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Benchmarking Simulation-Based Inference

A Algorithms

A.1 Rejection Approximate Bayesian Computation (REJ-ABC)

Algorithm 1:  Rejection ABC

while in simulation budget do
Sample °from p( )
Simulate data x° from p(xj 9
if d(x%xo) then

| Accept
else

| Reject
end

end

return Accepted samplest %g from p( jd(x;xo) )

0

Classical Approximate Bayesian Computation (ABC) is based on Monte Carlo rejection sampling (Tavaré et al.,
1997; Pritchard et al., 1999): In rejection ABC, the evaluation of the likelihood is replaced by a comparison
between observed datax, and simulated data x, based on a distance measurd(x;X,). Samples from the
approximate posterior are obtained by collecting simulation parameters that result in simulated data that is close
to the observed data.

More formally, given observed datax,, a prior p( ) over parameters of simulation-based modep(xj ), a distance
measured(x; X,) and an acceptance threshold, rejection ABC obtains parameter samples from the approximate
posterior as outlined in Algorithm []

In theory, rejection ABC obtains samples from the true posterior p( jX,) in the limit ! OandN !'1 | where
N is the simulation budget. In practice, its accuracy depends on the trade-o between simulation budget and
the rejection criterion . Rejection ABC su ers from the curse of dimensionality, i.e., with linear increase in the
dimensionality of x, an exponential increase in simulation budget is required to maintain accurate results.

For the benchmark, we did not use a xed -threshold, but quantile-based rejection. Depending on the simulation
budget (1k, 10k, 100k), we used a quantile of (0.1, 0.01, or, 0.001), so that REJ-ABC returned 100 samples with
smallest distance tox, in each of these cases (s¢e Appendix|H for di erent hyperparameter choices). In order to
compute metrics on 10k samples, we sampled from a KDE tted on the accepted parameters (details about KDE
resampling in[Appendix H). REJ-ABC requires the choice of the distance measurel(x; X,): here we used the
l>-norm.
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A.2 Sequential Monte Carlo Approximate Bayesian Computation (SMC-ABC)

Algorithm 2:  Population Monte Carlo ABC (ABC-PMC) as in Beaumont et al. (2009)

Set schedule (including initial ), population indicator t =0, and population sizeN
Initialize weights Wo = 1=N uniformly

Sample initial population f (()')g using rejection sampling with ¢

while in simulation budget do

Increase population indicatort = t +1
Set particle indicator i =0

while i<N do

Sample °from previous population f §|)19 with weights th(')lg;
Perturb % 9 K (j9
Simulate data x°°from p(xj %

if d(x%x,) ¢ then

i . (i)
set "= ®andw/ = p—LL)
) o j=1 Wt KeC ol ¢og)
Increase particle indicatori = i +1
else
| reject
end

end P
Normalize weights so that ;W) =1

end
return Weighted samplesf Ei)gfrom p( jd(x;xe) )

Sequential Monte Carlo Approximate Bayesian Computation (SMC-ABC) algorithms (Beaumont et al., 2002;
Marjoram and Tavaré, 2006; Sisson et al., 2007; Toni et al., 2009) are an extension of the classical rejection ABC
approach, inspired by importance sampling and sequential Monte Carlo sampling. Central to SMC-ABC is the
idea to approach the nal set of samples from the approximate posterior by constructing a series of intermediate
sets of samples slowly approaching the nal set through perturbations.

Several variants have been developed (e.g., Sisson et al., 2007; Beaumont et al., 2009; Toni et al., 2009; Simola
et al., 2020). Here, we used the scheme ABC-PMC scheme of Beaumont et al. (2009) and refer to it as SMC-ABC
in the manuscript. More formally, the description of the ABC-PMC algorithm is as follows: Given observed data

Xo, @ prior p( ) over parameters of a simulation-based modep(xj ), a distance measured(x; X,), a schedule

of acceptance thresholds;, and a kernelK ( j 9 to perturb intermediate samples, weighted samples of the
approximate posterior are obtained as described in Algorithn{ 2.

SMC-ABC can improve the sampling e ciency compared to REJ-ABC and avoids severe ine ciencies due to a
mismatch between initial sampling and the target distribution. However, it comes with more hyperparameters
that can require careful tuning to the problem at hand, e.g., the choice of distance measure, kernel, andschedule.
Like, REJ-ABC, SMC-ABC su ers from the curse of dimensionality.

For the benchmark, we considered the popular toolboxpyABC(Klinger et al., 2018). Additionally, to fully
understand the details of the SMC-ABC approach, we also implemented our own version. In the main paper we
report results obtained with our implementation because it yielded slightly better results. A careful comparison
of the two approaches, and the optimization of hyperparameters like -schedule, population size and perturbation
kernel variance across di erent tasks are shown ifi Appendix H. After optimization, the crucial parameters of
SMC-ABC were set to: I,-norm as distance metric, quantile-based epsilon decay with 0.2 quantile, population size
100 for simulation budgets 1k and 10k, population size 1000 for simulation budget 100k, Gaussian perturbation
kernel with empirical covariance from previous population scaled by 0.5. We obtained 10k samples required for
calculation of metrics as follows: If a population is not complete within the simulation budget we completed it
with accepted particles from the last population and recalculated all weights. We then tted a KDE on all those
particles and sampled 10k samples from the KDE.
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A.3 Neural Likelihood Estimation ( )

Algorithm 3:  Single round Neural Likelihood as in Papamakarios et al. (2019b)
SetD = fg
for n=1: N do
Sample , p( )
Simulate X,  p(Xj n)
Add ( n;xp)to D
end
Train g (xj )onD
return Samples fromp( jXo) / q (Xoj )p( ) via MCMC; q (xj )

Likelihood estimation approaches to SBI use density estimation to approximate the likelihoodp(xoj ). After
learning a surrogateq ( denoting the parameters of the estimator) for the likelihood function, one can
for example use Markov Chain Monte Carlo (MCMC) based sampling algorithms to obtain samples from the
approximate posterior p( jxo). This idea dates back to using Gaussian approximations of the likelihood (Wood,
2010; Drovandi et al., 2018), and more recently, was extended to density estimation with neural networks
(Papamakarios et al., 2019b; Lueckmann et al., 2019).

We refer to the single-round version of the (sequential) neural likelihood approach by Papamakarios et al. (2019b)
as , and outline it in Algorithm :ﬂ Given a set of samplesf ,;Xn01.n Obtained by sampling , p( )
from the prior and simulating x,  p(xj n), we train a conditional neural density estimator g (xj ) modelling
the conditjpnal of data given parameters on the setf ,;X,01.n. Training proceeds by maximizing the log
likelihood | logq (xj ). Given enough simulations, a su ciently exible conditional neural density estimator
approximates the likelihood in the support of the prior p( ) (Papamakarios et al., 2019b). Onceg is trained,
samples from the approximate posteriorp( jX,) are obtained using MCMC sampling based on the approximate
likelihood P(x,j ) and the prior p( ).

For MCMC sampling, Papamakarios et al. (2019b) suggest to use Slice Sampling (Neal, 2003) with a single chain.
However, we observed that the accuracy of the obtained posterior samples can be substantially improved by
changing the Slice Sampling scheme as follows: 1) Instead of a single chain, we used 100 parallel MCMC chains;
2) for initialization of the chains, we sampled 10k candidate parameters from the prior, evaluated them under
the unnormalized approximate posterior, and used these values as weights to resample initial locations; 3) we
transformed parameters to be unbounded as suggested e.g. in Bingham et al. (2019); Carpenter et al. (2017); Hogg
and Foreman-Mackey (2018). In addition, we reimplemented the slice sampler to allow vectorized evaluations of
the likelihood, which yielded signi cant computational speed-ups.

For the benchmark, we used as density estimator a Masked Autoregressive Flow (MAF, Papamakarios et al., 2017)
with ve ow transforms, each with two blocks and 50 hidden units, tanh non-linearity and batch normalization
after each layer. For the MCMC step, we used the scheme as outlined above with 250 warm-up steps and ten-fold
thinning, to obtain 10k samples from the approximate posterior (1k samples from each chain). I Appendix H we
show results for all tasks obtained with a Neural Spline Flow (NSF, Durkan et al., 2019) for density estimation,
using ve ow transforms, two residual blocks of 50 hidden units each, ReLU non-linearity, and 10 bins.
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A.4 Sequential Neural Likelihood Estimation (SNLE)

Algorithm 4:  Sequential Neural Likelihood as in Papamakarios et al. (2019b)
SetPo( jXo) = p( ) and D = fg
forr=1:R do
for n=1: N do
Sample , B 1( jXo) with MCMC
Simulate x,  p(Xj n)
Add ( n;xp) to D
end
(Re-)train g (xj )onD
Setpr( jxo) / q (Xoj )P( )
end
return Samples frompP( jxo) / d (Xo] )p( ) via MCMC; q (Xj )

Sequential Neural Likelihood estimation (SNLE or SNL, Papamakarios et al., 2019b) extends the neural likelihood
estimation approach described in the previous section to be sequential.

The idea behind sequential SBI algorithms is based on the following intuition: If for a particular inference problem,
there is only a singlex, one is interested in, then simulating data using parameters from the entire prior space
might be ine cient, leading to a training set D that contains training data ( ;X) which carries little information
about the posterior p( jXo). Instead, to increase sample e ciency, one may draw training data points from a
proposal distribution p( ), ideally obtaining for which x is close tox,. One candidate that has been commonly
used in the literature for such a proposal is the approximate posterior distribution itself.

SNLE is a multi-round version of , where in each round new training samples are drawn from a proposal
p( ). The proposal is chosen to be the posterior estimate ax, from the previous round p( jx,) and its samples
are obtained using MCMC. The proposal controls whereq (xj ) is learned most accurately. Thus, by iterating
over multiple rounds, a good approximation to the posterior can be learned more e ciently than by sampling all
training data from the prior. SNLE is summarized in Algorithm 4]

For the benchmark, we used as density estimator a Masked Autoregressive Flow (Papamakarios et al., 2017), and
MCMC to obtain posterior samples after every round, both with the same settings as described for . The
simulation budget was equally split across 10 rounds. Ifi Appendix H, we show results for all tasks obtained with
a Neural Spline Flow (NSF, Durkan et al., 2019) for density estimation, using ve ow transforms, two residual
blocks of 50 hidden units each, ReLU non-linearity, and 10 bins.
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A.5 Neural Posterior Estimation ( )

Algorithm 5:  Single round Neural Posterior Estimation as in Papamakarios and Murray (2016)
for j =1: N do

Sample ; p( )

Simulate x;  p(Xj )
end

Py
argmin |09QF(x,; (i)
Setp( jXo) = Gk (x,; )( )
return Samples fromp( jXo); G (x; )( )

uses conditional density estimation to directly estimate the posterior. This idea dates back to regression
adjustment approaches (Blum and Francois, 2010) and was extended to density estimators using neural networks
(Papamakarios and Murray, 2016) more recently.

As outlined in Algorithm @]the approach is as follows: Given a prior over parametersp( ) and a simulator, a set
of training data points ( ;x) is generated. This training data is used to learn the parameters of a conditional
density estimator q ( jx) using a neural networkF (x; ), i.e., = F(x; ). The loss function is given by the
negative log probability logqg ( jx). If the density estimator qis exible enough and training data is in nite,
this loss function leads to perfect recovery of the ground-truth posterior (Papamakarios and Murray, 2016).

For the benchmark, we used the approach by Papamakarios and Murray (2016) with a Neural Spline Flow (NSF,
Durkan et al., 2019) as density estimator, using ve ow transforms, two residual blocks of 50 hidden units
each, ReLU non-linearity, and 10 bins. We sampled 10k samples from the approximate posteri@g (x,; y( ). In
we compare NSFs to Masked Autoregressive Flows (MAFs, Papamakarios et al., 2017), as used in
Greenberg et al. (2019); Durkan et al. (2020), with ve ow transforms, each with two blocks and 50 hidden
units, tanh non-linearity and batch normalization after each layer.
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A.6 Sequential Neural Posterior Estimation (SNPE)

Algorithm 6:  Sequential Neural Posterior Estimation with atomic proposals (Greenberg et al., 2019)

Setpi( )= p( )
c O
forr=1:Rdo
for j =1: N do
c c+1
Sample ¢ pr()
Simulate ¢ p(Xj ¢)
end (
V()= M Dot = f b bt p0andl bi<by<iii<byu c©
P/ 0 othﬁrwise :
. P I
argmin E v,y 2 logex;; ()
Setpr+ ()= OF (xo; )( )
end

return Samples frompr ( jXo); G (x; )( )

Sequential Neural Posterior Estimation SNPE is the sequential analog of , and meant to increase sample
e ciency (see also[subsection A.4). When the posterior is targeted directly, using a proposal distributionp( )

di erent from the prior requires a correction step without it, the posterior under the proposal distribution would

be inferred (Papamakarios and Murray, 2016). This so-called proposal posterior is denoted bg( jx):

o p)p(x)
p( ix) = p( Jx)ip( Jp(x)’

R
where p(x) = B( )p(Xxj ). Note that for p( ) = p( ), it directly follows that p( jx) = p( jx).

There have been three di erent approaches to this correction step so far, leading to three versions of SNPE
(Papamakarios and Murray, 2016; Lueckmann et al., 2017; Greenberg et al., 2019). All three algorithms have in
common that they train a neural network F(x; ) to learn the parameters of a family of densitiesq to estimate
the posterior. They di er in what is targeted by g and which loss is used for.

SNPE-A (Papamakq._tjos and Murray, 2016) trains F to target the proposal posterior p( jx) by minimizing the
log likelihood loss » 1090 ( njxn), and then post-hoc solves fop( jx). The analytical post-hoc step places
restrictions on q , the proposal, and prior. Papamakarios and Murray (2016) used Gaussian mixture density
networks, single Gaussians proposals, %;1d Gaussian or uniform priors. SNPE-B (Lueckmann et al., 2017) trains

F with the importance weighted loss n ;’(( n") logg ( njXn) to directly recover p( jx) without the need for
post-hoc correction, removing restrictions with respect toq , the proposal, and prior. However, the importance
weights can have high variance during training, leading to inaccurate inference for some tasks (Greenberg et al.,
2019). SNPE-C (APT) (Greenberg et al., 2019) alleviates this issue by reparameterizing the problem such that it
can infer the posterior by maximizing an estimated proposal posterior. It trainsF to approximate p( jx) with

O (x; )( ), using a loss de ned on the approximate proposal posteriogk; ( ). Greenberg et al. (2019) introduce
“atomic' proposals to allow for arbitrary choices of the density estimator, e.g., ows (Papamakarios et al., 2019a):
The loss onek. ( ) is calculated as the expectation over proposal sets sampled from a so-called “hyperproposal’
V() as outlined in Algorithm E](see Greenberg et al., 2019, for full details).

For the benchmark, we used the approach by Greenberg et al. (2019) with “atomic' proposals and referred to it as
SNPE. As density estimator, we used a Neural Spline Flow (Durkan et al., 2019) with the same settings as for

. For the “atomic' proposals, we usedM = 10 atoms (larger M was too demanding in terms of memory).
The simulation budget was equally split across 10 rounds and for the nal round, we obtained 10k samples from
the approximate posterior pr( jXo). In we compare NSFs to Masked Autoregressive Flows (MAFs,
Papamakarios et al., 2017), as used in Greenberg et al. (2019); Durkan et al. (2020), with ve ow transforms,
each with two blocks and 50 hidden units,tanh non-linearity and batch normalization after each layer.
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A.7 Neural Ratio Estimation ( )

Algorithm 7:  Single round Neural Ratio Estimation as in Hermans et al. (2020)

Set optimization criterion | (e.g., BCE)
for j =1: N do

Sample ;  p( )

Sample } p( )

Simulate x;  p(xj ;)
end

argminl(d (Xn; n);1)+ 1(d (Xn; 9);0)
Parameterized (x; )
return Samples fromp( jx,) via MCMC; d (X; )

Neural ratio estimation ( ) uses neural-network based classi ers to approximate the posteriomp( jXo). While
neural-network based approaches described in the previous sections udensity estimation to either estimate the
likelihood ((S) ) or the posterior ((S) ), NRE algorithms ((S) ) use classi cation to estimate a ratio
of likelihoods. The ratio can then be used for posterior evaluation or MCMC-based sampling.

Likelihood ratio estimation can be used for SBI because it allows to perform MCMC without evaluating the
intractable likelihood. In MCMC, the transition probability from a current parameter  ; to a proposed parameter
% depends on the posterior ratio and in turn on the likelihood ratio between the two parameters:

PC 3x) _ pC9Ip(xj Y=p(x) _ p( Ip(xj 9.
P( x) P IOP(T )=p(x) ~ p( IP(Xj o)’

A
Therefore, given a ratio estimatorr(xj % ) = SE’X‘J' 1; learned from simulations, one can perform MCMC to

obtain samples from the posterior, even if evaluatingp(xj ) is intractable.

Hermans et al. (2020) proposed the following approach for MCMC with classi ers to approximate density ratios:
A classi er is trained to distinguish samples from an arbitrary ( ;x) p(Xxj )p( ) and samples from the marginal
model ( ;x) p( )p(x). This results in a likelihood-to-evidence estimator that needs to be trained only once to
be evaluated for any . The training of the classier d (x; ) proceeds by minimizing the binary cross-entropy loss
(BCE), as outlined in Algorithm ’E] Once the classier d (x; ) is parameterized, it can be used to perform MCMC
to obtain samples from the posterior. The authors name their approachAmortized Approximate Likelihood Ratio
MCMC (AALR-MCMC): It is amortized because once the likelihood ratio estimator is trained, it is possible to
run MCMC for any x  p(x).

Earlier ratio estimation algorithms for SBI (e.g., Izbicki et al., 2014; Pham et al., 2014; Cranmer et al., 2015; Dutta
et al., 2016) and their connections to recent methods are discussed in Thomas et al. (2020), as well as in Durkan
et al. (2020). AALR-MCMC is closely related to LFIRE (Dutta et al., 2016) but trains an amortized classi er
rather than a separate one per posterior evaluation. Durkan et al. (2020) showed that the loss of AALR-MCMC
is closely related to the atomic SNPE-C/APT approach of Greenberg et al. (2019) (SNPE) and that both can be
combined in a uni ed framework. Durkan et al. (2020) changed the formulation of the loss function for training
the classi er from binary to multi-class.

For the benchmark, we used neural ratio estimation ( ) as formulated by Durkan et al. (2020) and implemented

in the shi toolbox (Tejero-Cantero et al., 2020). As a classi er, we used a residual network architecture (ResNet)
with two hidden layers of 50 units and ReLU non-linearity, trained with Adam (Kingma and Ba,| 2015). Following

the notation of Durkan et al. (2020), we usedK = 10 as the size of the contrasting set. For the MCMC step,
we followed the same procedure as described for , i.e., using Slice Sampling with 100 chains, to obtain 10k
samples from each approximate posterior. Ifi Appendix H, we show results for all tasks obtained with a multi-layer
perceptron (MLP) architecture with two hidden layers of 50 ReLu units, and batch normalization.
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A.8 Sequential Neural Ratio Estimation ( )

Algorithm 8:  Sequential Neural Ratio Estimation as in Hermans et al. (2020)
Set optimization criterion | (e.g., BCE)

Setp( )= p( )
forr=1: R do
for j =1: N do

Sample b p( ) (via d and MCMC)
Sample ; p( ) (viad and MCMC)
Simulate X;  p(xj ;)
end
argminl(1%; 1); 1)+ 1(d (Xa; 1);0);
Parameterized (x; )

end
return Samples fromp( jx,) via MCMC; d (x; )

Sequential Neural Ratio Estimation ( ) is the sequential version of , and meant to increase sample
e ciency, at the cost of needing to train new classi ers for di erent X,.

A sequential version of neural ratio estimation was proposed by Hermans et al. (2020). As with other sequential
algorithms, the idea is to replace the prior by a proposal distribution p( ) that is focused onx, in the sense
that the sampled parameters result in simulated data x that are informative about x,. The proposal for the
next round is the posterior estimate from the previous round. The ratio estimator then becomes(x; ) and is
re ned over rounds by training the underlying classi er with positive examples (x; ) p(xj )p( ) and negative
examples(x; ) p(x)p( ). Exact posterior evaluation is not possible anymore, but samples can be obtained as
before via MCMC. These steps are outlined in Algorithm[8.

For the benchmark, we used as formulated by Durkan et al. (2020) and implemented in thebi toolbox
(Tejero-Cantero et al., 2020). The classi er had the same architecture as described for . For the MCMC step,
we followed the same procedure as described for . The simulation budget was equally split across 10 rounds.

In Appendix H] we show results for all tasks obtained with a multi-layer perceptron (MLP) architecture with two
hidden layers of 50 ReLu units, and batch normalization.



Benchmarking Simulation-Based Inference

A.9 Random Forest Approximate Bayesian Computation (RF-ABC)

Algorithm 9:  Random Forest ABC (RF-ABC) as in Raynal et al. (2019)

SetD = fg Set simulation budget N
Set number of treesB
Set minimum node sizeN nmin
for n=1: N do
Sample n p( )
Simulate x,  p(Xj n)
Add ( n;xp)to D
end
Run random forest regression ok on using D, B and N,
return N samplesf (')g and associated weights w(!) g for drawing approximate posterior samples

Random forest Approximate Bayesian Computation (RF-ABC, Pudlo et al.| 2016; Raynal et al., 2019) is a more
recently developed ABC algorithm based on a regression approach. Similar to previous regression approaches to
ABC (Beaumont et al., 2002; Blum and Francois, 2010), RF-ABC aims at improving classical ABC inference
(REJ-ABC, SMC-ABC) in the setting of high-dimensional data.

The idea of the RF-ABC algorithm is to use random forests (RF, |Breimar),  2001) to run a non-parametric

regression of a set of potential summary statistics of the data on the corresponding parameters. That is, the RF
regression is trained on data simulated from the model, such that the covariates are the summary statistics and
the response variable is a parameter. For a detailed description of the algorithm, we refer to Raynal et al. (2019).

The only hyperparameters for the RF-ABC algorithm are the number of trees and the minimum node size for the
RF regression. Following Raynal et al. (2019), we chose the default of 500 trees and a minimum of 5 nodes. The
output of the algorithm is a RF weight for each of the simulated parameters. This set of weights can be used to
calculate posterior quantiles or to obtain an approximate posterior density as described in Raynal et al. (2019).
We obtained 10k posterior samples for the benchmark by using the random forest weights to sample from the
simulated parameters. We used the implementation in theabcranger toolbox Collin et al. (2020).

One important property of RF-ABC is that it can only be applied in the unidimensional setting, i.e., for 1-D
dimensional parameter spaces, or for multidimensional parameters spaces with the assumption that the posterior
factorizes over parameters (thus ignoring potential posterior correlations). This assumptions holds only for a few
tasks in our benchmark (Gaussian Linear, Gaussian Linear Uniform, Gaussian Mixture). Due to this inherent
limitation, we report RF-ABC in the supplement (see Suppl. Fig. @
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A.10 Synthetic Likelihood (SL)

Algorithm 10:  Synthetic Likelihood algorithm as in Wood (2010)

Set number of simulations per stepM
Set nhumber of MCMC stepsT

for t=1:T do
Get new candidate ; from MCMC scheme

Set DI = fg
for m=1: M do
Simulate X, p(Xj 1)
Add ( ¢;Xm) to D¢
end
Use D; to estimate mean and covariance of a Gaussian approximation of the likelihood (xj 1)
Perform the next MCMC step using [ (xoj )

end
return N samplesf (Vg from MCMC chain

The Synthetic Likelihood (SL) approach circumvents the evaluation of the intractable likelihood by estimating a
synthetic one from simulated data or summary statistics. This approach was introduced by Wood (2010). Its
main motivation is that the classical ABC approach of comparing simulated and observed data with a distance
metric can be problematic if parts of the di erences are entirely noise-driven. Wood (2010) instead approximated
the distribution of the summary statistics (the likelihood) of a nonlinear ecological dynamic system as a Gaussian
distribution, thereby capturing the underlying noise as well. The approximation of the likelihood can then be
used to obtain posterior sampling via Markov Chain Monte Carlo (MCMC) (Wood, 2010).

The SL approach can be seen as the predecessor of the (S) approaches: They replaced the Gaussian
approximation of the likelihood with a much more exible one that uses neural networks and normalizing ows
(see[A.3). Moreover, there are modern approaches from the classical ABC eld that further developed SL using a
Gaussian approximation (e.g., Drovandi et al., 2018; Priddle et al., 2019).

For the benchmark, we implemented our own version of the algorithm proposed by Wood (2010). We used Slice
Sampling MCMC (Neal, 2003) and estimated the Gaussian likelihood from 100 samples at each sampling step. To
ensure a positive de nite covariance matrix, we added a small value to the diagonal of the estimated covariance
matrix for some of the tasks. In particular, we used = 0:01 for SIR and Bernoulli GLM Raw tasks, and we
tried without success =[0;0:01; 0:1;1:0] for Lotka-Volterra and SLCP with distractors. For all remaining tasks,
we set = 0. For Slice Sampling, we used a single chain initialized with sequential importance sampling (SIR)
as described for , 1k warm-up steps and no thinning, in order to keep the number of required simulations
tractable. This resulted in an overall simulation budget on the order of 10° to 10° simulations per run in order to
generate 10k posterior samples, as new simulations are required for every MCMC step.

The high simulation budget makes it problematic to directly compare SL and other other algorithms in the
benchmark. Therefore, we report SL in the supplement (see Suppl. Fid] 3).
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B Benchmark

B.1 Reference posteriors

We generated 10k reference posterior samples for each observation. For the Gaussian Lirjear task, reference
samples were obtained by using the analytic solution for the true posterior. Similarly, fof Gaussian Linear Uniform
and[Gaussian Mixturg, the analytic solution was used, combined with an additional rejection step, in order to
account for the bounded support of the posterior due to the use of a uniform prior. For thg Two Moonks task, we
devised a custom scheme based on the model equations, which samples both modes and rejects samples outside
the prior bounds.

For [SLCP] [SIR} and[Cotka-Volterra] we devised a likelihood-based procedure to ensure obtaining a valid set of
reference posterior samples: First, we either used Sampling/Importance Resampling (Rubin, 1988) (fP,
or Slice Sampling MCMC (Neal,[2003) (for[Lotka-Volterra) to obtain a set of 10k proposal samples from
the unnormalized posteriorf ( ) = p( jXo) = p(Xoj )p( ). We used these proposal samples to train a density
estimator, for which we used a neural spline ow (NSF) (Durkan et al., 2019). Next, we created a mixture
composed of the NSF and the prior with weights 0.9 and 0.1, respectively, as a proposal distributiog( )
for rejection sampling (Martino et al.| 2018). Rejection sampling relies on nding a constantM such that
f() Mg() forall values of : To nd this constant, we initialized M =1, sampled g( ), and updated
M =21:2f( )=g( )if f( )=g( ) >M . This loop stopped only after at least 100k samples without updating
M were reached. We then usedV , f, and g to generate 10k reference posterior samples. We found that the
NSF-based proposal distribution resulted in high acceptance rates. We used this custom scheme rather than
relying on MCMC directly, since we found that standard MCMC approaches (Slice Sampling, HMC, and NUTS)
all struggled with multi-modal posteriors and wanted to avoid bias in the reference samples, e.g. due to correlations
in MCMC chains.

As a sanity check, we ran this scheme twice on all tasks and observation and found that the resulting reference
posterior samples were indistinguishable in terms of C2ST.

B.2 Code

We provide sbibm, a benchmarking framework that implements all tasks, reference posteriors, di erent metrics
and tooling to run and analyse benchmark results at scale. The framework is available at:

github.com/sbi-benchmark/sbibm

We make benchmarking new algorithms maximally easy by providing an open, modular framework fomtegration
with SBI toolboxes. We here evaluated algorithms implemented inpyABC(Klinger et al., 2018), pyabcranger
(Collin et al., 2020), and sbi (Tejero-Cantero et al., 2020). We emphasize that the goal okbibm is orthogonal

to any toolbox: It could easily be used with other toolboxes, or even be used to compare results for the same
algorithm implemented by di erent ones. There are currently several SBI toolboxes available or under active
development. elfi (Lintusaari et al., 2018) is a general purpose toolbox, including ABC algorithms as well as
BOLFI (Gutmann and Corander, 2016). There are many toolboxes for ABC algorithms, e.g.,abcpy (Dutta et al.,
2017), astroABC (Jennings and Madigan,| 2017),CosmoAB(Ishida et al., 2015), see also Kousathanas et al, (2018)
for an overview. carl (Louppe et al.,|2016) implements the algorithm by Cranmer et al. (2015). hypothesis
(Hermans,|2019), andpydelfi (Alsing| 2019) are SBI toolboxes under development.

B.3 Reproducibility

To ensure reproducibility of our results, we publicly released all code including instructions on how to run the
benchmark on cloud-based infrastructure.


https://github.com/sbi-benchmark/sbibm
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F Figures

Figure 1: Additional ABC results with linear regression adjustment (LRA) and semi-automatic
summary-statistics (SASS). We ran ABC with post-hoc LRA (Beaumont et al., 2002; Blum| 2018). On some
tasks, this led to an improvement relative to versions without post-hoc adjustment. On Two Moons (bimodal
posterior), linear adjustment decreased performance. We implemented our own SASS (Prangle et al., 2014b) with
a third order polynomial feature expansion, and observed similar performance as with the implementation in
abcpy toolbox (Dutta et al.,[2017).
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Figure 2: RF-ABC results.  Results for RF-ABC (as described in) compared to REJ-ABC and SMC-ABC
on all benchmark tasks, using C2ST. Note that RF-ABC predicts each parameter individually, i.e. e ectively
assumes the posterior to be factorized this is only appropriate for the Gaussian Linear, Gaussian Linear Uniform,
and Gaussian Mixture tasks. On other tasks, the posterior deviates markedly from being factorized, and therefore
it is to be expected that RF-ABC performance is limited, even when using many samples. Each data point
corresponds to the mean and 95% con dence interval across 10 observations.
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Figure 3: SL results. Results for SL compared to and SNLE on benchmark tasks in terms of C2ST. Note
that SL performs simulations at every MCMC step to approximate a Gaussian likelihood (seO for details),
and therefore it does not produce sensible results with the simulation budgets of other algorithms (between 1k
and 100k), . In our experiments, SL required on the order oftl0® to 10° simulations. For the SLCP Distractors
and Lotka-Volterra stable estimation of covariances was not possible, which is why these tasks were omitted
(details in [A.10). We do not report SL results in the main paper, given the huge di erence in simulation budget.
Each data point corresponds to the mean and 95% con dence interval across 10 observations.
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Figure 4. MMD on Two Moons. When using MMD with the median heuristic (as commonly done, including

in SBI papers), MMD is slightly lower for the posterior obtained by REJ-ABC (left, blue samples), than for
SNLE samples (right, green samples): 0.00729 (REJ-ABC) versus 0.00772 (NLE). This is at odds with the visual
impression of the quality of the t (reference samples in gray) as well as C2ST results: A classi er performed
near chance level (.502) for SNLE samples while being able to tell apart REJ-ABC samples from the reference
with accuracy 0.794. When manually choosing a length scale on the median distance ofsingle crescent(i.e.,
0.09 instead of 1.78), MMD results were in agreement with C2ST results: 0.00738 (REJ-ABC) versus 0.00035
(SNLE), i.e., they also suggested a better t for SNLE. In the main paper, we prefer to report C2ST because we
found it less sensitive to hyperparameters: reliance on the commonly used median heuristic can be problematic
on tasks with complex posterior structure, e.g., multi-modality in Two Moons, as demonstrated here. We refer
the interested reader to Liu et al. (2020) for further illustrative examples of where MMD with Gaussian kernels
can have limited power. We also want to point out that new kernel-based two sample tests are being actively
developed which might make them easier to use on such problems in the future.
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Figure 5: Correlations between metrics for all tasks. NLTP is the negative log probability of true parameters.
Note that calculation of KSD was numerically unstable when calculating gradients for SLCP Distractors and Two
Moons, resulting in correlation of zero for these tasks.
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H Hyperparameter Choices

In this section, we address two central questions for any benchmark: (1) how hyperparameters are chosen and (2)
how sensitive results are to the respective choices.

Rather than tuning hyperparameters on a per-task basis, we changed hyperparameters on multiple or all tasks at
once and selected con gurations that worked best across tasks. We wanted to avoid over tting on individual
benchmark tasks and were instead interested in settings that can generalize across multiple tasks. In practice,
tuning an algorithm on a given task would typically be impossible, due to the lack of suitable metrics that can be
computed without reference posteriors as well as high computational demands that SBI tasks often have.

To nd good general settings, we performed more than 10 000 individual runs. We explored hyperparameter
choices that have not been previously reported, and revealed substantial improvements. The benchmark o ers
the possibility to systematically compare di erent choices and design better and more robust SBI algorithms.

H.1 REJ-ABC

Classical ABC algorithms have crucial hyperparameters, most importantly, the distance metric and acceptance
tolerance . We used our own implementation of REJ-ABC as it is straightforward to implement (see). The
distance metric was xed to be the l,-norm for all tasks and we varied di erent acceptance tolerances across
tasks on which REJ-ABC performed su ciently well. Our implementation of REJ-ABC is quantile based, i.e,.
we select a quantile of the samples with the smallest distance to the observed data, which implicitly de nes an

. The 10k samples needed for the comparison to the reference posterior samples are then resampled from the
selected samples. In order to check whether this resampling signi cantly impaired performance, we alternatively

t a KDE in order to obtain 10k samples.

Below, we show results for di erent schedules of quantiles for each simulation budget, e.g., a schedule of 0.1,
0.01, 0.001 corresponds to the 10, 1 and 0.1 percent quantile, or the top 100 samples for each simulation budget.
Across tasks and budgets the 0.1, 0.01, 0.001 quantile schedule performed b. 6). Performance showed
improvement by the KDE t, especially on the Gaussian tasks. We therefore report the version using the top 100
samples and KDE in the main paper.



Jan-Matthis Lueckmann, Jan Boelts, David S. Greenberg, Pedro J. Gongalves, Jakob H. Macke

Figure 6: Hyperparameter selection for REJ-ABC. C2ST performance of di erent percentile schedules
across simulation budgets (columns) for all tasks (rows). Top label for each plot column: number of samples
retained, and optional KDE. Across tasks and budgets, the schedule of 0.1, 0.01, 0.001 percentiles, which
corresponds to the top 100 samples closest to the observation, performed best. Each data point corresponds to
the mean and 95% con dence interval across 10 observations.
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H.2 SMC-ABC

SMC-ABC has several hyperparameters including the population size, the perturbation kernel, the epsilon

schedule and the distance metric. In order to ensure that we report the best possible SMC-ABC results for a fair
comparison, we sweeped over three hyperparameters that are especially critical: the population size, the quantile
used to select the epsilon from the distances of the particles of the previous population, and the scaling factor of
the covariance of the Gaussian perturbation kernel. The remaining hyperparameters were xed to values common
in the literature: Gaussian perturbation kernel and I2-norm distance metric.

Additionally, we compared our implementation against one from the popular pyABC toolbox (Klinger et al.,
2018) to which we refer as versions A and B respectively. We sweeped over these hyperparameters and optionally
added a post-hoc KDE t for drawing the samples needed for two-sample based performance metrics.

Overall, the parameter setting with a population size of 100, a kernel covariance scale of 0.5, and an epsilon
quantile 0.2 performed best. Although the results of the two di erent implementations were qualitatively very
similar (compare(Fig. 7 and|Fig. §, respectively), version A was slightly better on the Gaussian tasks. Although
we tried to match the implementations and the exact settings, there are small di erences between the two,
which might explain the di erence in the results: Implementation B constructs the Gaussian perturbation kernel
using kernel density estimation on the weighted samples of the previous population, whereas A constructs it
using the mean and covariance estimated from samples from the previous population. The latter could be
advantageous in case of a Gaussian-like (high-dimensional) posterior (Gaussian Mixture and Gaussian linear
task) and disadvantageous in a non-Gaussian-like posteriors (e.g., Two Moons). We decided to report results for
SMC-ABC in the main paper using implementation A (ours) with population size 100 for simulation budgets
1k and 10k, and population size 1000 for simulation budget 100k, a kernel covariance scale of 0.5, and epsilon
quantile 0.2. This choice of kernel covariance scale is di erent from recommendations in the literature (Sisson
et al., 2007; Beaumont et al., 2009). We only found very small performance di erences for di erent scales and
note that our choice is in line with the recommendation of the pyABCQtoolbox (pyABC APl Documentation,|2020),
i.e., using a scale between 0 and 1. Performance showed improvement by the KDE t, especially on the Gaussian
tasks. We therefore report the version with KDE in the main paper.
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Figure 7: Hyperparameter selection for SMC-ABC with our implementation . Top label for each plot
column: population size, kernel covariance scale, epsilon quantile/epsilon-decay parameter, and optional KDE.
Each data point corresponds to the mean and 95% con dence interval across 10 observations.
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Figure 8: Hyperparameter selection for SMC-ABC. with pyABCimplementation . Top label for each
plot column: population size, kernel covariance scale, epsilon quantile/epsilon-decay parameter, and optional
KDE. Each data point corresponds to the mean and 95% con dence interval across 10 observations.
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H.3 MCMC for (S) and (S)

(9) and (S) both rely on MCMC sampling, which has several hyperparameters. In line with Papamakarios
et al. (2019b) and Durkan et al. (2020), we used Slice Sampling (Neal, 2003). However, we modi ed the MCMC
schemes used in these papers and obtained signi cant improvements in performance and speed.

Number of chains and initialization. While Papamakarios et al. (2019b); Durkan et al. (2020) used a single
chain with axis-aligned updates, we found that on tasks with multi-modal posteriors, it can be essential to run
multiple MCMC chains in order to sample all modes. Performance on Two Moons, for example, was poor with
a single chain, since usually only one of the crescent shapes was sampled. Rather than initialising chains by
drawing initial locations from the prior, we found the resampling scheme as described ip A]3 to work better for
initialisation, and used 100 chains instead of a single one.

Transformation of variables. When implementing MCMC, it is common advice to transform problems to
have unbounded support (Hogg and Foreman-Mackey, 2018), although this has not been discussed in SBI papers
or implemented in accompanying code. We found that without this transformation, MCMC sampling could get
stuck in endless loops, e.g., on the Lotka-Volterra task. Apart from the transformation to unbounded space, we
found z-scoring of parameters and data to be crucial for some tasks.

Vectorization of MCMC sampling . We reimplemented Slice Sampling so that all chains could perform
likelihood evaluations in parallel. Evaluating likelihoods, e.g., in the case of (S) , requires passes through a
ow-based density estimator, which is signi cantly faster when batched. This allowed us to sample all chains in
parallel rather than sequentially and yielded huge speed-ups: For example, SNLE on Gaussian Linear took more
than 36 hours on average for 100k simulations without vectorization, and less than 2 hours with vectorization.

H.4 Density estimator for (S)

Approaches based on neural networks (NN) tend to have many hyperparameters, including the concrete type of
NN architecture and hyperparameters for training. We strove to keep our choices close to Durkan et al. (2020),
which are the defaults in the toolbox we used ¢bi , Tejero-Cantero et al., 2020).

While Papamakarios et al. (2019b); Durkan et al. (2020) used Masked Autoregressive Flows (MAFs, Papamakarios
et al., 2017) for density estimation, we explored how results change when using Neural Spline Flows (NSFs,
Durkan et al., 2019) for density estimation. These results are shown ifi Fig. 9.
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Figure 9: Density estimator selection for (S) . Performance of (S) in terms of C2ST across tasks
using MAFs or NSFs for density estimation. Considering all tasks, NSFs generally performed worse, e.g., using
NSFs signi cantly reduced performance on SIR and Lotka-Volterra, indicating that the added exibility of NSFs
was not needed for (S) . We thus reported performance using MAFs in the main paper. Each data point
corresponds to the mean and 95% con dence interval across 10 observations.
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H.5 Density estimator for (S)

We performed the analogous experiments for (S) as for (S) : Here, we found NSFs to increase performance
relative to MAFs (Fig. 10]. When directly estimating the posterior distribution, especially on tasks with complex
multi-modal structure like Two Moons or SLCP, the additional exibility o ered by NSFs improved performance.
With NSFs, artifacts from density transformation that were visible e.g. in Two Moons posteriors, vanished. To
our knowledge, results on (S) with NSFs have not been previously published.

Figure 10: Density estimator selection for (S) . Performance of (S) in terms of C2ST across tasks
using MAFs or NSFs for density estimation. Considering all tasks, NSFs generally performed better, especially on
Gaussian Mixture, Two Moons, and SIR. We thus reported performance using NSFs in the main paper. Each
data point corresponds to the mean and 95% con dence interval across 10 observations.
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H.6 Classier choice for (S)

For (S) , we compared two di erent choices of classi er architectures: an MLP and a ResNet architecture, as
described in[A.7. While results were similar for most tasks|[(Fig. 1]), we decided to use the ResNet architecture
in the main paper due to the better performance on Two Moons and SIR for low to medium simulation budgets.

Figure 11: Classi er architecture for (S) . Performance of (S) in terms of C2ST across tasks using

MLPs or ResNets for classi cation. Considering all tasks, ResNets generally performed better, especially on Two
Moons and SIR. We thus reported performance using ResNets in the main paper. Each data point corresponds to
the mean and 95% con dence interval across 10 observations.
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M  Metrics

M.1 Negative log probability of o (NLTP)

In simulation-based inference, the average negative log likelihood of true parametersE[logq( ojXo)] (NLTP) is
commonly reported as a performance metric in the literature (Papamakarios and Murray, 2016; Durkan et al.,
2018; Papamakarios et al., 2019b; Greenberg et al., 2019; Hermans et al., 2020; Durkan et al., 2020). An attractive
property of this metric is that the access to the ground-truth posterior is not required.

It is important to point out, however, that calculating this metric on a single or small number of pairs ( o;Xo) IS
problematic. To illustrate the issue, consider the following example (as discussed in Talts et al. (2018)): Consider
N (0;1%);xj N (; 1?), and a single pair( o;Xo) with o, =0 and an implausible (but possible)x, = 2:1.

In this case, the true posterior isN ( j1:05; 0:5%) under which the , has low probability since it is more than two
standard deviations away from the posterior mean. If an algorithm tted a wrong posterior, e.g., by overestimating
the standard deviation as 1 instead of 0.5, the probability of , under the estimated posterior would be higher
than under the true posterior.

Therefore, a large number of pairg( o; X,) should be used. Indeed, in the limit of in nite number of pairs ( o; Xo),
the metric converges to aDy, :

E . p()Exo pixi o) 1090( o)Xo)
= BExo p00)i o p( ixo) logq( ojXo)
= Exy p); o p(ixe) 10900 0jXo) +10g P( ojX0)  Ex, px); o p( jxe) 109P( o0jXo)
= Ex, pex)Dxu (PC iXo)iia( jXo0)) + Ex, pexyH(P( jXo0))

The rst term in the nal equation is the average Dk, between true and approximate posteriors over all
observationsx, that can be generated when sampling parameters, from the prior. The second term, the entropy
term, would be the same for all algorithms compared.

In the context of this benchmark, we decided against using the probability of , as a metric: For all algorithms
that are not amortized (all but one), evaluating posteriors at di erent X, would require rerunning inference. As
the computational requirements for running the benchmark at 10 observations per task are already high, running
tasks for hundreds of observations would become prohibitively expensive.

M.2 Simulation-based calibration (SBC)

In simulation-based calibration (SBC), samples °are drawn from the data-averaged posterior, i.e., the posterior
obtained by running inference for many observations. When the posterior approximation is exact, °is distributed
according to the prior (Talts et al., 2018).

Let us brie y illustrate this: In SBC, we draw x  pxj ); © g 9x), which implies a joint distribution

p( );
( :x; %= p()pxj )o( %x). The marginal ( 9 is then:
z2'Z Z7Z Z

(9= p( )p(xj )a( Gx)dxd = p( x)a( Ix)dxd = p(x) o Ix)dx:

If the approxigpate posterior is the true posterior, the marginal on °is equal to the prior: If g( 9x) = p( %x),
then ( 9= px; 9dx = p( 9, i.e., one can set up a consistency test that is based on the distribution of°
samples. Talts et al. (2018) do this by using frequentist tests per dimension.

Note that SBC as described above is merely a consistency check. For example, if the approximate posterior were
the prior, a calibration test as described above would not be able to detect this. This is a realistic failure mode in
simulation-based inference. It could happen with rejection ABC in the limit !1 , or when learned summary
statistics have no information about . One way around this is issue is proposed inh Prangle et al| (2014a), who
propose to restrict observations to a subset of all possiblX .

SBC is similar to the average negative log likelihood of true parameters described above, in that inference needs
to be carried out for many observations generated by sampling from the prior. Running inference for hundreds of
observations would become prohibitively expensive in terms of compute for most algorithms, which is why we do
not rely on SBC in the benchmark.
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M.3 Median distance (MEDDIST)

Rosterior predictive checks (PPCs) use the posterior predictive distribution to predict new data,x® p(x9x,) =

p(x9 )g( jxo)d . The observed datax, should look plausible under the posterior predictive distribution
(Gelman et al, (2004), chapter 6). A particular PPC, used for example in Papamakarios et al. (2019b); Greenberg
et al. (2019); Durkan et al. (2020), is to assess the median L2 distance betweéh® posterior predictive samplesx®
and x,. The median is used since the mean would be more sensitive to outliers.

In the benchmark, we refer to this metric as median distance (MEDDIST) and drewN °= 10000 samples from
each posterior predictive distribution to compute it. In contrast with other metrics considered here, the median
distance is computed in the space of datax and requires additional simulations (which could be expensive,
depending on the simulator). The median distance should be considered a mere check rather than a metric and it
does not necessarily test the structure of the estimated posterior.

M.4 Maximum Mean Discrepancy (MMD)

Maximum Mean Discrepancy (MMD) is an Integral Probability Metric (IPM). Linear and quadratic time estimates

for using MMD as a two-sample test were derived in Gretton et al. (2012). MMD has been commonly used in the
SBI literature with Gaussian kernels (Papamakarios et al., 2019b; Greenberg et al., 2019; Hermans et al., 2020),
setting a single length-scale hyperparameter by using a median heuristic (Ramdas et al., 2015). We follow the
same procedure, i.e., use Gaussian kernels with length-scale determined by the median heuristic on reference
samples. MMDs are calculated using 10k samples from reference and approximate posteriors.

If simple kernels are used to compare distributions with complex, multimodal structure, distinct distributions can
be mapped to nearby mean embeddings, resulting in low test power. On SLCP and Two Moons, for example, we
found a translation-invariant kernel to be limiting, since it cannot adapt to the local structure (see Suppl. Fig. E{)
This is re ected in the low correlation of MMD and C2ST (Suppl. Fig. Q We emphasize that these issues are
strictly related to simple kernels with hyperparameters commonly used in the literature. Posteriors of the Two
Moons task have a structure similar to the blobs example of Liu et al. (2020), who argue for using learned kernels
to overcome the aforementioned problem.

M.5 Classi er-based tests (C2ST)

In classi er-based testing, a classi er is trained to distinguish samples of the true posteriomp( jX,) from samples

of the estimated posteriorq( jx,). If the samples are indistinguishable, the classi cation performance should be
at chance level, 0.5. Practical use and properties of classi er-based 2-sample testing (C2ST) are discussed in
Lopez-Paz and Oquab (2017) (see Gutmann et al., 2018; Dalmasso et al., 2020, for examples in the context of
SBI).

To compute C2ST, we trained a two-layer neural network with 10 times as many ReLU units as the dimensionality
of parameters, and optimize with Adam (Kingma and Ba,|2015%). Classi ers were trained on 10k z-scored samples
from reference and approximate posterior each. Classi cation accuracy was reported using 5-fold cross-validation.

M.6 Kernelized Stein Discrepancy (KSD)

Kernelized Stein Discrepancy (KSD) is a 1-sample goodness-of- t test proposed independently by Chwialkowski
et al. (2016) and Liu et al. (2016). KSD tests samples from algorithms against the gradient of unnormalized true
posterior density, r  p( jXo). We used KSD with Gaussian kernels, setting the length-scale through the median
heuristic, and 10k samples from each algorithm.
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R Runtimes

In applications of SBI, simulations are commonly assumed to be the dominant cost. In order to make the
benchmark feasible at this scale, we focused on simple simulators and optimized runtimes, e.g. we developed
a new package bridgingDifferentialEquations.j| (Rackauckas and Nie, 2017; Bezanson et al., 2017) and
PyTorch (Paszke et al., 2019) so that generating simulations for all implemented tasks is extremely fast. This
di ers from many cases in practice, where the runtime costs for an algorithm are often negligible compared to the
cost of simulations. Having said that, algorithms show signi cant di erences in runtime costs, which we measured
and report here.

We recorded runtimes for all algorithms on all tasks. In principle, runtimes could be reduced by employing
multi-CPU architectures, however, we decided for the single CPU setup to accurately compare runtimes across all
algorithms and tasks. We did not employ GPUs for training neural-networks (NN). This is because the type of
NNs used in the algorithms currently in the benchmark do not bene t much from GPU versus CPU training (e.g.,
no CNN architecture, rather shallow and narrow networks). In fact, running SNPE on SLCP using a GeForce
GTX 1080 showed slightly longer runtimes than on CPU, due to the added overhead resulting from copying data
back and forth to the device. Therefore, it was more economical and comparable to run the benchmark on CPUs.

All neural network-based algorithms were run on single 3.6 GHz CPU cores of AWS C5-instances. ABC algorithms
were run on single CPU cores of an internal cluster with 2.4 GHz CPUs. We observed a di erence in runtimes of
less than 100ms when running ABC algorithms on the same hardware as used for neural network-based algorithms.

Figure [13 shows the recorded runtimes in minutes. We observed short runtimes for REJ-ABC and SMC-ABC, as
these do not require NN training or MCMC. The sequential versions of all three NN-based algorithms yielded

longer runtimes than the non-sequential versions because these involve 10 rounds of NN training. Among the
sequential algorithms, SNPE showed the longest runtimes. Runtimes with MAFs instead of NSFs tend to be faster,
e.g. the di erence between MAFs and NSFs using SNPE on SLCP at 100k simulations was about 50 minutes on
average. We also emphasize that the speed of (S) reported here was only obtained after vectorizing MCMC
sampling. Without vectorization, runtime on the Gaussian Linear for SNLE was more than 36 hours instead of

less than 2 hours (see Appendix H).
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Figure 12: Runtime on benchmark tasks. Runtime of REJ-ABC, SMC-ABC, , SNLE, NPE, SNPE,
in minutes, for 10 observations each, means and 95% con dence intervals. Each run was allocated a

single CPU core, se¢ Appendix R for details.
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T Tasks

T.1 Gaussian Linear

Inference of the mean of a 10-d Gaussian model, in which the covariance is xed. The (conjugate) prior is
Gaussian:

Prior N(0;0:1 1)
Simulator xj N (xjm = ;S=0:1 1)
Dimensionality 2 R x 2 R

T.2 Gaussian Linear Uniform

Inference of the mean of a 10-d Gaussian model, in which the covariance is xed. The prior is uniform:

Prior Ui 1;1)

Simulator Xxj N (xim = ;S=0:1 1)
Dimensionality 2 R10;x 2 R10

T.3 SLCP

A challenging inference task designed to have a simple likelihood and a complex posterior. The prior is uniform
over ve parameters and the data are a set of four two-dimensional points sampled from a Gaussian likelihood
whose mean and variance are nonlinear functions of:

Prior U( 3;3)
Simulator Xj =(X1;:i5Xqg, Xi No(m ;S), 4
- 415 _4 St S125 . _ 2.e. = 2. =
wherem = ,S = ,S1= 5:82= 4; =tanh s
2 S152 S%
Dimensionality 2 R%x2R8
References Papamakarios et al. (2019b); Greenberg et al. (2019); Hermans et al. (2020)

Durkan et al. (2020)

T.4 SLCP with Distractors

This task is similar to with the di erence that we add uninformative dimensions (distractors) to the
observation:

Prior u( 3;3)
Simulator Xj =(X1;:::;X100), X = p(y), where p re-orders the dimensions ofy with a xed random
permutation,

. 1 P 2o P
Y N (m2,S3),y[9;10g 20 =1 tg( v
2
wherem =415 =4 ST 5155 g - 2.5, = 2. —qanh o,
2 S1Sy S%
"N (0;1%1), | N (0;9),forj>k, |; =3€* wherea N (0;1), j, =0 otherwise
Dimensionality 2 R%; x 2 R100

References Greenberg et al. (2019)
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T.5 Bernoulli GLM

Inference of a 10-parameter Generalized linear model (GLM) with Bernoulli observations, and Gaussian prior
with covariance matrix which encourages smoothness by penalizing the second-order di erences in the vector of
parameters (De Nicolao et al., 1997). The observations are the su cient statistics for this GLM:

Prior N (0;2),f N (0;(F°F) 1), q

Fi 2=1,Fy 1= 2 Fy =1+ 1 Fy =0 otherwise,1 i;j 9
Simulator Xj =(X1;::1;X10), X1 = P ,T Zi, X210 = %Vz,

zi  Bemn( (vif+ 1)), ()=exp()=(1+exp()),

frozen input between time binsi 8 andi: vi N (0;1),V =[vy;Vve;::i;vr]
Dimensionality 2 R10;x 2 R0
Fixed parameters Duration of task T =100.
References Lueckmann et al. (2017); Goncgalves et al. (2020)

T.6 Bernoulli GLM Raw

This task is similar to the sole di erence being that the observations are not the su cient statistics for the
Bernoulli GLM process but the raw observations:

Prior N (0;2),f N (0;(F"F) 1),
Fi 2=1,Fy 1= 2 Fy =1+ 1 Fy =0 otherwisel i;j 9
Simulator Xj =(X1;::1:X100), Xi  Bern( (vif+ ), ()=exp()=(1+exp())
frozen input between time binsi 8 andi: vi N (0;1),
Dimensionality 2 R10:x 2 R100
Fixed parameters Duration of task T =100.

T.7 Gaussian Mixture

This task is common in the ABC literature. It consists of inferring the common mean of a mixture of two
two-dimensional Gaussian distributions, one with much broader covariance than the other:

Prior U( 10;10)
Simulator Xj O5N(xjm = ;S=1)*0:5N(xjm = ;S=0:01 1)
Dimensionality 2 R%;x 2 R?

References Sisson et al. (2007); Beaumont et al. (2009); Toni et al. (2009); Simola et al. (2020)
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T.8 Two Moons

A two-dimensional task with a posterior that exhibits both global (bimodality) and local (crescent shape) structure
to illustrate how algorithms deal with multimodality:

Prior u( 1;3) 3 2 3
) . . P
Simulator Xj = 4rcos()+0:255 4] 1+ Zj_p %5, where U ( =2;=2),r N (0:1;0.01%)
rsin( ) ( 1+ 2)= 2
Dimensionality 2 R?;x 2 R?
References Greenberg et al. (2019)
T9 SIR

The SIR model is an epidemiological model describing the dynamics of the number of individuals in three possible
states: susceptibleS, infectious |, and recovered or deceaseR.

The SIR task consists in inferring the contact rate and the mean recovery rate , given a sampled number of
individuals in the infectious group | in 10 evenly-spaced points in time:

Prior LogNormal(log(0:4); 0:5) LogNormal(log(1=8); 0:2)
Simulator Xj =(X1;:::;%X10), X B (1000, ,{T), where | is simulated from
as — SL
dt N
di = St |
dt N
aR —
dt
Dimensionality 2 R%;x 2 R0

Fixed parameters Population size N = 1000000 and duration of task T = 160.
Initial conditions: (S(0);1(0);R(0)=(N 1;1,0)
References Kermack and McKendrick| (1927)

T.10 Lotka-Volterra

This is an in uential model in ecology describing the dynamics of two interacting species, most commonly prey
and predator interactions. Our task consists in the inference of four parameters related to species interaction,
given 20 summary statistics consisting of the number of individuals in both populations in 10 evenly-spaced
points in time:

Prior LogNormal( 0:125; 0:5), LogNormal( 3;0:5),
LogNormal( 0:125 0:5), LogNormal( 3;0:5)
Simulator Xj =(Xz1;::1;X10), X12;i  LogNormal(log(X); 0:1), x2;;  LogNormal(log(Y);0:1),

X and Y are simulated from
=X XY
o= Y+ XY
Dimensionality 2 R x 2 R®
Fixed parameters Duration of task T =20. Initial conditions: (X (0);Y (0)) = (30;1)

References Lotka|(1920)
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W  Website

The companion website gbi-benchmark.github.io ) allows interactive comparisons in terms of all metrics. It
also allows inspection of posterior samples of all runs, which we found insightful when choosing hyperparameters
and diagnosing implementation issues. Two screenshots are provided in Fig.|13.

@& sbi-benchmark.github.io

Overview Interactive Results v Code & Reproducibility ~ Contributions

SMC-ABC
Dataset K — o o

Main paper

Task

<) 5 =3 1<) 5 =)

SLCP
Number of Simulations

Metric

CoasT Comparing results of 120 runs in terms of C2ST (Classifier 2-sample test accuracy) on the
SLCP task. Error bars show 95% confidence intervals around the mean. Using the sidebar on the

left you can change the selection.
Algorithms

D @D D
(]
D

Simulation budgets

Figure 13: Screenshots from the companion website . Top: Classi cation accuracy (C2ST) for a subset of
sequential algorithms on the SLCP task. Bottom: SNLE posterior on SLCP forxf,l) at 100k simulations.


https://sbi-benchmark.github.io
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