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Benchmarking Simulation-Based Inference

A Algorithms

A.1 Rejection Approximate Bayesian Computation (REJ-ABC)

Algorithm 1: Rejection ABC
while in simulation budget do

Sample θ′ from p(θ)
Simulate data x′ from p(x|θ′)
if d(x′,xo) ≤ ε then

Accept θ′

else
Reject θ′

end
end
return Accepted samples {θ′} from p̂(θ|d(x,xo) ≤ ε)

Classical Approximate Bayesian Computation (ABC) is based on Monte Carlo rejection sampling (Tavaré et al.,
1997; Pritchard et al., 1999): In rejection ABC, the evaluation of the likelihood is replaced by a comparison
between observed data xo and simulated data x, based on a distance measure d(x,xo). Samples θ from the
approximate posterior are obtained by collecting simulation parameters that result in simulated data that is close
to the observed data.

More formally, given observed data xo, a prior p(θ) over parameters of simulation-based model p(x|θ), a distance
measure d(x,xo) and an acceptance threshold ε, rejection ABC obtains parameter samples θ from the approximate
posterior as outlined in Algorithm 1.

In theory, rejection ABC obtains samples from the true posterior p(θ|xo) in the limit ε→ 0 and N →∞, where
N is the simulation budget. In practice, its accuracy depends on the trade-off between simulation budget and
the rejection criterion ε. Rejection ABC suffers from the curse of dimensionality, i.e., with linear increase in the
dimensionality of x, an exponential increase in simulation budget is required to maintain accurate results.

For the benchmark, we did not use a fixed ε-threshold, but quantile-based rejection. Depending on the simulation
budget (1k, 10k, 100k), we used a quantile of (0.1, 0.01, or, 0.001), so that REJ-ABC returned 100 samples with
smallest distance to xo in each of these cases (see Appendix H for different hyperparameter choices). In order to
compute metrics on 10k samples, we sampled from a KDE fitted on the accepted parameters (details about KDE
resampling in Appendix H). REJ-ABC requires the choice of the distance measure d(x,xo): here we used the
l2-norm.
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A.2 Sequential Monte Carlo Approximate Bayesian Computation (SMC-ABC)

Algorithm 2: Population Monte Carlo ABC (ABC-PMC) as in Beaumont et al. (2009)

Set schedule ε (including initial ε0), population indicator t = 0, and population size N
Initialize weights W0 = 1/N uniformly
Sample initial population {θ(i)

0 } using rejection sampling with ε0

while in simulation budget do
Increase population indicator t = t+ 1
Set particle indicator i = 0

while i < N do
Sample θ′ from previous population {θ(i)

t−1} with weights {W (i)
t−1};

Perturb θ′: θ′′ ∼ Kt(θ|θ′)
Simulate data x′′ from p(x|θ′′)
if d(x′′,xo) ≤ εt then

Set θ(i)
t = θ′′ and W i

t =
p(θ

(i)
t )∑N

j=1 W j
t−1Kt(θ

(i)
t |θ

j
t−1)

Increase particle indicator i = i+ 1
else

reject θ′′

end
end
Normalize weights so that

∑
iW

(i)
t = 1

end
return Weighted samples {θ(i)

t } from p̂(θ|d(x,xo) ≤ ε)

Sequential Monte Carlo Approximate Bayesian Computation (SMC-ABC) algorithms (Beaumont et al., 2002;
Marjoram and Tavaré, 2006; Sisson et al., 2007; Toni et al., 2009) are an extension of the classical rejection ABC
approach, inspired by importance sampling and sequential Monte Carlo sampling. Central to SMC-ABC is the
idea to approach the final set of samples from the approximate posterior by constructing a series of intermediate
sets of samples slowly approaching the final set through perturbations.

Several variants have been developed (e.g., Sisson et al., 2007; Beaumont et al., 2009; Toni et al., 2009; Simola
et al., 2020). Here, we used the scheme ABC-PMC scheme of Beaumont et al. (2009) and refer to it as SMC-ABC
in the manuscript. More formally, the description of the ABC-PMC algorithm is as follows: Given observed data
xo, a prior p(θ) over parameters of a simulation-based model p(x|θ), a distance measure d(x,xo), a schedule
of acceptance thresholds εi, and a kernel K(θ|θ′) to perturb intermediate samples, weighted samples of the
approximate posterior are obtained as described in Algorithm 2.

SMC-ABC can improve the sampling efficiency compared to REJ-ABC and avoids severe inefficiencies due to a
mismatch between initial sampling and the target distribution. However, it comes with more hyperparameters
that can require careful tuning to the problem at hand, e.g., the choice of distance measure, kernel, and ε-schedule.
Like, REJ-ABC, SMC-ABC suffers from the curse of dimensionality.

For the benchmark, we considered the popular toolbox pyABC (Klinger et al., 2018). Additionally, to fully
understand the details of the SMC-ABC approach, we also implemented our own version. In the main paper we
report results obtained with our implementation because it yielded slightly better results. A careful comparison
of the two approaches, and the optimization of hyperparameters like ε-schedule, population size and perturbation
kernel variance across different tasks are shown in Appendix H. After optimization, the crucial parameters of
SMC-ABC were set to: l2-norm as distance metric, quantile-based epsilon decay with 0.2 quantile, population size
100 for simulation budgets 1k and 10k, population size 1000 for simulation budget 100k, Gaussian perturbation
kernel with empirical covariance from previous population scaled by 0.5. We obtained 10k samples required for
calculation of metrics as follows: If a population is not complete within the simulation budget we completed it
with accepted particles from the last population and recalculated all weights. We then fitted a KDE on all those
particles and sampled 10k samples from the KDE.
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A.3 Neural Likelihood Estimation (NLE)

Algorithm 3: Single round Neural Likelihood as in Papamakarios et al. (2019b)
Set D = {}
for n = 1 : N do

Sample θn ∼ p(θ)
Simulate xn ∼ p(x|θn)
Add (θn,xn) to D

end
Train qψ(x|θ) on D
return Samples from p̂(θ|xo) ∝ qψ(xo|θ)p(θ) via MCMC; qψ(x|θ)

Likelihood estimation approaches to SBI use density estimation to approximate the likelihood p(xo|θ). After
learning a surrogate qψ (ψ denoting the parameters of the estimator) for the likelihood function, one can
for example use Markov Chain Monte Carlo (MCMC) based sampling algorithms to obtain samples from the
approximate posterior p̂(θ|xo). This idea dates back to using Gaussian approximations of the likelihood (Wood,
2010; Drovandi et al., 2018), and more recently, was extended to density estimation with neural networks
(Papamakarios et al., 2019b; Lueckmann et al., 2019).

We refer to the single-round version of the (sequential) neural likelihood approach by Papamakarios et al. (2019b)
as NLE, and outline it in Algorithm 3: Given a set of samples {θn,xn}1:N obtained by sampling θn ∼ p(θ)
from the prior and simulating xn ∼ p(x|θn), we train a conditional neural density estimator qψ(x|θ) modelling
the conditional of data given parameters on the set {θn,xn}1:N . Training proceeds by maximizing the log
likelihood

∑
n log qψ(x|θ). Given enough simulations, a sufficiently flexible conditional neural density estimator

approximates the likelihood in the support of the prior p(θ) (Papamakarios et al., 2019b). Once qψ is trained,
samples from the approximate posterior p̂(θ|xo) are obtained using MCMC sampling based on the approximate
likelihood p̂(xo|θ) and the prior p(θ).

For MCMC sampling, Papamakarios et al. (2019b) suggest to use Slice Sampling (Neal, 2003) with a single chain.
However, we observed that the accuracy of the obtained posterior samples can be substantially improved by
changing the Slice Sampling scheme as follows: 1) Instead of a single chain, we used 100 parallel MCMC chains;
2) for initialization of the chains, we sampled 10k candidate parameters from the prior, evaluated them under
the unnormalized approximate posterior, and used these values as weights to resample initial locations; 3) we
transformed parameters to be unbounded as suggested e.g. in Bingham et al. (2019); Carpenter et al. (2017); Hogg
and Foreman-Mackey (2018). In addition, we reimplemented the slice sampler to allow vectorized evaluations of
the likelihood, which yielded significant computational speed-ups.

For the benchmark, we used as density estimator a Masked Autoregressive Flow (MAF, Papamakarios et al., 2017)
with five flow transforms, each with two blocks and 50 hidden units, tanh non-linearity and batch normalization
after each layer. For the MCMC step, we used the scheme as outlined above with 250 warm-up steps and ten-fold
thinning, to obtain 10k samples from the approximate posterior (1k samples from each chain). In Appendix H we
show results for all tasks obtained with a Neural Spline Flow (NSF, Durkan et al., 2019) for density estimation,
using five flow transforms, two residual blocks of 50 hidden units each, ReLU non-linearity, and 10 bins.
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A.4 Sequential Neural Likelihood Estimation (SNLE)

Algorithm 4: Sequential Neural Likelihood as in Papamakarios et al. (2019b)
Set p̂0(θ|xo) = p(θ) and D = {}
for r = 1 : R do

for n = 1 : N do
Sample θn ∼ p̂r−1(θ|xo) with MCMC
Simulate xn ∼ p(x|θn)
Add (θn,xn) to D

end
(Re-)train qψ(x|θ) on D
Set p̂r(θ|xo) ∝ qψ(xo|θ)p(θ)

end
return Samples from p̂(θ|xo) ∝ qψ(xo|θ)p(θ) via MCMC; qψ(x|θ)

Sequential Neural Likelihood estimation (SNLE or SNL, Papamakarios et al., 2019b) extends the neural likelihood
estimation approach described in the previous section to be sequential.

The idea behind sequential SBI algorithms is based on the following intuition: If for a particular inference problem,
there is only a single xo one is interested in, then simulating data using parameters from the entire prior space
might be inefficient, leading to a training set D that contains training data (θ,x) which carries little information
about the posterior p(θ|xo). Instead, to increase sample efficiency, one may draw training data points from a
proposal distribution p̃(θ), ideally obtaining θ for which x is close to xo. One candidate that has been commonly
used in the literature for such a proposal is the approximate posterior distribution itself.

SNLE is a multi-round version of NLE, where in each round new training samples are drawn from a proposal
p̃(θ). The proposal is chosen to be the posterior estimate at xo from the previous round p̂(θ|xo) and its samples
are obtained using MCMC. The proposal controls where qψ(x|θ) is learned most accurately. Thus, by iterating
over multiple rounds, a good approximation to the posterior can be learned more efficiently than by sampling all
training data from the prior. SNLE is summarized in Algorithm 4.

For the benchmark, we used as density estimator a Masked Autoregressive Flow (Papamakarios et al., 2017), and
MCMC to obtain posterior samples after every round, both with the same settings as described for NLE. The
simulation budget was equally split across 10 rounds. In Appendix H, we show results for all tasks obtained with
a Neural Spline Flow (NSF, Durkan et al., 2019) for density estimation, using five flow transforms, two residual
blocks of 50 hidden units each, ReLU non-linearity, and 10 bins.
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A.5 Neural Posterior Estimation (NPE)

Algorithm 5: Single round Neural Posterior Estimation as in Papamakarios and Murray (2016)
for j = 1 : N do

Sample θj ∼ p(θ)
Simulate xj ∼ p(x|θj)

end
φ← arg min

∑N
j − log qF (xj ,φ)(θj)

Set p̂(θ|xo) = qF (xo,φ)(θ)
return Samples from p̂(θ|xo); qF (x,φ)(θ)

NPE uses conditional density estimation to directly estimate the posterior. This idea dates back to regression
adjustment approaches (Blum and François, 2010) and was extended to density estimators using neural networks
(Papamakarios and Murray, 2016) more recently.

As outlined in Algorithm 5, the approach is as follows: Given a prior over parameters p(θ) and a simulator, a set
of training data points (θ,x) is generated. This training data is used to learn the parameters ψ of a conditional
density estimator qψ(θ|x) using a neural network F (x,φ), i.e., ψ = F (x,φ). The loss function is given by the
negative log probability − log qψ(θ|x). If the density estimator q is flexible enough and training data is infinite,
this loss function leads to perfect recovery of the ground-truth posterior (Papamakarios and Murray, 2016).

For the benchmark, we used the approach by Papamakarios and Murray (2016) with a Neural Spline Flow (NSF,
Durkan et al., 2019) as density estimator, using five flow transforms, two residual blocks of 50 hidden units
each, ReLU non-linearity, and 10 bins. We sampled 10k samples from the approximate posterior qF (xo,φ)(θ). In
Appendix H, we compare NSFs to Masked Autoregressive Flows (MAFs, Papamakarios et al., 2017), as used in
Greenberg et al. (2019); Durkan et al. (2020), with five flow transforms, each with two blocks and 50 hidden
units, tanh non-linearity and batch normalization after each layer.
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A.6 Sequential Neural Posterior Estimation (SNPE)

Algorithm 6: Sequential Neural Posterior Estimation with atomic proposals (Greenberg et al., 2019)
Set p̃1(θ) = p(θ)
c← 0
for r = 1 : R do

for j = 1 : N do
c← c+ 1
Sample θc ∼ p̃r(θ)
Simulate xc ∼ p(x|θc)

end

Vr(Θ) :=

{(
c
M

)−1 if Θ = {θb1 ,θb1 , . . . ,θbM } and 1 ≤ b1 < b2 < . . . < bM ≤ c
0 otherwise

φ← arg minφ EΘ∼Vr(Θ)

[∑
θj∈Θ− log q̃xj ,φ(θj)

]
Set p̃r+1(θ) := qF (xo,φ)(θ)

end
return Samples from p̂R(θ|xo); qF (x,φ)(θ)

Sequential Neural Posterior Estimation SNPE is the sequential analog of NPE, and meant to increase sample
efficiency (see also subsection A.4). When the posterior is targeted directly, using a proposal distribution p̃(θ)
different from the prior requires a correction step—without it, the posterior under the proposal distribution would
be inferred (Papamakarios and Murray, 2016). This so-called proposal posterior is denoted by p̃(θ|x):

p̃(θ|x) = p(θ|x)
p̃(θ)p(x)

p(θ)p̃(x)
,

where p̃(x) =
∫
θ
p̃(θ)p(x|θ). Note that for p̃(θ) = p(θ), it directly follows that p̃(θ|x) = p(θ|x).

There have been three different approaches to this correction step so far, leading to three versions of SNPE
(Papamakarios and Murray, 2016; Lueckmann et al., 2017; Greenberg et al., 2019). All three algorithms have in
common that they train a neural network F (x,φ) to learn the parameters of a family of densities qψ to estimate
the posterior. They differ in what is targeted by qψ and which loss is used for F .

SNPE-A (Papamakarios and Murray, 2016) trains F to target the proposal posterior p̃(θ|x) by minimizing the
log likelihood loss −

∑
n log qψ(θn|xn), and then post-hoc solves for p(θ|x). The analytical post-hoc step places

restrictions on qψ, the proposal, and prior. Papamakarios and Murray (2016) used Gaussian mixture density
networks, single Gaussians proposals, and Gaussian or uniform priors. SNPE-B (Lueckmann et al., 2017) trains
F with the importance weighted loss −

∑
n

p(θn

p̃(θn) log qψ(θn|xn) to directly recover p(θ|x) without the need for
post-hoc correction, removing restrictions with respect to qψ, the proposal, and prior. However, the importance
weights can have high variance during training, leading to inaccurate inference for some tasks (Greenberg et al.,
2019). SNPE-C (APT) (Greenberg et al., 2019) alleviates this issue by reparameterizing the problem such that it
can infer the posterior by maximizing an estimated proposal posterior. It trains F to approximate p(θ|x) with
qF (x,φ)(θ), using a loss defined on the approximate proposal posterior q̃x,φ(θ). Greenberg et al. (2019) introduce
‘atomic’ proposals to allow for arbitrary choices of the density estimator, e.g., flows (Papamakarios et al., 2019a):
The loss on q̃x,φ(θ) is calculated as the expectation over proposal sets Θ sampled from a so-called ‘hyperproposal’
V (Θ) as outlined in Algorithm 6 (see Greenberg et al., 2019, for full details).

For the benchmark, we used the approach by Greenberg et al. (2019) with ‘atomic’ proposals and referred to it as
SNPE. As density estimator, we used a Neural Spline Flow (Durkan et al., 2019) with the same settings as for
NPE. For the ‘atomic’ proposals, we used M = 10 atoms (larger M was too demanding in terms of memory).
The simulation budget was equally split across 10 rounds and for the final round, we obtained 10k samples from
the approximate posterior p̂R(θ|xo). In Appendix H, we compare NSFs to Masked Autoregressive Flows (MAFs,
Papamakarios et al., 2017), as used in Greenberg et al. (2019); Durkan et al. (2020), with five flow transforms,
each with two blocks and 50 hidden units, tanh non-linearity and batch normalization after each layer.
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A.7 Neural Ratio Estimation (NRE)

Algorithm 7: Single round Neural Ratio Estimation as in Hermans et al. (2020)
Set optimization criterion l (e.g., BCE)
for j = 1 : N do

Sample θj ∼ p(θ)
Sample θ′j ∼ p(θ)
Simulate xj ∼ p(x|θj)

end
φ← arg min l(dφ(xn,θn), 1) + l(dφ(xn,θ

′
n), 0)

Parameterize dφ(x,θ)
return Samples from p̂(θ|xo) via MCMC; dφ(x,θ)

Neural ratio estimation (NRE) uses neural-network based classifiers to approximate the posterior p(θ|xo). While
neural-network based approaches described in the previous sections use density estimation to either estimate the
likelihood ((S)NLE) or the posterior ((S)NPE), NRE algorithms ((S)NRE) use classification to estimate a ratio
of likelihoods. The ratio can then be used for posterior evaluation or MCMC-based sampling.

Likelihood ratio estimation can be used for SBI because it allows to perform MCMC without evaluating the
intractable likelihood. In MCMC, the transition probability from a current parameter θt to a proposed parameter
θ′ depends on the posterior ratio and in turn on the likelihood ratio between the two parameters:

p(θ′|x)

p(θt|x)
=
p(θ′)p(x|θ′)/p(x)

p(θt)p(x|θt)/p(x)
=
p(θ′)p(x|θ′)
p(θt)p(x|θt)

.

Therefore, given a ratio estimator r(x|θ′,θt) = p(x|θ′)
p(x|θt)

learned from simulations, one can perform MCMC to
obtain samples from the posterior, even if evaluating p(x|θ) is intractable.

Hermans et al. (2020) proposed the following approach for MCMC with classifiers to approximate density ratios:
A classifier is trained to distinguish samples from an arbitrary (θ,x) ∼ p(x|θ)p(θ) and samples from the marginal
model (θ,x) ∼ p(θ)p(x). This results in a likelihood-to-evidence estimator that needs to be trained only once to
be evaluated for any θ. The training of the classifier dφ(x,θ) proceeds by minimizing the binary cross-entropy loss
(BCE), as outlined in Algorithm 7. Once the classifier dφ(x,θ) is parameterized, it can be used to perform MCMC
to obtain samples from the posterior. The authors name their approach Amortized Approximate Likelihood Ratio
MCMC (AALR-MCMC): It is amortized because once the likelihood ratio estimator is trained, it is possible to
run MCMC for any x ∼ p(x).

Earlier ratio estimation algorithms for SBI (e.g., Izbicki et al., 2014; Pham et al., 2014; Cranmer et al., 2015; Dutta
et al., 2016) and their connections to recent methods are discussed in Thomas et al. (2020), as well as in Durkan
et al. (2020). AALR-MCMC is closely related to LFIRE (Dutta et al., 2016) but trains an amortized classifier
rather than a separate one per posterior evaluation. Durkan et al. (2020) showed that the loss of AALR-MCMC
is closely related to the atomic SNPE-C/APT approach of Greenberg et al. (2019) (SNPE) and that both can be
combined in a unified framework. Durkan et al. (2020) changed the formulation of the loss function for training
the classifier from binary to multi-class.

For the benchmark, we used neural ratio estimation (NRE) as formulated by Durkan et al. (2020) and implemented
in the sbi toolbox (Tejero-Cantero et al., 2020). As a classifier, we used a residual network architecture (ResNet)
with two hidden layers of 50 units and ReLU non-linearity, trained with Adam (Kingma and Ba, 2015). Following
the notation of Durkan et al. (2020), we used K = 10 as the size of the contrasting set. For the MCMC step,
we followed the same procedure as described for NLE, i.e., using Slice Sampling with 100 chains, to obtain 10k
samples from each approximate posterior. In Appendix H, we show results for all tasks obtained with a multi-layer
perceptron (MLP) architecture with two hidden layers of 50 ReLu units, and batch normalization.
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A.8 Sequential Neural Ratio Estimation (SNRE)

Algorithm 8: Sequential Neural Ratio Estimation as in Hermans et al. (2020)
Set optimization criterion l (e.g., BCE)
Set p̃(θ) = p(θ)
for r = 1 : R do

for j = 1 : N do
Sample θj ∼ p̃(θ) (via dφ and MCMC)
Sample θ′j ∼ p̃(θ) (via dφ and MCMC)
Simulate xj ∼ p(x|θj)

end
φ← arg min l(I ′n,θn), 1) + l(dφ(xn,θ

′
n), 0);

Parameterize dφ(x,θ)
end
return Samples from p̂(θ|xo) via MCMC; dφ(x,θ)

Sequential Neural Ratio Estimation (SNRE) is the sequential version of NRE, and meant to increase sample
efficiency, at the cost of needing to train new classifiers for different xo.

A sequential version of neural ratio estimation was proposed by Hermans et al. (2020). As with other sequential
algorithms, the idea is to replace the prior by a proposal distribution p̃(θ) that is focused on xo in the sense
that the sampled parameters θ result in simulated data x that are informative about xo. The proposal for the
next round is the posterior estimate from the previous round. The ratio estimator then becomes r̃(x,θ) and is
refined over rounds by training the underlying classifier with positive examples (x,θ) ∼ p(x|θ)p̃(θ) and negative
examples (x,θ) ∼ p(x)p̃(θ). Exact posterior evaluation is not possible anymore, but samples can be obtained as
before via MCMC. These steps are outlined in Algorithm 8.

For the benchmark, we used SNRE as formulated by Durkan et al. (2020) and implemented in the sbi toolbox
(Tejero-Cantero et al., 2020). The classifier had the same architecture as described for NRE. For the MCMC step,
we followed the same procedure as described for NLE. The simulation budget was equally split across 10 rounds.
In Appendix H, we show results for all tasks obtained with a multi-layer perceptron (MLP) architecture with two
hidden layers of 50 ReLu units, and batch normalization.
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A.9 Random Forest Approximate Bayesian Computation (RF-ABC)

Algorithm 9: Random Forest ABC (RF-ABC) as in Raynal et al. (2019)
Set D = {} Set simulation budget N
Set number of trees B
Set minimum node size Nmin

for n = 1 : N do
Sample θn ∼ p(θ)
Simulate xn ∼ p(x|θn)
Add (θn,xn) to D

end
Run random forest regression of x on θ using D, B and Nmin

return N samples {θ(i)} and associated weights {w(i)} for drawing approximate posterior samples

Random forest Approximate Bayesian Computation (RF-ABC, Pudlo et al., 2016; Raynal et al., 2019) is a more
recently developed ABC algorithm based on a regression approach. Similar to previous regression approaches to
ABC (Beaumont et al., 2002; Blum and François, 2010), RF-ABC aims at improving classical ABC inference
(REJ-ABC, SMC-ABC) in the setting of high-dimensional data.

The idea of the RF-ABC algorithm is to use random forests (RF, Breiman, 2001) to run a non-parametric
regression of a set of potential summary statistics of the data on the corresponding parameters. That is, the RF
regression is trained on data simulated from the model, such that the covariates are the summary statistics and
the response variable is a parameter. For a detailed description of the algorithm, we refer to Raynal et al. (2019).

The only hyperparameters for the RF-ABC algorithm are the number of trees and the minimum node size for the
RF regression. Following Raynal et al. (2019), we chose the default of 500 trees and a minimum of 5 nodes. The
output of the algorithm is a RF weight for each of the simulated parameters. This set of weights can be used to
calculate posterior quantiles or to obtain an approximate posterior density as described in Raynal et al. (2019).
We obtained 10k posterior samples for the benchmark by using the random forest weights to sample from the
simulated parameters. We used the implementation in the abcranger toolbox Collin et al. (2020).

One important property of RF-ABC is that it can only be applied in the unidimensional setting, i.e., for 1-D
dimensional parameter spaces, or for multidimensional parameters spaces with the assumption that the posterior
factorizes over parameters (thus ignoring potential posterior correlations). This assumptions holds only for a few
tasks in our benchmark (Gaussian Linear, Gaussian Linear Uniform, Gaussian Mixture). Due to this inherent
limitation, we report RF-ABC in the supplement (see Suppl. Fig. 2).
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A.10 Synthetic Likelihood (SL)

Algorithm 10: Synthetic Likelihood algorithm as in Wood (2010)
Set number of simulations per step M
Set number of MCMC steps T
for t = 1 : T do

Get new candidate θt from MCMC scheme
Set Dt = {}
for m = 1 : M do

Simulate xm ∼ p(x|θt)
Add (θt,xm) to Dt

end
Use Dt to estimate mean and covariance of a Gaussian approximation of the likelihood L̂(xo|θt)
Perform the next MCMC step using L̂(xo|θt)

end
return N samples {θ(i)} from MCMC chain

The Synthetic Likelihood (SL) approach circumvents the evaluation of the intractable likelihood by estimating a
synthetic one from simulated data or summary statistics. This approach was introduced by Wood (2010). Its
main motivation is that the classical ABC approach of comparing simulated and observed data with a distance
metric can be problematic if parts of the differences are entirely noise-driven. Wood (2010) instead approximated
the distribution of the summary statistics (the likelihood) of a nonlinear ecological dynamic system as a Gaussian
distribution, thereby capturing the underlying noise as well. The approximation of the likelihood can then be
used to obtain posterior sampling via Markov Chain Monte Carlo (MCMC) (Wood, 2010).

The SL approach can be seen as the predecessor of the (S)NLE approaches: They replaced the Gaussian
approximation of the likelihood with a much more flexible one that uses neural networks and normalizing flows
(see A.3). Moreover, there are modern approaches from the classical ABC field that further developed SL using a
Gaussian approximation (e.g., Drovandi et al., 2018; Priddle et al., 2019).

For the benchmark, we implemented our own version of the algorithm proposed by Wood (2010). We used Slice
Sampling MCMC (Neal, 2003) and estimated the Gaussian likelihood from 100 samples at each sampling step. To
ensure a positive definite covariance matrix, we added a small value ε to the diagonal of the estimated covariance
matrix for some of the tasks. In particular, we used ε = 0.01 for SIR and Bernoulli GLM Raw tasks, and we
tried without success ε = [0, 0.01, 0.1, 1.0] for Lotka-Volterra and SLCP with distractors. For all remaining tasks,
we set ε = 0. For Slice Sampling, we used a single chain initialized with sequential importance sampling (SIR)
as described for NLE, 1k warm-up steps and no thinning, in order to keep the number of required simulations
tractable. This resulted in an overall simulation budget on the order of 108 to 109 simulations per run in order to
generate 10k posterior samples, as new simulations are required for every MCMC step.

The high simulation budget makes it problematic to directly compare SL and other other algorithms in the
benchmark. Therefore, we report SL in the supplement (see Suppl. Fig. 3).
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B Benchmark

B.1 Reference posteriors

We generated 10k reference posterior samples for each observation. For the Gaussian Linear task, reference
samples were obtained by using the analytic solution for the true posterior. Similarly, for Gaussian Linear Uniform
and Gaussian Mixture, the analytic solution was used, combined with an additional rejection step, in order to
account for the bounded support of the posterior due to the use of a uniform prior. For the Two Moons task, we
devised a custom scheme based on the model equations, which samples both modes and rejects samples outside
the prior bounds.

For SLCP, SIR, and Lotka-Volterra, we devised a likelihood-based procedure to ensure obtaining a valid set of
reference posterior samples: First, we either used Sampling/Importance Resampling (Rubin, 1988) (for SLCP,
SIR) or Slice Sampling MCMC (Neal, 2003) (for Lotka-Volterra) to obtain a set of 10k proposal samples from
the unnormalized posterior f(θ) = p̃(θ|xo) = p(xo|θ)p(θ). We used these proposal samples to train a density
estimator, for which we used a neural spline flow (NSF) (Durkan et al., 2019). Next, we created a mixture
composed of the NSF and the prior with weights 0.9 and 0.1, respectively, as a proposal distribution g(θ)
for rejection sampling (Martino et al., 2018). Rejection sampling relies on finding a constant M such that
f(θ) ≤Mg(θ) for all values of θ: To find this constant, we initialized M = 1, sampled θ ∼ g(θ), and updated
M = 1.2f(θ)/g(θ) if f(θ)/g(θ) > M . This loop stopped only after at least 100k samples without updating
M were reached. We then used M , f , and g to generate 10k reference posterior samples. We found that the
NSF-based proposal distribution resulted in high acceptance rates. We used this custom scheme rather than
relying on MCMC directly, since we found that standard MCMC approaches (Slice Sampling, HMC, and NUTS)
all struggled with multi-modal posteriors and wanted to avoid bias in the reference samples, e.g. due to correlations
in MCMC chains.

As a sanity check, we ran this scheme twice on all tasks and observation and found that the resulting reference
posterior samples were indistinguishable in terms of C2ST.

B.2 Code

We provide sbibm, a benchmarking framework that implements all tasks, reference posteriors, different metrics
and tooling to run and analyse benchmark results at scale. The framework is available at:

github.com/sbi-benchmark/sbibm

We make benchmarking new algorithms maximally easy by providing an open, modular framework for integration
with SBI toolboxes. We here evaluated algorithms implemented in pyABC (Klinger et al., 2018), pyabcranger
(Collin et al., 2020), and sbi (Tejero-Cantero et al., 2020). We emphasize that the goal of sbibm is orthogonal
to any toolbox: It could easily be used with other toolboxes, or even be used to compare results for the same
algorithm implemented by different ones. There are currently several SBI toolboxes available or under active
development. elfi (Lintusaari et al., 2018) is a general purpose toolbox, including ABC algorithms as well as
BOLFI (Gutmann and Corander, 2016). There are many toolboxes for ABC algorithms, e.g., abcpy (Dutta et al.,
2017), astroABC (Jennings and Madigan, 2017), CosmoABC (Ishida et al., 2015), see also Kousathanas et al. (2018)
for an overview. carl (Louppe et al., 2016) implements the algorithm by Cranmer et al. (2015). hypothesis
(Hermans, 2019), and pydelfi (Alsing, 2019) are SBI toolboxes under development.

B.3 Reproducibility

To ensure reproducibility of our results, we publicly released all code including instructions on how to run the
benchmark on cloud-based infrastructure.

https://github.com/sbi-benchmark/sbibm
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Figure 1: Additional ABC results with linear regression adjustment (LRA) and semi-automatic
summary-statistics (SASS). We ran ABC with post-hoc LRA (Beaumont et al., 2002; Blum, 2018). On some
tasks, this led to an improvement relative to versions without post-hoc adjustment. On Two Moons (bimodal
posterior), linear adjustment decreased performance. We implemented our own SASS (Prangle et al., 2014b) with
a third order polynomial feature expansion, and observed similar performance as with the implementation in
abcpy toolbox (Dutta et al., 2017).
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Figure 2: RF-ABC results. Results for RF-ABC (as described in A.9) compared to REJ-ABC and SMC-ABC
on all benchmark tasks, using C2ST. Note that RF-ABC predicts each parameter individually, i.e. effectively
assumes the posterior to be factorized– this is only appropriate for the Gaussian Linear, Gaussian Linear Uniform,
and Gaussian Mixture tasks. On other tasks, the posterior deviates markedly from being factorized, and therefore
it is to be expected that RF-ABC performance is limited, even when using many samples. Each data point
corresponds to the mean and 95% confidence interval across 10 observations.
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Figure 3: SL results. Results for SL compared to NLE and SNLE on benchmark tasks in terms of C2ST. Note
that SL performs simulations at every MCMC step to approximate a Gaussian likelihood (see A.10 for details),
and therefore it does not produce sensible results with the simulation budgets of other algorithms (between 1k
and 100k), . In our experiments, SL required on the order of 108 to 109 simulations. For the SLCP Distractors
and Lotka-Volterra stable estimation of covariances was not possible, which is why these tasks were omitted
(details in A.10). We do not report SL results in the main paper, given the huge difference in simulation budget.
Each data point corresponds to the mean and 95% confidence interval across 10 observations.
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Figure 4: MMD on Two Moons. When using MMD with the median heuristic (as commonly done, including
in SBI papers), MMD is slightly lower for the posterior obtained by REJ-ABC (left, blue samples), than for
SNLE samples (right, green samples): 0.00729 (REJ-ABC) versus 0.00772 (NLE). This is at odds with the visual
impression of the quality of the fit (reference samples in gray) as well as C2ST results: A classifier performed
near chance level (.502) for SNLE samples while being able to tell apart REJ-ABC samples from the reference
with accuracy 0.794. When manually choosing a length scale on the median distance of a single crescent (i.e.,
0.09 instead of 1.78), MMD results were in agreement with C2ST results: 0.00738 (REJ-ABC) versus 0.00035
(SNLE), i.e., they also suggested a better fit for SNLE. In the main paper, we prefer to report C2ST because we
found it less sensitive to hyperparameters: reliance on the commonly used median heuristic can be problematic
on tasks with complex posterior structure, e.g., multi-modality in Two Moons, as demonstrated here. We refer
the interested reader to Liu et al. (2020) for further illustrative examples of where MMD with Gaussian kernels
can have limited power. We also want to point out that new kernel-based two sample tests are being actively
developed which might make them easier to use on such problems in the future.
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Figure 5: Correlations between metrics for all tasks. NLTP is the negative log probability of true parameters.
Note that calculation of KSD was numerically unstable when calculating gradients for SLCP Distractors and Two
Moons, resulting in correlation of zero for these tasks.
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H Hyperparameter Choices

In this section, we address two central questions for any benchmark: (1) how hyperparameters are chosen and (2)
how sensitive results are to the respective choices.

Rather than tuning hyperparameters on a per-task basis, we changed hyperparameters on multiple or all tasks at
once and selected configurations that worked best across tasks. We wanted to avoid overfitting on individual
benchmark tasks and were instead interested in settings that can generalize across multiple tasks. In practice,
tuning an algorithm on a given task would typically be impossible, due to the lack of suitable metrics that can be
computed without reference posteriors as well as high computational demands that SBI tasks often have.

To find good general settings, we performed more than 10 000 individual runs. We explored hyperparameter
choices that have not been previously reported, and revealed substantial improvements. The benchmark offers
the possibility to systematically compare different choices and design better and more robust SBI algorithms.

H.1 REJ-ABC

Classical ABC algorithms have crucial hyperparameters, most importantly, the distance metric and acceptance
tolerance ε. We used our own implementation of REJ-ABC as it is straightforward to implement (see A.1). The
distance metric was fixed to be the l2-norm for all tasks and we varied different acceptance tolerances ε across
tasks on which REJ-ABC performed sufficiently well. Our implementation of REJ-ABC is quantile based, i.e,.
we select a quantile of the samples with the smallest distance to the observed data, which implicitly defines an
ε. The 10k samples needed for the comparison to the reference posterior samples are then resampled from the
selected samples. In order to check whether this resampling significantly impaired performance, we alternatively
fit a KDE in order to obtain 10k samples.

Below, we show results for different schedules of quantiles for each simulation budget, e.g., a schedule of 0.1,
0.01, 0.001 corresponds to the 10, 1 and 0.1 percent quantile, or the top 100 samples for each simulation budget.
Across tasks and budgets the 0.1, 0.01, 0.001 quantile schedule performed best (Fig. 6). Performance showed
improvement by the KDE fit, especially on the Gaussian tasks. We therefore report the version using the top 100
samples and KDE in the main paper.
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Figure 6: Hyperparameter selection for REJ-ABC. C2ST performance of different percentile schedules
across simulation budgets (columns) for all tasks (rows). Top label for each plot column: number of samples
retained, and optional KDE. Across tasks and budgets, the schedule of 0.1, 0.01, 0.001 percentiles, which
corresponds to the top 100 samples closest to the observation, performed best. Each data point corresponds to
the mean and 95% confidence interval across 10 observations.
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H.2 SMC-ABC

SMC-ABC has several hyperparameters including the population size, the perturbation kernel, the epsilon
schedule and the distance metric. In order to ensure that we report the best possible SMC-ABC results for a fair
comparison, we sweeped over three hyperparameters that are especially critical: the population size, the quantile
used to select the epsilon from the distances of the particles of the previous population, and the scaling factor of
the covariance of the Gaussian perturbation kernel. The remaining hyperparameters were fixed to values common
in the literature: Gaussian perturbation kernel and l2-norm distance metric.

Additionally, we compared our implementation against one from the popular pyABC toolbox (Klinger et al.,
2018) to which we refer as versions A and B respectively. We sweeped over these hyperparameters and optionally
added a post-hoc KDE fit for drawing the samples needed for two-sample based performance metrics.

Overall, the parameter setting with a population size of 100, a kernel covariance scale of 0.5, and an epsilon
quantile 0.2 performed best. Although the results of the two different implementations were qualitatively very
similar (compare Fig. 7 and Fig. 8, respectively), version A was slightly better on the Gaussian tasks. Although
we tried to match the implementations and the exact settings, there are small differences between the two,
which might explain the difference in the results: Implementation B constructs the Gaussian perturbation kernel
using kernel density estimation on the weighted samples of the previous population, whereas A constructs it
using the mean and covariance estimated from samples from the previous population. The latter could be
advantageous in case of a Gaussian-like (high-dimensional) posterior (Gaussian Mixture and Gaussian linear
task) and disadvantageous in a non-Gaussian-like posteriors (e.g., Two Moons). We decided to report results for
SMC-ABC in the main paper using implementation A (ours) with population size 100 for simulation budgets
1k and 10k, and population size 1000 for simulation budget 100k, a kernel covariance scale of 0.5, and epsilon
quantile 0.2. This choice of kernel covariance scale is different from recommendations in the literature (Sisson
et al., 2007; Beaumont et al., 2009). We only found very small performance differences for different scales and
note that our choice is in line with the recommendation of the pyABC toolbox (pyABC API Documentation, 2020),
i.e., using a scale between 0 and 1. Performance showed improvement by the KDE fit, especially on the Gaussian
tasks. We therefore report the version with KDE in the main paper.
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Figure 7: Hyperparameter selection for SMC-ABC with our implementation. Top label for each plot
column: population size, kernel covariance scale, epsilon quantile/epsilon-decay parameter, and optional KDE.
Each data point corresponds to the mean and 95% confidence interval across 10 observations.
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Figure 8: Hyperparameter selection for SMC-ABC. with pyABC implementation. Top label for each
plot column: population size, kernel covariance scale, epsilon quantile/epsilon-decay parameter, and optional
KDE. Each data point corresponds to the mean and 95% confidence interval across 10 observations.
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H.3 MCMC for (S)NLE and (S)NRE

(S)NLE and (S)NRE both rely on MCMC sampling, which has several hyperparameters. In line with Papamakarios
et al. (2019b) and Durkan et al. (2020), we used Slice Sampling (Neal, 2003). However, we modified the MCMC
schemes used in these papers and obtained significant improvements in performance and speed.

Number of chains and initialization. While Papamakarios et al. (2019b); Durkan et al. (2020) used a single
chain with axis-aligned updates, we found that on tasks with multi-modal posteriors, it can be essential to run
multiple MCMC chains in order to sample all modes. Performance on Two Moons, for example, was poor with
a single chain, since usually only one of the crescent shapes was sampled. Rather than initialising chains by
drawing initial locations from the prior, we found the resampling scheme as described in A.3 to work better for
initialisation, and used 100 chains instead of a single one.

Transformation of variables. When implementing MCMC, it is common advice to transform problems to
have unbounded support (Hogg and Foreman-Mackey, 2018), although this has not been discussed in SBI papers
or implemented in accompanying code. We found that without this transformation, MCMC sampling could get
stuck in endless loops, e.g., on the Lotka-Volterra task. Apart from the transformation to unbounded space, we
found z-scoring of parameters and data to be crucial for some tasks.

Vectorization of MCMC sampling. We reimplemented Slice Sampling so that all chains could perform
likelihood evaluations in parallel. Evaluating likelihoods, e.g., in the case of (S)NLE, requires passes through a
flow-based density estimator, which is significantly faster when batched. This allowed us to sample all chains in
parallel rather than sequentially and yielded huge speed-ups: For example, SNLE on Gaussian Linear took more
than 36 hours on average for 100k simulations without vectorization, and less than 2 hours with vectorization.

H.4 Density estimator for (S)NLE

Approaches based on neural networks (NN) tend to have many hyperparameters, including the concrete type of
NN architecture and hyperparameters for training. We strove to keep our choices close to Durkan et al. (2020),
which are the defaults in the toolbox we used (sbi, Tejero-Cantero et al., 2020).

While Papamakarios et al. (2019b); Durkan et al. (2020) used Masked Autoregressive Flows (MAFs, Papamakarios
et al., 2017) for density estimation, we explored how results change when using Neural Spline Flows (NSFs,
Durkan et al., 2019) for density estimation. These results are shown in Fig. 9.
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Figure 9: Density estimator selection for (S)NLE. Performance of (S)NLE in terms of C2ST across tasks
using MAFs or NSFs for density estimation. Considering all tasks, NSFs generally performed worse, e.g., using
NSFs significantly reduced performance on SIR and Lotka-Volterra, indicating that the added flexibility of NSFs
was not needed for (S)NLE. We thus reported performance using MAFs in the main paper. Each data point
corresponds to the mean and 95% confidence interval across 10 observations.
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H.5 Density estimator for (S)NPE

We performed the analogous experiments for (S)NPE as for (S)NLE: Here, we found NSFs to increase performance
relative to MAFs (Fig. 10). When directly estimating the posterior distribution, especially on tasks with complex
multi-modal structure like Two Moons or SLCP, the additional flexibility offered by NSFs improved performance.
With NSFs, artifacts from density transformation that were visible e.g. in Two Moons posteriors, vanished. To
our knowledge, results on (S)NPE with NSFs have not been previously published.
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Figure 10: Density estimator selection for (S)NPE. Performance of (S)NPE in terms of C2ST across tasks
using MAFs or NSFs for density estimation. Considering all tasks, NSFs generally performed better, especially on
Gaussian Mixture, Two Moons, and SIR. We thus reported performance using NSFs in the main paper. Each
data point corresponds to the mean and 95% confidence interval across 10 observations.
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H.6 Classifier choice for (S)NRE

For (S)NRE, we compared two different choices of classifier architectures: an MLP and a ResNet architecture, as
described in A.7. While results were similar for most tasks (Fig. 11), we decided to use the ResNet architecture
in the main paper due to the better performance on Two Moons and SIR for low to medium simulation budgets.
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Figure 11: Classifier architecture for (S)NRE. Performance of (S)NRE in terms of C2ST across tasks using
MLPs or ResNets for classification. Considering all tasks, ResNets generally performed better, especially on Two
Moons and SIR. We thus reported performance using ResNets in the main paper. Each data point corresponds to
the mean and 95% confidence interval across 10 observations.
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M Metrics

M.1 Negative log probability of θo (NLTP)

In simulation-based inference, the average negative log likelihood of true parameters −E[log q(θo|xo)] (NLTP) is
commonly reported as a performance metric in the literature (Papamakarios and Murray, 2016; Durkan et al.,
2018; Papamakarios et al., 2019b; Greenberg et al., 2019; Hermans et al., 2020; Durkan et al., 2020). An attractive
property of this metric is that the access to the ground-truth posterior is not required.

It is important to point out, however, that calculating this metric on a single or small number of pairs (θo,xo) is
problematic. To illustrate the issue, consider the following example (as discussed in Talts et al. (2018)): Consider
θ ∼ N (0, 12), x|θ ∼ N (θ, 12), and a single pair (θo,xo) with θo = 0 and an implausible (but possible) xo = 2.1.
In this case, the true posterior is N (θ|1.05, 0.52) under which the θo has low probability since it is more than two
standard deviations away from the posterior mean. If an algorithm fitted a wrong posterior, e.g., by overestimating
the standard deviation as 1 instead of 0.5, the probability of θo under the estimated posterior would be higher
than under the true posterior.

Therefore, a large number of pairs (θo,xo) should be used. Indeed, in the limit of infinite number of pairs (θo,xo),
the metric converges to a DKL:

Eθo∼p(θ)Exo∼p(x|θo)

[
− log q(θo|xo)

]
= Exo∼p(x),θo∼p(θ|xo)

[
− log q(θo|xo)

]
= Exo∼p(x),θo∼p(θ|xo)

[
− log q(θo|xo) + log p(θo|xo)

]
− Exo∼p(x),θo∼p(θ|xo)

[
log p(θo|xo)

]
= Exo∼p(x)DKL(p(θ|xo)||q(θ|xo)) + Exo∼p(x)H(p(θ|xo))

The first term in the final equation is the average DKL between true and approximate posteriors over all
observations xo that can be generated when sampling parameters θo from the prior. The second term, the entropy
term, would be the same for all algorithms compared.

In the context of this benchmark, we decided against using the probability of θo as a metric: For all algorithms
that are not amortized (all but one), evaluating posteriors at different xo would require rerunning inference. As
the computational requirements for running the benchmark at 10 observations per task are already high, running
tasks for hundreds of observations would become prohibitively expensive.

M.2 Simulation-based calibration (SBC)

In simulation-based calibration (SBC), samples θ′ are drawn from the data-averaged posterior, i.e., the posterior
obtained by running inference for many observations. When the posterior approximation is exact, θ′ is distributed
according to the prior (Talts et al., 2018).

Let us briefly illustrate this: In SBC, we draw θ ∼ p(θ),x ∼ p(x|θ),θ′ ∼ q(θ′|x), which implies a joint distribution
π(θ,x,θ′) = p(θ)p(x|θ)q(θ′|x). The marginal π(θ′) is then:

π(θ′) =

∫ ∫
p(θ)p(x|θ)q(θ′|x) dx dθ =

∫ ∫
p(θ,x)q(θ′|x) dx dθ =

∫
p(x) q(θ′|x) dx.

If the approximate posterior is the true posterior, the marginal on θ′ is equal to the prior: If q(θ′|x) = p(θ′|x),
then π(θ′) =

∫
p(x,θ′) dx = p(θ′), i.e., one can set up a consistency test that is based on the distribution of θ′

samples. Talts et al. (2018) do this by using frequentist tests per dimension.

Note that SBC as described above is merely a consistency check. For example, if the approximate posterior were
the prior, a calibration test as described above would not be able to detect this. This is a realistic failure mode in
simulation-based inference. It could happen with rejection ABC in the limit ε→∞, or when learned summary
statistics have no information about θ. One way around this is issue is proposed in Prangle et al. (2014a), who
propose to restrict observations to a subset of all possible X .

SBC is similar to the average negative log likelihood of true parameters described above, in that inference needs
to be carried out for many observations generated by sampling from the prior. Running inference for hundreds of
observations would become prohibitively expensive in terms of compute for most algorithms, which is why we do
not rely on SBC in the benchmark.
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M.3 Median distance (MEDDIST)

Posterior predictive checks (PPCs) use the posterior predictive distribution to predict new data, x′ ∼ p(x′|xo) =∫
p(x′|θ)q(θ|xo) dθ. The observed data xo should look plausible under the posterior predictive distribution

(Gelman et al. (2004), chapter 6). A particular PPC, used for example in Papamakarios et al. (2019b); Greenberg
et al. (2019); Durkan et al. (2020), is to assess the median L2 distance between N ′ posterior predictive samples x′

and xo. The median is used since the mean would be more sensitive to outliers.

In the benchmark, we refer to this metric as median distance (MEDDIST) and drew N ′ = 10000 samples from
each posterior predictive distribution to compute it. In contrast with other metrics considered here, the median
distance is computed in the space of data x and requires additional simulations (which could be expensive,
depending on the simulator). The median distance should be considered a mere check rather than a metric and it
does not necessarily test the structure of the estimated posterior.

M.4 Maximum Mean Discrepancy (MMD)

Maximum Mean Discrepancy (MMD) is an Integral Probability Metric (IPM). Linear and quadratic time estimates
for using MMD as a two-sample test were derived in Gretton et al. (2012). MMD has been commonly used in the
SBI literature with Gaussian kernels (Papamakarios et al., 2019b; Greenberg et al., 2019; Hermans et al., 2020),
setting a single length-scale hyperparameter by using a median heuristic (Ramdas et al., 2015). We follow the
same procedure, i.e., use Gaussian kernels with length-scale determined by the median heuristic on reference
samples. MMDs are calculated using 10k samples from reference and approximate posteriors.

If simple kernels are used to compare distributions with complex, multimodal structure, distinct distributions can
be mapped to nearby mean embeddings, resulting in low test power. On SLCP and Two Moons, for example, we
found a translation-invariant kernel to be limiting, since it cannot adapt to the local structure (see Suppl. Fig. 4).
This is reflected in the low correlation of MMD and C2ST (Suppl. Fig. 5). We emphasize that these issues are
strictly related to simple kernels with hyperparameters commonly used in the literature. Posteriors of the Two
Moons task have a structure similar to the blobs example of Liu et al. (2020), who argue for using learned kernels
to overcome the aforementioned problem.

M.5 Classifier-based tests (C2ST)

In classifier-based testing, a classifier is trained to distinguish samples of the true posterior p(θ|xo) from samples
of the estimated posterior q(θ|xo). If the samples are indistinguishable, the classification performance should be
at chance level, 0.5. Practical use and properties of classifier-based 2-sample testing (C2ST) are discussed in
Lopez-Paz and Oquab (2017) (see Gutmann et al., 2018; Dalmasso et al., 2020, for examples in the context of
SBI).

To compute C2ST, we trained a two-layer neural network with 10 times as many ReLU units as the dimensionality
of parameters, and optimize with Adam (Kingma and Ba, 2015). Classifiers were trained on 10k z-scored samples
from reference and approximate posterior each. Classification accuracy was reported using 5-fold cross-validation.

M.6 Kernelized Stein Discrepancy (KSD)

Kernelized Stein Discrepancy (KSD) is a 1-sample goodness-of-fit test proposed independently by Chwialkowski
et al. (2016) and Liu et al. (2016). KSD tests samples from algorithms against the gradient of unnormalized true
posterior density, ∇θ p̃(θ|xo). We used KSD with Gaussian kernels, setting the length-scale through the median
heuristic, and 10k samples from each algorithm.



Jan-Matthis Lueckmann, Jan Boelts, David S. Greenberg, Pedro J. Gonçalves, Jakob H. Macke

R Runtimes

In applications of SBI, simulations are commonly assumed to be the dominant cost. In order to make the
benchmark feasible at this scale, we focused on simple simulators and optimized runtimes, e.g. we developed
a new package bridging DifferentialEquations.jl (Rackauckas and Nie, 2017; Bezanson et al., 2017) and
PyTorch (Paszke et al., 2019) so that generating simulations for all implemented tasks is extremely fast. This
differs from many cases in practice, where the runtime costs for an algorithm are often negligible compared to the
cost of simulations. Having said that, algorithms show significant differences in runtime costs, which we measured
and report here.

We recorded runtimes for all algorithms on all tasks. In principle, runtimes could be reduced by employing
multi-CPU architectures, however, we decided for the single CPU setup to accurately compare runtimes across all
algorithms and tasks. We did not employ GPUs for training neural-networks (NN). This is because the type of
NNs used in the algorithms currently in the benchmark do not benefit much from GPU versus CPU training (e.g.,
no CNN architecture, rather shallow and narrow networks). In fact, running SNPE on SLCP using a GeForce
GTX 1080 showed slightly longer runtimes than on CPU, due to the added overhead resulting from copying data
back and forth to the device. Therefore, it was more economical and comparable to run the benchmark on CPUs.

All neural network-based algorithms were run on single 3.6 GHz CPU cores of AWS C5-instances. ABC algorithms
were run on single CPU cores of an internal cluster with 2.4 GHz CPUs. We observed a difference in runtimes of
less than 100ms when running ABC algorithms on the same hardware as used for neural network-based algorithms.

Figure 12 shows the recorded runtimes in minutes. We observed short runtimes for REJ-ABC and SMC-ABC, as
these do not require NN training or MCMC. The sequential versions of all three NN-based algorithms yielded
longer runtimes than the non-sequential versions because these involve 10 rounds of NN training. Among the
sequential algorithms, SNPE showed the longest runtimes. Runtimes with MAFs instead of NSFs tend to be faster,
e.g. the difference between MAFs and NSFs using SNPE on SLCP at 100k simulations was about 50 minutes on
average. We also emphasize that the speed of (S)NLE reported here was only obtained after vectorizing MCMC
sampling. Without vectorization, runtime on the Gaussian Linear for SNLE was more than 36 hours instead of
less than 2 hours (see Appendix H).
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Figure 12: Runtime on benchmark tasks. Runtime of REJ-ABC, SMC-ABC, NLE, SNLE, NPE, SNPE,
NRE, SNRE in minutes, for 10 observations each, means and 95% confidence intervals. Each run was allocated a
single CPU core, see Appendix R for details.
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T Tasks

T.1 Gaussian Linear

Inference of the mean of a 10-d Gaussian model, in which the covariance is fixed. The (conjugate) prior is
Gaussian:

Prior N (0, 0.1� I)

Simulator x|θ ∼ N (x|mθ = θ,S = 0.1� I)

Dimensionality θ ∈ R10,x ∈ R10

T.2 Gaussian Linear Uniform

Inference of the mean of a 10-d Gaussian model, in which the covariance is fixed. The prior is uniform:

Prior U(−1,1)

Simulator x|θ ∼ N (x|mθ = θ,S = 0.1� I)

Dimensionality θ ∈ R10,x ∈ R10

T.3 SLCP

A challenging inference task designed to have a simple likelihood and a complex posterior. The prior is uniform
over five parameters θ and the data are a set of four two-dimensional points sampled from a Gaussian likelihood
whose mean and variance are nonlinear functions of θ:

Prior U(−3,3)

Simulator x|θ = (x1, . . . ,x4), xi ∼ N (mθ,Sθ),

where mθ =

θ1

θ2

, Sθ =

 s2
1 ρs1s2

ρs1s2 s2
2

, s1 = θ2
3, s2 = θ2

4, ρ = tanh θ5

Dimensionality θ ∈ R5,x ∈ R8

References Papamakarios et al. (2019b); Greenberg et al. (2019); Hermans et al. (2020)

Durkan et al. (2020)

T.4 SLCP with Distractors

This task is similar to T.3, with the difference that we add uninformative dimensions (distractors) to the
observation:

Prior U(−3,3)

Simulator x|θ = (x1, . . . ,x100), x = p(y), where p re-orders the dimensions of y with a fixed random

permutation,

y[1:8] ∼ N (mθ,Sθ), y[9:100] ∼ 1
20

∑20
i=1 t2(µi,Σi)

where mθ =

θ1

θ2

, Sθ =

 s2
1 ρs1s2

ρs1s2 s2
2

, s1 = θ2
3, s2 = θ2

4, ρ = tanh θ5,

µi ∼ N (0, 152I), Σi
j,k ∼ N (0, 9), for j > k, Σi

j,j = 3ea, where a ∼ N (0, 1), Σi
j,k = 0 otherwise

Dimensionality θ ∈ R5,x ∈ R100

References Greenberg et al. (2019)
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T.5 Bernoulli GLM

Inference of a 10-parameter Generalized linear model (GLM) with Bernoulli observations, and Gaussian prior
with covariance matrix which encourages smoothness by penalizing the second-order differences in the vector of
parameters (De Nicolao et al., 1997). The observations are the sufficient statistics for this GLM:

Prior β ∼ N (0, 2), f ∼ N (0, (F>F)−1),

Fi,i−2 = 1, Fi,i−1 = −2, Fi,i = 1 +
√

i−1
9 , Fi,j = 0 otherwise, 1 ≤ i, j ≤ 9

Simulator x|θ = (x1, . . . ,x10), x1 =
∑T

i zi, x2:10 = 1
x1

Vz,

zi ∼ Bern(η(v>i f + β)), η(·) = exp(·)/(1 + exp(·)),
frozen input between time bins i− 8 and i: vi ∼ N (0, I), V = [v1, v2, . . . , vT ]

Dimensionality θ ∈ R10,x ∈ R10

Fixed parameters Duration of task T = 100.

References Lueckmann et al. (2017); Gonçalves et al. (2020)

T.6 Bernoulli GLM Raw

This task is similar to T.5, the sole difference being that the observations are not the sufficient statistics for the
Bernoulli GLM process but the raw observations:

Prior β ∼ N (0, 2), f ∼ N (0, (F>F)−1),

Fi,i−2 = 1, Fi,i−1 = −2, Fi,i = 1 +
√

i−1
9 , Fi,j = 0 otherwise 1 ≤ i, j ≤ 9

Simulator x|θ = (x1, . . . ,x100), xi ∼ Bern(η(v>i f + β)), η(·) = exp(·)/(1 + exp(·))
frozen input between time bins i− 8 and i: vi ∼ N (0, I),

Dimensionality θ ∈ R10,x ∈ R100

Fixed parameters Duration of task T = 100.

T.7 Gaussian Mixture

This task is common in the ABC literature. It consists of inferring the common mean of a mixture of two
two-dimensional Gaussian distributions, one with much broader covariance than the other:

Prior U(−10,10)

Simulator x|θ ∼ 0.5 N (x|mθ = θ,S = I)+ 0.5 N (x|mθ = θ,S = 0.01� I)

Dimensionality θ ∈ R2,x ∈ R2

References Sisson et al. (2007); Beaumont et al. (2009); Toni et al. (2009); Simola et al. (2020)
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T.8 Two Moons

A two-dimensional task with a posterior that exhibits both global (bimodality) and local (crescent shape) structure
to illustrate how algorithms deal with multimodality:

Prior U(−1,1)

Simulator x|θ =

r cos(α) + 0.25

r sin(α)

+

−|θ1 + θ2|/
√

2

(−θ1 + θ2)/
√

2

, where α ∼ U(−π/2, π/2), r ∼ N (0.1, 0.012)

Dimensionality θ ∈ R2,x ∈ R2

References Greenberg et al. (2019)

T.9 SIR

The SIR model is an epidemiological model describing the dynamics of the number of individuals in three possible
states: susceptible S, infectious I, and recovered or deceased R.

The SIR task consists in inferring the contact rate β and the mean recovery rate γ, given a sampled number of
individuals in the infectious group I in 10 evenly-spaced points in time:

Prior β ∼ LogNormal(log(0.4), 0.5) γ ∼ LogNormal(log(1/8), 0.2)

Simulator x|θ = (x1, . . . , x10), xi ∼ B(1000, I
N ), where I is simulated from

dS
dt = −β SI

N

dI
dt = β SI

N − γI
dR
dt = γI

Dimensionality θ ∈ R2,x ∈ R10

Fixed parameters Population size N = 1000000 and duration of task T = 160.

Initial conditions: (S(0), I(0), R(0)) = (N − 1, 1, 0)

References Kermack and McKendrick (1927)

T.10 Lotka-Volterra

This is an influential model in ecology describing the dynamics of two interacting species, most commonly prey
and predator interactions. Our task consists in the inference of four parameters θ related to species interaction,
given 20 summary statistics consisting of the number of individuals in both populations in 10 evenly-spaced
points in time:

Prior α ∼ LogNormal(−0.125, 0.5), β ∼ LogNormal(−3, 0.5),

γ ∼ LogNormal(−0.125, 0.5), δ ∼ LogNormal(−3, 0.5)

Simulator x|θ = (x1, . . . ,x10), x1,i ∼ LogNormal(log(X), 0.1), x2,i ∼ LogNormal(log(Y ), 0.1),

X and Y are simulated from
dX
dt = αX − βXY
dY
dt = −γY + δXY

Dimensionality θ ∈ R4,x ∈ R20

Fixed parameters Duration of task T = 20. Initial conditions: (X(0), Y (0)) = (30, 1)

References Lotka (1920)
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W Website

The companion website (sbi-benchmark.github.io) allows interactive comparisons in terms of all metrics. It
also allows inspection of posterior samples of all runs, which we found insightful when choosing hyperparameters
and diagnosing implementation issues. Two screenshots are provided in Fig. 13.

Figure 13: Screenshots from the companion website. Top: Classification accuracy (C2ST) for a subset of
sequential algorithms on the SLCP task. Bottom: SNLE posterior on SLCP for x

(1)
o at 100k simulations.

https://sbi-benchmark.github.io
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