln(ft)−ln(f0,W) ∗ e−Lt,n dΠ(ft|W)∫

eln(f)−ln(f0,W)dΠ(f |W)
,

where

Lt,n =
1

2
log
( |Kn,W |
|KW |

)
+

1

2
f>
(
K−1
n,W −K−1

W
)
f − 1√

n
a>nK−1

n,W f +
t2

2n
a>nK−1

n,Wa>n . (37)

Therefore in order to show Jn → 1, it is sufficient to show that all terms in Lt,n are asymptotically
vanishing toward zero as n → ∞. Now only left to show that all the four terms in (37) are asymp-
totically vanishing toward zero. However, notice that the only difference between (37) and its coun-
terpart (25) in the proof of Theorem C.2 is that Hp is replaced by Ht =

∑P
p=1 tpHp. Furthermore,

for fixed t, the asymptotic behavior of Hp and Ht are similar in the sense that tr(Ht) = Op(K)
and ||Ht||2 = Op(1) since P = O(1). Therefore we can follow exactly the same arguments as
those in the proof for Theorem C.2 to show all the four terms asymptotically vanishing towards

zero. Consequently, we have that Jn =
∫
eln(ft)−ln(f0,W )+op(1) dΠ(ft|W)∫

eln(f)−ln(f0,W )dΠ(f |W)
→ 1..

It then follows by the semi-parametric BvM theorem (Theorem C.1) that the posterior distribution
of
√
n(ψcW(f)− ψ̂cW) converge toward a normal law with mean zero and variance V0, i.e.

Π
(√

n(ψcW(f)− ψ̂cW)
∣∣∣{xi, yi}ni=1

)
 N(0, V0), (38)

where V0 is the P × P matrix that takes value t>V0,nt = 4 ∗ ||t>HWf0,W ||2n for any t ∈ RP .
Specifically, the matrix V0 whose (p1, p2)th entry defined as 4〈Hp1f0,W , Hp2f0,W〉n will satisfy
this choice.
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E Lemmas and Propositions

We first show the posterior concentration rate for a deep Bayesian neural network (BNN) with
moderate level of sparsity (Proposition 1). This is an assumption that can hold even for a BNN
without an explicit sparse-inducing prior. For example, for a convolutional neural network using
separable convolutional layers, its convolutional kernels are in fact banded Toeplitz matrices with
the higher off-diagonal entries set to zero, whose number of parameters is only proportional to the
number of the output channels [9, 20]. For this case, we show that for a network with sparsity
level (i.e., the number of unique non-zero weights) O(L ∗ K), the model can achieve an optimal,
parametric rate of O(n−1/2) up to a logarithm factor.

For completeness, in Proposition 2, we also study the case where no sparsity is assumed. This
corresponds to the case of a naive densely-connected network without any type of regularization.
We show that in this case, for the model to achieve a optimal rate of O(n−1/2), it in fact needs to
be narrower (i.e., K = O(n1/4) rather than O(n1/2)), hence restricting the space of true functions
it can reliably approximate in the finite data. The difference between these two cases highlights
the importance of choosing a parameter-efficient architecture to ensure the effectiveness of variable
selection in the finite sample. Finally, notice that the BvM theorem still applies in this second case,
since the Assumption 1 still holds.

Proposition 1 (Posterior Concentration for f0 ∈ F). For the space of ReLU network F =
F(L,K,B). Assuming

• The model architecture satisfies:

L = O
(
log(N)

)
, K = O

(
N
)
, S = O

(
N log(N)

)
.

where S =
∑L
l=1 ||Wl||0 is the number of non-zero parameters in the model, and N ∈ N is a

function of sample size n such that log(N) ≥
√
log(n).

• The prior distribution Π(W) is an i.i.d. product of Gaussian distributions.

Then, for f0 ∈ F , the posterior distribution Πn(f) = Π(f |{xi, yi}ni=1) contracts toward f0 in a
rate of at least εn = O

(
(N/n) ∗ log(N)3

)
, i.e., for any Mn →∞

E0Πn(||f − f0||2n ≥Mnεn)→ 0

In particular, if N = op(n
1/2) (i.e. Assumption 1), we then have εn = O

(
n−1/2 ∗ log(n)3

)
.

Proof. We show posterior consistency by checking if the stated convergence rate ε satisfy the classic
posterior convergence theorem (i.e., Theorem 1 of [11]). Since we consider a well-specified case
where f0 ∈ F , one of the theorem’s three conditions regarding expressiveness of the prior model
trivially holds (i.e., Π(F/Fn) ≤ e−nεn(C+4) forF the true function space andFn the model space).
However, even in this well-specified case, it is still important to understand if neural network can
achieve the desired convergence rate εn in the face of the prior stochasticity in its large number of
hidden weight parameters. Therefore, we would like to check the below two conditions about the
neural network prior distribution:

logN(εn,F , ||.||∞) ≤ Cnεn (39)

Π
(
||f − f0||2∞ ≤ εn

)
≥ e−Cnεn (40)

where C > 1 is an universal constant. The first condition (39) ensures the model size, which is
measured by the covering number of F (i.e., the minimal number of ||.||∞-balls with radius δ that
covers F) is not too large. The second condition (40) ensures the model ’s prior distribution places
sufficient prior mass around the target function f0. For the rest of this proof, we show the statement
of interest by showing these two conditions.

• Entropy Condition: logN(εn,F , ||.||n) ≤ nεn
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We show this condition by invoking the classic result on the covering number of neural network
approximation spaces (Lemma 2 [1]). Specifically, by setting δ = εn in Lemma 2, we have

logN(εn,F , ||.||∞) ≤ S log(ε−1
n LK2L)

. S log(ε−1
n ) + S L log(K)

. N log(N) log(
n

Nlog(N)3
) +Nlog(N)3

. N log(N) (log(n) + log(N)2)

. N log(N)3 = nεn

where the third line follows by the definition of εn, and the last line follows from the assumption
that log(N) ≥

√
log(n) and the definition of εn.

• Prior Mass Condition: Π
(
||f − f0||n ≤ εn

)
≥ e−Cnεn .

We show this using the classic concentration inequality for the centered Gaussian measure Π
(Lemma 1). DenoteW = {Wl}Ll=1 ∪ {β} the set of all parameters for a neural network f . By the
proof of Lemma 2 below, we can bound the difference between a model f and the true function f0

as |f − f0| ≤ LKL||W −W0||∞, therefore{
f
∣∣∣||f − f0||2∞ ≤ εn

}
⊂
{
W
∣∣∣||W −W0||2∞ ≤

εn
(LKL)2

}
.

Then by Lemma 1:

Π
(
||f − f0||2∞ ≤ εn

)
≥ Π

(
||W −W0||2∞ ≤

εn
(LKL)2

)
≥ exp

(
− ||W0||2Π

2

)
Π
(
||W||2∞ <

εn
(LKL)2

)
≥ exp

(
− ||W0||2Π

2

)
exp
(
− εn

(LKL)2

)
≥ exp(−Cnεn)

for some constant C > 1. In the above expression, the second inequality follows from Lemma 1,
and the third inequality follows from the Borell’s inequality [22].

Proposition 2 (Posterior Concentration for f0 ∈ F , No Sparsity). For the space of ReLU network
F = F(L,K,B) . Assuming

• The model architecture satisfies:

L = O
(
log(N)

)
, K = O

(√
N
)
.

Since we assume no sparsity, we set S = O(L ∗K2) = O(N log(N)).

• The prior distribution Π(W) is an i.i.d. product of Gaussian distributions.

Then, for f0 ∈ F , the posterior distribution Πn(f) = Π(f |{xi, yi}ni=1) contracts toward f0 in a
rate of at least εn = O

(
(N2/n) ∗ log(N)3

)
, i.e., for any Mn →∞

E0Πn(||f − f0||2n ≥Mnεn)→ 0

In particular, if N = op(n
1/2) (i.e. Assumption 1), we then have εn = O

(
n−1/2 ∗ log(n)3

)
.

Proof. The proof is similar to Proposition 1. The only difference is K is changed from O(N) to
O(
√
N) (and the order of the sparsity in fact stays the same). Specifically, we re-check the entropy

condition and the prior mass condition below:
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• Entropy Condition: logN(εn,F , ||.||n) ≤ nεn
By setting δ = εn in Lemma 2, we have

logN(εn,F , ||.||∞) ≤ S log(ε−1
n LK2L)

. S log(ε−1
n ) + S L log(K)

. N log(N) log(
n

Nlog(N)3
) +N2log(N)3

. N log(N) (log(n) + log(N)2)

. N log(N)3 = nεn

• Prior Mass Condition: Π
(
||f − f0||n ≤ εn

)
≥ e−Cnεn .

Similar to proof for Proposition 1, by the proof of Lemma 2, we can bound the difference between
a model f and the true function f0 as |f − f0| ≤ LKL||W −W0||∞, therefore{

f
∣∣∣||f − f0||2∞ ≤ εn

}
⊂
{
W
∣∣∣||W −W0||2∞ ≤

εn
(LKL)2

}
.

Then by Lemma 1:

Π
(
||f − f0||2∞ ≤ εn

)
≥ Π

(
||W −W0||2∞ ≤

εn
(LKL)2

)
≥ exp

(
− ||W0||2Π

2

)
Π
(
||W||2∞ <

εn
(LKL)2

)
≥ exp

(
− ||W0||2Π

2

)
exp
(
− εn

(LKL)2

)
≥ exp(−Cnεn)

for some constant C > 1.
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Proposition 3. Recall that a ReLU network f ∈ F(L,K,B) adopts basis function representation
f(x) =

∑K
k=1 βkφk(x) = φ(x)>β at the output layer. Denote Φ and ∂pΦ the n×K matrices of

φ and ∂
∂xp

φ evaluated at observations {xi, yi}ni=1, such that Φn×K = XW1S1(
∏L
l=2 WlSl) and

∂pΦn×K = W1,pS1(
∏L
l=1 WlSl). Denote

Hp = (Φ+)>∂pΦ
>∂pΦΦ+

where Φ+
K×n is the generalized inverse of Φn×K . Then:

||Hp||2 = Op(1), tr(Hp) = Op(K),

Proof. Notice that ||Hp||2 = Op(1) implies tr(Hp) = OP (K) since

tr(Hp) ≤ rank(Hp) ∗ ||H||2 = Op(rank(Hp)) = Op(K).

Therefore we only need to show ||H||2 = Op(1).

Show ||Hp||2 = Op(1) by showing that it is upper bounded by certain constant that does not depend
on n. Recall that Hp = (Φ+)>(∂pΦ

>∂pΦ)Φ+, by the fact that 2-norm is invariant under cyclic
permutations, we then have

||Hp||2 = ||(∂pΦΦ+)>(∂pΦΦ+)||2 = ||∂pΦ(Φ+Φ+>)∂pΦ
>||2 = ||∂pΦ(Φ>Φ)−1∂pΦ

>||2
= ||(Φ>Φ)−1(∂pΦ

>∂pΦ)||2

Denote M = S1(
∏L
l=2 WlSl), then we have Φ = XW1M and ∂pΦ = W1,pM. Denote Xp =

diag(x1,p, x2,p, . . . , xn,p) and notice that XW1 =
∑
p XpW1,p, so we see that Φ is related to ∂pΦ

through the expression Φ =
∑
p Xp∂pΦ, and

Φ>Φ = (
∑
p

Xp∂pΦ)>(
∑
p

Xp∂pΦ) =
∑
p1,p2

∂p1Φ
>Xp1Xp2∂p2Φ.

Using the inversion formula (A + B)−1 = (I + A−1B)−1A−1 [12], we can write (Φ>Φ)−1 as:

(Φ>Φ)−1 =
(
∂pΦ

>X2
p∂pΦ +

∑
p1,p2 6=p

∂p1Φ
>Xp1Xp2∂p2Φ

)−1

=
(
I + (∂pΦ

>X2
p∂pΦ)−1

∑
p1,p2 6=p

∂p1Φ
>Xp1Xp2∂p2Φ

)−1

(∂pΦ
>X2

p∂pΦ)−1.

Consequently, we can bound ||Hp||2 as:

||Hp||2 = ||(Φ>Φ)−1(∂pΦ
>∂pΦ)||2

=
∣∣∣∣∣∣(I + (∂pΦ

>X2
p∂pΦ)−1

∑
p1,p2 6=p

∂p1Φ
>Xp1Xp2∂p2Φ

)−1

(∂pΦ
>X2

p∂pΦ)−1(∂pΦ
>∂pΦ)

∣∣∣∣∣∣
2

≤
∣∣∣∣∣∣(I + (∂pΦ

>X2
p∂pΦ)−1

∑
p1,p2 6=p

∂p1Φ
>Xp1Xp2∂p2Φ

)−1∣∣∣∣∣∣
2
∗
∣∣∣∣∣∣(∂pΦ>X2

p∂pΦ)−1(∂pΦ
>∂pΦ)

∣∣∣∣∣∣
2

Notice in the last line of the above expression, the first term can be bounded as:∣∣∣∣∣∣(I + (∂pΦ
>X2

p∂pΦ)−1
∑

p1,p2 6=p

∂p1Φ
>Xp1Xp2∂p2Φ

)−1∣∣∣∣∣∣
2
≤ 1 (41)

This is because λmin

(
I + (∂pΦ

>X2
p∂pΦ)−1

∑
p1,p2 6=p ∂p1Φ

>Xp1Xp2∂p2Φ
)
≥ 1 due to the fact

that ∂p1Φ
>Xp1Xp2∂p2Φ is full column rank for all p1, p2, which implies that λmax of (41) is no

larger than 1.
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The second term can be bounded as:

||(∂pΦ>X2
p∂pΦ)−1(∂pΦ

>∂pΦ)||2 = ||(∂pΦ+X−2
p ∂pΦ

+>)(∂pΦ
>∂pΦ)||2

= ||∂pΦ+X−2
p ∂pΦ||2

= ||X−2
p ∂pΦ∂pΦ

+||2
≤ ||X−2

p ||2||∂pΦ∂pΦ
+||2

= ||X−1
p ||22, (42)

where we have denoted Φ+ = VD−1U> for Φ = UDV>. In above expression, the third equality
follows from the fact that the eigenvalue of the product of square matrices is invariant under cyclic
permutation of the product order [14].

Combining (41) and (42), we have:

||Hp||2 = ||(Φ>Φ)−1(∂pΦ
>∂pΦ)||2

≤
∣∣∣∣∣∣(I + (∂pΦ

>X2
p∂pΦ)−1

∑
p1,p2 6=p

∂p1Φ
>Xp1Xp2∂p2Φ

)−1∣∣∣∣∣∣
2
∗
∣∣∣∣∣∣(∂pΦ>X2

p∂pΦ)−1(∂pΦ
>∂pΦ)

∣∣∣∣∣∣
2

≤ ||X−1
p ||22

Recall that since Xp = diag(x1,p, x2,p, . . . , xn,p) is a diagonal matrix, we have ||X−1
p ||2 =

max(1/xi,p) = 1/min(xi,p) ≤ 1/cx, i.e. bounded by a constant that does not depend on n.
Therefore ||Hp||2 = Op(1).
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Lemma 1 (Gaussian Shift-ball Inequality). Let Π(f) be a centered Gaussian measure and HΠ the
Hilbert space induced by Π with norm ||.||Π. For f0 ∈ HΠ, it holds that

Π(||f − f0||∞ ≤ δ) ≥ exp(−
||f0||2Π

2
)Π(||f ||∞ < δ)

Proof. [13], Theorem 2

Lemma 2 (Covering Number for F(L,K,B)). For the space of ReLU network F = F(L,K,B)

as defined in (2), define S =
∑L
l=1 ||Wl||0, then the covering number of F as N(δ,F , ||.||∞), i.e.,

the minimal number of ||.||∞-balls with radius δ that covers F , can be bounded as:

logN(δ,F , ||.||∞) ≤ S log(δ−1LK2L)

Proof. The proof is an adaptation of the classic entropy number result for neural networks [1] to our
current setting.

Consider two networks f, f ′ ∈ F(L,K,B) where f(x) = βσWL . . . σW1x and f ′(x) =
β′σW ′L . . . σW ′1x. Note that ||β − β′||∞ ≤ KB and ||Wl − W ′l ||∞ ≤ KB. Also denote
Al(f) = σWl−1 . . . σW1x the hidden activation before the lth layer, andBl(f) = βσWLσ . . .Wlσ
the hidden mapping at and after the lth layer. Then for bounded input ||x||∞ ≤ 1:

||Al(f)||∞ ≤ ||Wl−1Al−1(f)||∞ ≤ KB||Al−1(f)||∞ ≤ (KB)l−1,

and similarly ||Bl(f)||∞ ≤ (KB)L−l+1. Then it holds that:

|f(x)− f ′(x)| ≤
∣∣∣ L∑
l=1

[
Bl+1(f ′)WlAl(f)(x)−Bl+1(f ′)W ′lAl(f)(x)

]∣∣∣
≤

L∑
l=1

(KB)L−l||WlAl(f)(x)−W ′lAl(f)(x)||∞

≤
L∑
l=1

(KB)L−l ∗ ||Wl −W ′l ||∞ ∗ (KB)l−1 ≤ L ∗ (KB)L−l ∗ (KB) ∗ (KB)l−1

= L ∗ (KB)L

Thus for ||.||∞ balls with radius δ, the covering number for a single sparsity configuration is bounded
by ( δ

L∗(KB)L
)−S . Now, since the number of possible sparsity patterns is bounded by

(
KL

S

)
≤ KLS ,

then the covering number of the whole space is bounded as KLS ∗ ( δ
L(KB)L

)−S = ( δ
LK2LBL

)−S .

Taking log on both sides and recall we have B ≤ 1 due to assumption in (2), then:

logN(δ,F , ||.||∞) ≤ S log(δ−1LK2LBL) ≤ S log(δ−1LK2L)
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