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Abstract

This work develops a theoretical basis for a deep
Bayesian neural network (BNN)’s ability in perform-
ing high-dimensional variable selection with rigor-
ous uncertainty quantification. We develop new
Bayesian non-parametric theorems to show that a
properly configured deep BNN (1) learns the vari-
able importance effectively in high dimensions, and
its learning rate can sometimes “break” the curse
of dimensionality. (2) BNN’s uncertainty quantifica-
tion for variable importance is rigorous, in the sense
that its 95% credible intervals for variable impor-
tance indeed covers the truth 95% of the time (i.e.
the Bernstein-von Mises (BvM) phenomenon). The
theoretical results suggest a simple variable selection
algorithm based on the BNN’s credible intervals. Ex-
tensive simulation confirms the theoretical findings
and shows that the proposed algorithm outperforms
existing classic and neural-network-based variable se-
lection methods, particularly in high dimensions.

1 Introduction

The advent of the modern data era has given rise to
voluminous, high-dimensional data in which the out-
come has complex, nonlinear dependencies on input
features. In this nonlinear, high-dimensional regime,
a fundamental objective is variable selection, which
refers to the identification of a small subset of features
that is relevant in explaining variation in the outcome.
However, high dimensionality brings two challenges to
variable selection. The first is the curse of dimen-
sionality, or the exponentially increasing difficulty in
learning the variable importance parameters as the di-
mension of the input features increases. The second is
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the impact of multiple comparisons, which makes con-
struction of a high dimensional variable-selection deci-
sion rule that maintains an appropriate false discovery
rate difficult. For example, consider selecting among
100 variables using a univariate variable-selection pro-
cedure that has average precision, defined as 1 - false
discovery rate (FDR), of 0.95 for selection of a single
variable. Then the probability of selecting at least one
irrelevant variable out of the 100 is 1−0.95100 ≈ 0.994
(assuming independence among decisions), leading to
a sub-optimal procedure with precision less than 0.006
(Benjamini and Hochberg, 1995). The multiple com-
parison problem arises when a multivariate variable-
selection decision is made based purely on individ-
ual decision rules, ignoring the dependency structure
among the decisions across variables. This issue arises
in a wide variety of application areas, such as genome-
wide association studies and portfolio selection, among
others (Bhlmann, 2013).

The objective of this work is to develop both theo-
retical and empirical understanding of the ability of a
deep Bayesian neural network (BNN) model in tack-
ling both of these challenges. A deep neural network
is known to be an effective model for high-dimensional
learning problems, illustrating empirical success in im-
age classification and speech recognition applications.
Bayesian inference in neural networks provides a prin-
cipled framework for uncertainty quantification that
naturally handles the multiple comparison problem
(Gelman et al., 2012). By sampling from the joint pos-
terior distribution of the variable importance param-
eters, a deep BNN’s posterior distribution provides a
complete picture of the dependency structure among
the variable importance estimates for all input vari-
ables, allowing a variable selection procedure to tailor
its decision rule with respect to the correlation struc-
ture of the problem.

Specifically, we consider a simple variable selection
method for high-dimensional regression based on cred-
ible intervals of a deep BNN model. Consistent with



the existing nonlinear variable selection literature, we
measure the global importance of an input variable
xp using the empirical norm of its gradient function
ψp(f) = ‖ ∂

∂xp
f‖2n = 1

n

∑n
i=1 |

∂
∂xp

f(xi)|2, where f is

the regression function and p ∈ {1, . . . , P} (White
and Racine, 2001; Rosasco et al., 2013; Yang et al.,
2016; He et al., 2018). We perform variable selec-
tion by first computing the (1 − α)-level simultane-
ous credible interval for the joint posterior distribution
ψ(f) = {ψp(f)}Pp=1, and make variable-selection deci-
sions by inspecting whether the credible interval in-
cludes 0 for a given input. Clearly, the validity and ef-
fectiveness of this approach hinges critically on a deep
BNN’s ability to accurately learn and quantify uncer-
tainty about variable importance in high dimensions.
Unfortunately, neither property of a deep BNN model
is well understood in the literature.

Summary of Contributions In this work, we estab-
lish new Bayesian nonparametric theorems for deep
BNNs to investigate their ability in learning and quan-
tifying uncertainty of variable importance measures
derived from the model. We ask two key questions:
(1) learning accuracy : does a deep BNN’s good per-
formance in prediction (i.e. in learning the true func-
tion f0) translate to its ability to learn the variable
importance ψp(f0)? (2) uncertainty quantification:
does a deep BNN properly quantify uncertainty about
variable importance, such that a 95% credible inter-
val for variable importance ψp(f) covers the “true”
value ψp(f0) 95% of the time? Our results show that,
for learning accuracy, a deep Bayesian neural network
learns the variable importance at a rate that is at least
as fast as that achieved when learning f0 (Theorem 1).
That is, good performance in prediction translates to
good performance in learning variable importance. For
uncertainty quantification, we establish a Bernstein-
von Mises (BvM) theorem to show that the posterior
distribution of ψp(f) converges to a Gaussian distri-
bution, and the (1−α)-level credible interval obtained
from this distribution covers the true variable impor-
tance ψp(f0) (1 − α)% of the time (Theorem 2 and
3). The BvM theorems establish a rigorous frequen-
tist interpretation for a deep BNN’s simultaneous cred-
ible intervals, and are essential in ensuring the validity
of the credible-interval-based variable selection meth-
ods. To the authors’ knowledge, this is the first semi-
parametric BvM result for the standard deep Bayesian
neural network model under the i.i.d. Gaussian prior,
and therefore one of the first Bayesian non-parametric
studies on the deep BNN’ ability to achieve rigorous
uncertainty quantification.

Related Work The existing variable selection meth-
ods for neural networks fall primarily under the fre-
quentist paradigm (Anders and Korn, 1999; Castel-

lano and Fanelli, 2000; Guyon and Elisseeff, 2003; May
et al., 2011). These existing methods include penal-
ized estimation / thresholding of the input weights
(Feng and Simon, 2017; Lu et al., 2018; Scardapane
et al., 2017), greedy elimination based on the per-
turbed objective function (LeCun et al., 1990; Ye and
Sun, 2018), and re-sampling based hypothesis tests
(Giordano et al., 2014; La Rocca and Perna, 2005).
For Bayesian inference, the recent work of Liang et al.
(2018) proposed Spike-and-Slab priors on the input
weights and performing variable selection based on
the posterior inclusion probabilities for each variable.
Rigorous uncertainty quantification based on these
approaches can be difficult, due to either the non-
identifiability of the neural network weights, the heavy
computation burden of the re-sampling procedure, or
the difficulty in developing BvM theorems for the neu-
ral network model.

The literature on the theoretical properties of a BNN
model (e.g., posterior concentration and Bernstein
von-Mises phenonmenon) is relatively sparse. Among
known results, Lee (2000) established the posterior
consistency of a one-layer BNN for learning conti-
nous or square-integrable functions. Rockova and Pol-
son (2018) generalized this result to deep architec-
tures and to more general function spaces (i.e., the
β-Hölder space), and Chrief-Abdellatif (2020) gener-
alized it further to the variational posterior that is ob-
tained through optimization. In terms of uncertainty
quantification, concurrent with this work, Wang and
Rockova (2020) studies the asymptotic normality for
the scalar-valued functionals of a special class of deep
BNN under the spike-and-slab priors. In contrast,
this work considers a more general class of deep BNN
with no explicit sparse-inducing constraints. Further-
more, it develops a multivariate BvM theorem for
the simultaneous credible interval of a vector-valued
quadratic functional ψ(f) = {‖ ∂

∂xp
(f)‖2n}Pp=1, and

conducts thorough simulation to understand the func-
tional’s empirical behavior under practical scenarios.

2 Background
Nonparametric Regression For data {yi,xi}ni=1

where y ∈ R and x ∈ [0, 1]P is a P ×1 vector of covari-
ates, we consider the standard nonparametric regres-
sion setting where yi = f∗(xi) + ei, for ei ∼ N(0, s2)
with known s. The data dimension P is allowed to
be large but assumed to be o(1). That is, the dimen-
sion does not increase with the sample size n. The
data-generation function f∗ is an unknown continuous
function belonging to certain function class F∗. Re-
cent theoretical work suggests that the model space of
a properly configured deep neural network F(L,K,B)
(defined below) achieves excellent approximation per-
formance for a wide variety of function classes (Yarot-
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sky, 2017; Schmidt-Hieber, 2017; Montanelli and Du,
2019; Suzuki, 2019; Gribonval et al., 2020). Therefore
in this work, we focus our analysis on the BNN’s be-
havior in learning the optimal f0 ∈ F(L,K,B), mak-
ing an assumption throughout that the BNN model is
properly configured such that f0 ∈ F is either iden-
tical to f∗ or is sufficiently close to f∗ for practical
purposes.

Model Space of a Bayesian Neural Network De-
note σ as the Rectified Linear Unit (ReLU) activation
function. The class of deep ReLU neural networks with
depth L and width K can be written as f(x) = b0 +
β>
[
σWL

(
σWL−1 . . .

(
σW2(σW1x)

))]
. Following ex-

isting work in deep learning theory, we assume that the
hidden weights W satisfy the norm constraint CB∞ in
the sense that: CB∞ =

{
W
∣∣maxl ||Wl||∞ ≤ B, B ≤ 1

}
(Schmidt-Hieber, 2017; Suzuki, 2019). As a result, we
denote the class of ReLU neural networks with depth
L, width K and norm constraint B as F(L,K,B):

F(L,K,B) =
{
f(x) = b0 + β>

[
◦Ll=1 (σWl) ◦ x

]∣∣∣W ∈ CB∞},
and for notational simplicity we write F(L,K,B) as
F when it is clear from the context. The Bayesian ap-
proach to neural network learning specifies a prior dis-
tribution Π(f) that assigns probability to every candi-
date f in the model space F(L,K,B). The prior distri-
bution Π(f) is commonly specified implicitly through
its model weights W, such that the posterior dis-
tribution is Π(f |{y,x}) ∝

∫
Π(y|x, f,W)Π(W)dW.

Common choices for Π(W) include Gaussian (Neal,
1996), Spike and Slab (Rockova and Polson, 2018), and
Horseshoe priors (Ghosh et al., 2019; Louizos et al.,
2018).

Rate of Posterior Concentration The quality of
a Bayesian learning procedure is commonly measured
by the learning rate of its posterior distribution, as
defined by the speed at which the posterior distribu-
tion Πn = Π(.|{yi,xi}ni=1) shrinks around the truth as
n→∞. Such speed is usually assessed by the radius of
a small ball surrounding f0 that contains the majority
of the posterior probability mass. Specifically, we con-
sider the size of a set An = {f |||f−f0||n ≤Mεn} such
that Πn(An)→ 1. Here, the concentration rate εn de-
scribes how fast this small ball An concentrates toward
f0 as the sample size increases. We state this notion
of posterior concentration formally below (Ghosal and
van der Vaart, 2007):

Definition 1 (Posterior Concentration). For f∗ :
RP → R where P = o(1), let F(L,K, S,B) denote
a class of ReLU network with depth L, width K, and
norm bound B. Also denote f0 as the Kullback-Leibler
(KL)-projection of f∗ to F(L,K,B), and E0 the expec-
tation with respect to true data-generation distribution
P0 = N(f∗, σ2). Then we say the posterior distribu-

tion f concentrates around f0 at the rate εn in Pn0
probability if there exists an εn → 0 such that for any
Mn →∞:

E0Π(f : ||f − f0||2n > Mnεn|{yi,xi}ni=1)→ 0 (1)

“Break” the Curse of Dimensionality Clearly,
a Bayesian learning procedure with good finite-sample
performance should have an εn that converges quickly
to zero. In general, the learning rate εn depends on
the dimension of the input feature P , and the ge-
ometry of the “true” function space f∗ ∈ F∗. Un-
der the typical nonparametric learning scenario where
F∗ is the space of β-Hölder smooth (i.e., β-times
differentiable) functions, the concentration rate εn is
found to be εn = O

(
n−2β/(2β+P ) ∗ (log n)γ

)
for some

γ > 1(Rockova and Polson, 2018). This exponential
dependency of εn on the dimensionality P is referred
to as the curse of dimensionality , which implies
that the sample complexity of a neural network ex-
plodes exponentially as the data dimension P increases
(Bach, 2017). However, recent advances in frequen-
tist learning theory shows that when f∗ is sufficiently
structured, a neural network model can in fact “break
the curse” by adapting to the underlying structure of
the data and achieve a learning rate that has no ex-
ponential dependency on P (Bach, 2017; Bauer and
Kohler, 2019; Suzuki, 2019). To this end, we show
that this also holds for Bayesian neural networks in
well-specified scenarios, i.e., when f∗ = f0 ∈ F such
that the target function lies in the model space of the
neural network (Proposition 1). We also conduct sim-
ulation to study the model behavior under misspecifi-
cation.

Measure of Variable Importance ψp(f). For a
smooth function f : RP → R, the local importance of
a variable xp with respect to the outcome y = f(x)
at a location x ∈ X is captured by the magnitude

of the weak1 partial derivative
∣∣ ∂
∂xp

f(x)
∣∣2 (He et al.,

2018; Rosasco et al., 2013; Wahba, 1990; Adams and
Fournier, 2003). Therefore, a natural measure for the
global importance of a variable xp is the integrated
gradient norm over the entire feature space x ∈ X :

Ψp(f) =
∥∥ ∂
∂xp

f
∥∥2
2

=
∫
x∈X

∣∣ ∂
∂xp

f(x)
∣∣2dP (x). Given

observations {xi, yi}ni=1, Ψp(f) is approximated as:

ψp(f) =
∥∥ ∂

∂xp
f
∥∥2
n

=
1

n

n∑
i=1

∣∣ ∂
∂xp

f(xi)
∣∣2. (2)

1The notion of weak derivative is a mathematical ne-
cessity to ensure ∂

∂xp
f is well-defined, since f involves the

ReLU function which is piece-wise linear and not differen-
tiable at 0. However in practice, ∂

∂xp
f can be computed

just as a regular derivative function, since it rarely happens
that the pre-activation function is exactly 0.



In practice, ∂
∂xp

f(x) can be computed easily using

standard automatic differentiation tools (Abadi et al.,
2016).

3 Learning Variable Importance with
Theoretical Guarantee

Throughout this theoretical development, we assume
the true function f0 has bounded norm ||f0||∞ ≤ C, so
that the risk minimization problem is well-defined. We
also put a weak requirement on the neural network’s
effective capacity so that the total stochasticity in the
neural network prior is manageable:

Assumption 1 (Model Size). The width of the ReLU
network model F(L,K,B) grows slower than O(

√
n),

i.e. K = o(
√
n).

Assumption 1 ensures that the posterior estimate for
ψp(f) is stable in finite samples so that it converges
sufficiently quickly toward the truth, which is a essen-
tial condition for the BvM theorem to hold. It also
grounds our theoretical analysis to finite-width net-
works that’s used in practice, and makes our result
complementary to the recent theoretical literature on
Gaussian-process-based analysis of infinite-width neu-
ral networks (Jacot et al., 2018; Arora et al., 2019; Du
et al., 2019; Lee et al., 2019). Assumption 1 is satis-
fied by most of the popular architectures in practice.
For example, in the ImageNet challenge where there
are 1.4 × 107 images, most of the successful architec-
tures, which include AlexNet, VGGNet, ResNet-152
and Inception-v3, have K = O(103) nodes in the out-
put layer (Russakovsky et al., 2015; Krizhevsky et al.,
2012; Simonyan and Zisserman, 2015; Szegedy et al.,
2015; He et al., 2016). Neural networks with fixed
architecture also satisfy this requirement, since the
growth rate o(1) for these models is also not faster
than

√
n.

3.1 Rate of Posterior Concentration

We first investigate a Bayesian ReLU network’s ability
to accurately learn the variable importance Ψp(f0) =
|| ∂∂xp

(f0)||22 in finite samples. We show that, for a

ReLU network that is able to learn the true func-
tion f0 with rate εn (in the sense of Definition 1), the
entire posterior distribution for variable importance
ψp(f) converges consistently to a point mass at the
true Ψ(f0), at speed not slower than εn.

Theorem 1 (Rate of Posterior Concentration for ψp).
For f ∈ F(L,K,B), assuming the posterior distribu-
tion Πn(f) concentrates around f0 with rate εn, the
posterior distribution for ψp(f) = || ∂∂xp

f ||2n contracts

toward Ψp(f0) = || ∂∂xp
f0||22 at a rate not slower than

εn. That is, for any Mn →∞

E0Πn

(
sup

p∈{1,...,P}
|ψp(f)−Ψp(f0)| > Mnεn

)
→ 0,

where Πn(.) = Π(.|{yi,xi}ni=1) denotes the posterior
distribution.

A proof for this theorem is in Supplementary Section
B.1. Theorem 1 confirms two important facts. First,
despite the non-identifiablity of the network weights
W, a deep BNN can reliably recover the variable im-
portance of the true function Ψ(f0). Second, a deep
BNN learns the variable importance at least as fast
as the rate for learning the prediction function f0. In
other words, good performance in prediction translates
to good performance in learning variable importance.
We validate this conclusion in the experiment (Section
4), and show that, interestingly, the learning speed
for Ψp(f0) can in fact be much faster than that for
learning f0. Given the empirical success of deep ReLU
networks in high-dimensional prediction, Theorem 1
suggests that a ReLU network is an effective tool for
learning variable importances in high dimension.

Comment: Possibility for Breaking the Curse
of Dimensionality Given the statement of Theorem
1, it is interesting to ask exactly how fast εn of a BNN
can go to zero under various data scenarios. Although
it is not the focus of this work to study the conver-
gence rate of a BNN’s prediction function, we would
like to highlight a possibility result that when learning
f0 ∈ F , a Bayesian ReLU network with a standard
Gaussian prior can in fact “break” the curse of di-
mensionality and achieve a parametric learning rate of
O(n−1/2) up to an logarithm factor.

Proposition 1 (Posterior Concentration for f0 ∈ F).
For the space of ReLU network F = F(L,K,B), as-
suming

• the model architecture satisfies:

L = O
(
log(N)

)
, K = O

(
N
)
, S = O

(
N log(N)

)
,

where S =
∑L
l=1 ||Wl||0 is the number of non-zero

parameters in the model, and N ∈ N is a function of
sample size n such that log(N) ≥

√
log(n).

• the prior distribution Π(W) is an independent and
identically distributed (i.i.d.) product of Gaussian
distributions,

then, for f0 ∈ F , the posterior distribution Πn(f) =
Π(f |{xi, yi}ni=1) contracts toward f0 at a rate of at
least εn = O

(
(N/n) ∗ log(N)3

)
. In particular, if

N = o(
√
n) (i.e. Assumption 1), the learning rate

is εn = O
(
n−1/2 ∗ log(n)3

)
.
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This result appears to be new to the BNN literature,
and we give a full proof in Supplementary Section E.
In combination with Theorem 1, this result suggests
that when BNN is properly specified for the data (e.g.,
f∗ is a linear function or a complex function with dis-
crete inputs), high-dimension variable selection under
a BNN can be rather effective.

The role of modern architecture It is worth notic-
ing that the speed of posterior convergence depends
critically on the statistical efficiency of the model ar-
chitecture. Specifically, Proposition 1 assumes the net-
work’s ability in imposing a moderate level of struc-
tural sparsity onto its parameters (i.e., the assumption
S = O

(
N log(N)

)
). This is an requirement that is sat-

isfied by the modern architectures such as the Xcep-
tion and EfficientNet, which uses depthwise separable
convolutional layers to achieve state-of-the-art perfor-
mance with a small parameter count (Chollet, 2017;
Tan and Le, 2019). For example, by using depthwise
separable convolutional layers, the convolution kernels
of EfficientNet are in fact banded Toeplitz matrices
with the higher off-diagonal entries set to zero, whose
number of parameters is only proportional to the num-
ber of the output channels K, making the parameter
count for the full network to be roughly on the or-
der of S = O(L ∗ K) = O

(
N log(N)

)
(Chollet, 2017;

Schmidt-Hieber, 2020). For completeness, in Supple-
mentary section E we also study the case where no
sparsity is assumed (Proposition 2). We show that in
this case, for the neural network model to achieve a
optimal rate of O(n−1/2), it in fact needs to be nar-
rower (i.e., K = O(n1/4) rather than O(n1/2)), hence
restricting the space of true functions it can reliably
approximate in the finite data.

3.2 Uncertainty Quantification

In this section, we show that the deep BNN’s poste-
rior distribution for variable importance exhibits the
Bernstein-von Mises (BvM) phenomenon. That is, af-
ter proper re-centering, Πn

(
ψp(f)

)
converges toward

a Gaussian distribution whose (1 − q)-level credible
intervals achieve the correct coverage for the true vari-
able importance parameters, i.e., a 95% credible inter-
val indeed covers the true parameter 95% of the time
(Castillo and Nickl, 2013) . The BvM theorems pro-
vide a rigorous theoretical justification for the BNN’s
ability to quantify its uncertainty about the impor-
tance of input variables.

We first explain why the re-centering is necessary. No-
tice that under noisy observations, ψp(f) = || ∂∂xp

f ||2n
is a quadratic statistic that is strictly positive even
when ψp(f0) = 0. Therefore, the credible interval of
un-centered ψp(f) will never cover the truth. To this

end, it is essential to re-center ψp so that it is an un-
biased estimate of ψ(f0):

ψcp(f) = ψp(f)− ηn. (3)

Here, ηn = op(
√
n) is a de-biasing term that estimates

the asymptotically vanishing bias ψp(f0)−E0(ψp(f)),
whose expression we make explicit in the BvM Theo-
rem below.

Theorem 2 (Bernstein-von Mises (BvM) for ψcp).
For f ∈ F(L,W,B), assume the posterior distribu-
tion Πn(f) contracts around f0 at rate εn. Denote
Dp : f → ∂

∂xp
f to be the weak differentiation operator,

and Hp = D>p Dp the corresponding inner product. For
ε the “true” noise such that y = f0 + ε, define

ψ̂p = ||Dp(f0 + ε)||2n = ψp(f0) + 2〈Hpf0, ε〉n + 〈Hpε, ε〉n,

and its centered version as ψ̂cp = ψ̂p − η̂n, where η̂n =

tr(Ĥp)/n for Ĥp the empirical estimate of Hp. Then,
the posterior distribution of the centered Bayesian es-
timator ψcp(f) = ψp(f) − ηn is asymptotically normal

surrounding ψ̂cp. That is,

Π
(√

n(ψcp(f)− ψ̂cp)
∣∣∣{xi, yi}ni=1

)
 N(0, 4||Hpf0||2n).

The proof for this result is in Section C.4. Theorem 2
states that the credible intervals from posterior distri-
bution Πn

(
ψcp(f)

)
achieve the correct frequentist cov-

erage in the sense that a 95% credible interval covers
the truth 95% of the time. To see why this is the case,
notice that a (1 − α)-level credible set B̂n under pos-
terior distribution Πn satisfies Πn

(
B̂n
)

= 1−α. Also,

since Πn → N(0, σ2
BvM), B̂n also satisfies

ΠN(0,1)

(
(B̂n − ψ̂cp)/σBvM

)
→ 1− α (4)

in probability for σ2
BvM = 4||Hpf0||2n/n, where ΠN(0,1)

is the standard Gaussian measure. In other words,
the set B̂n can be written in the form of B̂n =[
ψ̂cp−ρασBvM, ψ̂cp+ρασBvM

]
, which matches the (1−α)-

level confidence intervals of an unbiased frequentist es-
timator ψ̂p(f0), which are known to achieve correct
coverage for true parameters2 (van der Vaart, 2000).

Handling the Issue of Multiple Comparison No-
tice that Theorem 2 provides justification only for
the univariate confidence intervals Πn(ψcp). To han-
dle the issue of multiple comparisons, we must take
into account the statistical dependencies between all
{ψcp(f)}Pp=1. To this end, we extend Theorem 2 to the
multivariate case to verify that the deep BNN’s simul-
taneous credible intervals for all {ψcp(f)}Pp=1 also have
the correct coverage.

2Here ρα is the 1− α
2

quantile function under a standard
Gaussian distribution, e.g., ρα = 1.96 for 95% credible
interval.



Figure 1: BNN’s convergence behavior for learning prediction f∗ (first row) and variable importance ψ(f∗) (second row)
under sample sizes n ∈ (100, 2000) for P ∈ (50, 200), measured by the standardized MSE (i.e. 1 − R2). Column 1-3
corresponds to linear, neural, and complex.

Theorem 3 (Multivariate Bernstein-von Mises (BvM)
for ψc). For f ∈ F(L,W,B), assuming the posterior
distribution Πn(f) contracts around f0 at rate εn. De-

note ψ̂c = [ψ̂c1, . . . , ψ̂
c
P ] for ψ̂cp as defined in Theorem

2. Also recall that P = o(1), i.e. the data dimension
does not grow with sample size.

Then ψ̂c is an unbiased estimator of ψ(f0) =
[ψ1(f0), . . . , ψP (f0)], and the posterior distribution for
ψc(f) asymptotically converge toward a multivariate

normal distribution surrounding ψ̂c, i.e.

Π
(√

n(ψc(f)− ψ̂c)
∣∣∣{xi, yi}ni=1

)
 MVN(0, V0),

where V0 is a P × P matrix such that (V0)p1,p2 =
4〈Hp1f0, Hp2f0〉n.

Proof is in Supplementary Section C.5.

4 Experiment Analysis

4.1 Posterior Concentration and Uncertainty
Quantification

We first empirically validate the two core theoretic re-
sults, posterior convergence and Bernstein-von Mises
theorem, of this paper. In all the experiments de-
scribed here, we use the standard i.i.d. Gaussian priors
for model weights, so the model does not have an addi-
tional sparse-inducing mechanism beyond ReLU. We
perform posterior inference using Hamiltonian Monte
Carlo (HMC) with an adaptive step size scheme (An-
drieu and Thoms, 2008) on Core i7 CPU with 64G
memory and GeForce GTX 1070 GPU.

Learning Accuracy and Convergence Rate We
generate data under the Gaussian noise model y ∼
N(f∗, 1) for data-generation function f∗ with true

dimension P ∗ = 5. We vary the dimension of the
data between P ∈ (25, 200), and vary sample sizes
n ∈ (100, 2000). For the neural network model, we
consider a 2-layer, 50-hidden-unit feed-forward archi-
tecture (i.e., L = 2 and K = 50) with standard i.i.d.
Gaussian priors N(0, σ2 = 0.1) for model weights. We
consider three types of data-generating f∗: (1) lin-
ear: a simple linear model f∗(x) = x>β; (2) neu-
ral: a function f∗ ∈ F(L,W,B), and (3) complex: a
complicated, non-smooth multivariate function3 that
is outside the neural network model’s approximation
space F(L,W,B). This latter data-generating model
violates the assumption that f∗ ∈ F in Proposition 1.
We repeat the simulation 50 times for each setting, and
evaluate the neural network’s performance in learning
f and ψp(f) using out-of-sample standardized mean
squared error (MSE), as follows:

std MSE(f, f∗) =
1
n

∑n
i=1[f(xi)− f∗(xi)]2

1
n

∑n
i=1[f∗(xi)− E(f∗(xi))]2

.

This is essentially the 1 − R2 statistic in regression
modeling whose value lies within (0, 1). Use of this
statistic allows us to directly compare model perfor-
mance across different data settings. The std MSE
for ψ(f) = {ψp(f)}Pp=1 is computed similarly by aver-
aging over all p ∈ {1, . . . , P}.

Figure 1 summarizes the standardized MSEs for learn-
ing f∗ and ψ(f∗), where each column corresponds
to a data-generation machanism (linear, neural and
complex). The first row summarizes the model’s con-
vergence behavior in prediction (learning f∗). We see

3f∗(x) = sin(max(x1,x2))+arctan(x2)
1+x1+x5

+ sin(0.5x3)
(
1 +

exp(x4 − 0.5x3)
)

+ x23 + 2 sin(x4) + 4x5, which is non-
continuous in terms of x1, x2 but infinitely differentiable in
terms of x3, x4, x5
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Table 1: Summary of variable selection methods included in the empirical study.

Model / Metric Decision Rule

Thresholding Hypothesis Test Knockoff
Linear Model - LASSO Tibshirani (1996) Barber and Cands (2015) Lockhart et al. (2013)

Random Forrest - Impurity Breiman (2001) Cands et al. (2018) Altmann et al. (2010)

Group L1 Thresholding Spike-and-Slab Probability Credible Interval
Neural Network - W1 Feng and Simon (2017) Liang et al. (2018)

Neural Network - ψc(f) (this work)

that the model’s learning speed deteriorates as the
data dimension P increases. However, this impact of
dimensionality appears to be much smaller in the lin-
ear and neural scenarios, which both satisfy f∗ ∈ F
(Proposition 1). Comparatively, on the second row,
the model’s learning speed for variable importance are
upper bounded by, and in fact much faster than, the
speed of learning f∗. This verifies our conclusion in
Theorem 1 that a model’s good behavior in prediction
translates to good performance in learning variable im-
portance. We also observe that when the assumption
f∗ ∈ F is violated (e.g. for complex f∗ in Column 3),
the posterior estimate of ψp(f) still converges toward
ψp(f0), although at a rate that is much slower and is
more sensitive to the dimension P of the data.

Bernstein-von Mises Phenonmenon We evaluate
the BNN model’s convergence behavior toward the
asymptotic posterior N(0, σ2

BvM = 4||Hp f0||2n) using
two metrics: (1) the standardized MSE for learning
the standard deviation σBvM, which assesses whether
the spread of the posterior distribution is correct. (2)
The Cramér von Mises (CvM) statistic as defined
as the empirical L2 distance between the standard-
ized posterior sample {ψcstd,m}Mm=1 and a Gaussian
distribution Φ. This latter statistic, CvM(ψcstd) =
1
M

∑M
m=1

[
F(ψcstd,m) − Φ(ψcstd,m)

]2
, assesses whether

the shape of the posterior distribution is sufficiently
symmetric and has a Gaussian tail. Notice that since
the CvM is a quadratic statistic, it roughly follows a
mixture of χ2 distribution even if true variable impor-
tance ψ(f) is zero. Therefore, we compare it against
a null distribution of CvM(ψcstd) for which ψcstd,m is
sampled from a Gaussian distribution.

Figure 2: The variable importance posterior’s conver-
gence behavior toward the asymptotic standard deviation
(left, measured by standardized MSE) and toward normal-
ity (right, measured by the CvM distance from a Gaus-
sian distribution) under sample size n ∈ (100, 10000) and
P ∈ (25, 100). Shaded region in the right figure indicates
the {5%, 10%, 25%, 75%, 90%, 95%} quantiles of the null
CvM distribution.

Figure 2 summarizes the posterior distribution’s con-
vergence behavior in standard deviation (measured by
std MSE, top) and in normality (measured by CvM ,
bottom). The shaded region in the lower figure cor-
responds to the quantiles of a null CvM distribution.
The figure shows that, as the sample size increases,
the standardized MSE between sd(ψc) and σBvM con-
verges toward 0, and the CvM statistics enters into
the range of the null distribution. The speed of con-
vergence deteriorates as the dimension of the data in-
creases, although not dramatically. These observa-
tions indicate that the credible intervals from the vari-
able importance posterior Πn(ψc(f)) indeed achieve
the correct spread and shape in reasonably large sam-
ples, i.e. the Bernstein-von Mises phenomenon holds
under the neural network model.

4.2 Effectiveness in High-dimensional
Variable Selection

Finally, we study the effectiveness of the proposed vari-
able selection approach (neural variable selection using
credible intervals) by comparing it against nine exist-
ing methods based on various models (linear-LASSO,
random forest, neural network) and decision rules
(heuristic thresholding, hypothesis testing, Knockoff).
We consider both low- and high-dimension situations
(d ∈ {25, 75, 200}) and observe how the performance of
each variable selection method changes as the sample
size grows.

For the candidate variable selection methods, we no-
tice that a variable selection method usually consists of
three components: model, measure of variable impor-
tance, and the variable-selection decision rule. To this
end, we consider nine methods that span three types
of models and three types of decision rules (See Table
1 for a summary). The models we consider are (1)

LASSO, the classic linear model y =
∑P
p=1 xpβp with

LASSO penalty on regression coefficients β, whose
variable importance is measured by the magnitude
of βp. (2) RF, the random forest model that mea-
sures variable importance using impurity, i.e., the de-
crease in regression error due to inclusion of a vari-
able xp (Breiman, 2001). (3) NNet, the (deep) neu-
ral networks that measure feature importance using
either the magnitude of the input weights W1 or, in
our case, the integrated gradient norm ψc(f). For
LASSO and RF, we consider three types of deci-



Table 2: F1 score for classic and machine-learning based variable selection methods (summarized in Table 1) under low-
dimension (d=25), moderate-dimension (d=75) and high-dimension data (d=200). Boldface indicates the best-performing
decision rules in each dimension-model combination.

Model Rule n=250 n=300 n=350 n=400 n=450 n=500

d=25

LASSO
thres 0.65± 0.11 0.64± 0.06 0.63± 0.08 0.76± 0.11 0.72± 0.09 0.73± 0.06

knockoff 0.99± 0.02 0.99± 0.04 0.94± 0.09 0.98± 0.04 0.99± 0.03 0.99± 0.04
test 1.00± 0.00 1.00± 0.00 1.00± 0.00 0.89± 0.00 1.00± 0.00 1.00± 0.00

RF
thres 1.00± 0.00 1.00± 0.00 1.00± 0.00 1.00± 0.00 1.00± 0.00 1.00± 0.00

knockoff 0.62± 0.48 1.00± 0.02 0.96± 0.16 0.90± 0.30 0.94± 0.19 0.99± 0.03
test 0.91± 0.05 0.98± 0.05 1.00± 0.00 0.98± 0.05 0.98± 0.05 0.98± 0.05

NNet
Group L1 1.00± 0.00 1.00± 0.00 1.00± 0.00 1.00± 0.00 1.00± 0.00 1.00± 0.00
SpikeSlab 0.68± 0.05 0.68± 0.05 0.70± 0.06 0.69± 0.07 0.71± 0.08 0.72± 0.13
CI (ours) 0.90± 0.04 0.97± 0.05 0.98± 0.04 0.97± 0.05 0.93± 0.06 1.00± 0.00

n=250 n=300 n=350 n=400 n=450 n=500

d=75

LASSO
thres 0.32± 0.04 0.31± 0.03 0.31± 0.06 0.46± 0.11 0.56± 0.00 0.53± 0.11

knockoff 0.93± 0.14 0.90± 0.14 0.89± 0.15 0.94± 0.08 0.94± 0.11 0.98± 0.04
test 0.75± 0.03 0.83± 0.07 0.91± 0.00 0.66± 0.33 0.71± 0.00 0.89± 0.00

RF
thres 0.66± 0.10 0.67± 0.06 0.72± 0.10 0.68± 0.06 0.80± 0.04 0.86± 0.04

knockoff 0.79± 0.37 0.93± 0.14 0.93± 0.17 0.92± 0.18 0.95± 0.09 0.98± 0.05
test 0.89± 0.12 0.93± 0.07 0.86± 0.04 0.88± 0.07 0.90± 0.09 0.95± 0.05

NNet
Group L1 0.77± 0.00 0.67± 0.27 0.68± 0.23 0.77± 0.00 0.77± 0.00 0.77± 0.00
SpikeSlab 0.63± 0.09 0.66± 0.06 0.65± 0.08 0.65± 0.06 0.67± 0.07 0.68± 0.10
CI (ours) 0.98± 0.04 0.97± 0.04 0.91± 0.07 0.97± 0.04 0.98± 0.05 1.00± 0.00

n=250 n=300 n=350 n=400 n=450 n=500

d=200

LASSO
thres 0.29± 0.05 0.32± 0.01 0.28± 0.05 0.38± 0.10 0.42± 0.08 0.35± 0.06

knockoff 0.31± 0.42 0.68± 0.38 0.88± 0.21 0.89± 0.11 0.90± 0.09 0.87± 0.18
test 0.21± 0.04 0.25± 0.03 0.04± 0.00 0.49± 0.02 0.27± 0.13 0.61± 0.04

RF
thres 0.37± 0.02 0.42± 0.01 0.43± 0.06 0.52± 0.02 0.54± 0.05 0.59± 0.05

knockoff 0.12± 0.25 0.29± 0.39 0.38± 0.42 0.70± 0.42 0.80± 0.39 0.44± 0.49
test 0.79± 0.10 0.81± 0.13 0.79± 0.07 0.87± 0.11 0.83± 0.09 0.70± 0.08

NNet
Group L1 0.67± 0.00 0.67± 0.00 0.67± 0.00 0.67± 0.00 0.67± 0.00 0.67± 0.00
SpikeSlab 0.45± 0.26 0.53± 0.17 0.57± 0.14 0.60± 0.14 0.57± 0.12 0.57± 0.11
CI (ours) 0.84± 0.10 0.76± 0.08 0.84± 0.08 0.93± 0.07 0.98± 0.04 0.92± 0.08

sion rule: (1) Heuristic Thresholding, which se-

lects a variable by inspecting if the estimate of β̂p is
0 or if the impurity for that variable is greater than
1% of the total impurity summed over all variables
(Ye and Sun, 2018); (2) Knockoff, a nonparametric
inference procedure that controls the FDR by con-
structing a data-adaptive threshold for variable im-
portance (Cands et al., 2018), and (3) Hypothesis
Test, which conducts either an asymptotic test on
a LASSO-regularized |βp| estimate (Lockhart et al.,
2013) or permutation-based test based on random for-
est impurity (Altmann et al., 2010), For both of these,
we perform the standard Bonferroni correction. We
select the LASSO hyper-parameters λ based on 10-
fold cross validation, and use 500 regression trees for
RF. For NNet, we also consider three decision rules:
the frequentist approach with group-L1 regulariza-
tion on input weights W1 (Feng and Simon, 2017), a
Bayesian approach with spike-and-slab priors on W1

(Liang et al., 2018), and our approach that is based
on 95% posterior credible intervals of ψcp(f). Regard-
ing the NNet architecture, we use L = 1,W = 5 for
the LASSO- and Spike-and-slab-regularized networks
as suggested by the original authors(Feng and Simon,
2017; Liang et al., 2018). We use L = 1,W = 50 for
our approach since it is an architecture that is more
common in practice.

We generate data by sampling the true function from
the neural network model f∗ ∈ F(L∗ = 1,W ∗ = 5).
Notice that this choice puts our method at a disad-
vantage compared to other NNets methods, since our

network width W = 50 > W ∗. We fix the number
of data-generating covariates to be d∗ = 5, and per-
form variable selection on input features Xn×P with
dimension P ∈ {25, 75, 200} which corresponds to low-
, moderate-, and high-dimensional situations. We vary
sample size n ∈ (250, 500). For each simulation setting
(n, P ), we repeat the experiment 20 times, and sum-
marize each method’s variable selection performance
using the F1 score, defined as the geometric mean of
variable selection precision prec = |Ŝ ∩ S|/|Ŝ| and re-
call recl = |Ŝ ∩S|/|S| for S the set of data-generating
variables and Ŝ the set of model-selected variables.

Table 2 summarizes the performance as quantified by
the F1 score of the variable-selection methods in low-
, medium- and high-dimension situations. In gen-
eral, we observe that across all methods, LASSO-
knockoff, RF-test and our proposed NNet-CI tend
to have good performance, with NNet-CI being more
effective in higher dimensions (d=200).

Our central conclusion is that a powerful model
alone is not sufficient to guarantee effective
variable selection. A good measure of variable im-
portance, in terms of an unbiased and low-variance
estimator of the true variable importance, and also
a rigorous decision rule that has performance guar-
antee in terms of control over FDR or Type-I er-
ror are equally important. For example, although
based on a neural network that closely matches the
truth, NNet-Group L1 and NNet-SpikeSlab mea-
sures variable importance using the input weight Ŵ1,
which is an unstable estimate of variable importance
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due to over-parametrization and/or non-identifiablity.
As a result, the performance of these two models are
worse than the linear-model based LASSO-knockoff.
Comparing between the decision rules, the heuris-
tic thresholding rules (LASSO-thres and RF-thres)
are mostly not optimized for variable selection per-
formance. As a result, they tend to be susceptible
to the multiple comparison problem and their perfor-
mance deteriorates quickly as the dimension increases.
The Knockoff-based methods (LASSO-knockoff and
RF-knockoff) are nonparametric procedures that are
robust to model misspecification but tend to have weak
power when the model variance is high. As a result,
the Knockoff approach produced good results for the
low-variance linear-LASSO model, but comparatively
worse result for the more flexible but high-variance
random forest model. Finally, the hypothesis tests /
credible intervals are model-based procedures whose
performance depends on the quality of the model. Hy-
pothesis tests are expected to be more powerful when
the model yields an unbiased and low-variance esti-
mate of f∗ (i.e. RF-test and NNet-CI), but has
no performance guarantee when the model is misspec-
ified (i.e. LASSO). In summary, we find that the
NNet-CI method combines a powerful model that
is effective in high dimension with a good variable-
importance measure that has fast rate of convergence
and also a credible-based selection rule that has a rig-
orous statistical guarantee. As a result, even with-
out any sparse-inducing model regularization, NNet-
CI out-performed its NNet-based peers, and is more
powerful than other LASSO- or RF-based approaches
in high dimensions.

5 Discussion and Future Directions

In this work, we investigate the theoretical basis un-
derlying the deep BNN’s ability to achieve rigorous
uncertainty quantification in variable selection. Us-
ing the square integrated gradient ψp(f) = || ∂∂xp

f ||2n
as the measure of variable importance, we established
two new Bayesian nonparametric results on the BNN’s
ability to learn and quantify uncertainty about vari-
able importance. Our results suggest that the neural
network can learn variable importance effectively in
high dimensions (Theorem 1), in a speed that in some
cases “breaks” the curse of dimensionality (Proposi-
tion 1). Moreover, it can generate rigorous and cal-
ibrated uncertainty estimates in the sense that its
(1− q)-level credible intervals for variable importance
cover the true parameter (1−q)% of the time (Theorem
2 and 3). The simulation experiments confirmed these
theoretical findings, and revealed the interesting fact
that BNN can learn variable importance ψp(f) at a
rate much faster than learning predictions for f∗ (Fig-
ure 1). The comparative study illustrates the effective-

ness of the proposed approach for the purpose of vari-
able selection in high dimensions, which is a scenario
where the existing methods experience difficulties due
to model misspecification, the curse of dimensionality,
or the issue of multiple comparison.

Discussion: learning variable importance under
mis-specification The theoretical results developed
in this work assumes a well-specified scenario where
the model’s prediction function f is guaranteed to con-
verge toward the true function f∗ as n → ∞. How-
ever, it is important to ask if learning variable impor-
tance is still possible under different types of model
mis-specification. To this end, we note that if the mis-
specification is mild (e.g., f∗ does not belong to F
but to the β-Hölder space that contains F), the recent
literature suggests that the posterior concentration of
the prediction function f and the variable importance
ψp(f) is still likely, although at a much slower rate
(Schmidt-Hieber, 2017; Rockova and Polson, 2018).
This observation is empirically validated by the exper-
iment in Section 4, where the model’s learning speed
is indeed evidently slower under the mis-specified sce-
nario (Figure 1). However, the situation becomes more
complex when the misspecification is severe, where
the posterior convergence of the prediction function
f does not hold even under infinite data. In this case,
the model’s variable importance estimate ψp(f) does
not converge toward the truth ψp(f

∗) unless we im-
pose additional assumption on the true function f∗.
For example, if f∗ is a generalized additive function
f =

∑P
p=1 h

∗
p(xp) with Dpf

∗ = ∂
∂p
h∗p, then the model

can correctly learn the variable importance ψp(f
∗) =

||Dpf
∗||22 = || ∂∂ph

∗
p||22 as long as it can correctly spec-

ify the marginal prediction function h∗p. On the
other hand, if f∗ adopts a tensor product form f∗ =∏P
p=1 hp(xp) with Dpf

∗ = ∂
∂p
h∗p ∗

[∏
p′ 6=p h

∗
p′(xp′)

]
,

then posterior convergence is not likely without addi-
tional assumptions on ||

∏
p′ 6=p h

∗
p′(xp′)||22. We leave a

full theoretical discussion of this topic for future work.

Future work Consistent with the classic Bayesian
nonparametric and deep learning literature (Castillo
and Rousseau, 2015; Rokov and Saha, 2019; Barron,
1993; Barron and Klusowski, 2018), this work as-
sumes the noise distribution ε is known. Furthermore,
computing the exact credible intervals under a BNN
model requires the use of Markov Chain Monte Carlo
(MCMC) procedures, which can be infeasible for large
datasets. Therefore two important future directions of
this work are to investigate the BNN’s ability to learn
variable importance under distributional misspecifica-
tion, and to identify posterior inference methods (e.g.,
particle filter (Dai et al., 2016) that scale to large
datasets while also achieve rigorous uncertainty quan-
tification.
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