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Abstract

Recent advances in probabilistic modelling
have led to a large number of simulation-based
inference algorithms which do not require nu-
merical evaluation of likelihoods. However,
a public benchmark with appropriate perfor-
mance metrics for such ‘likelihood-free’ al-
gorithms has been lacking. This has made
it difficult to compare algorithms and iden-
tify their strengths and weaknesses. We set
out to fill this gap: We provide a bench-
mark with inference tasks and suitable perfor-
mance metrics, with an initial selection of algo-
rithms including recent approaches employing
neural networks and classical Approximate
Bayesian Computation methods. We found
that the choice of performance metric is criti-
cal, that even state-of-the-art algorithms have
substantial room for improvement, and that
sequential estimation improves sample effi-
ciency. Neural network-based approaches gen-
erally exhibit better performance, but there
is no uniformly best algorithm. We provide
practical advice and highlight the potential
of the benchmark to diagnose problems and
improve algorithms. The results can be ex-
plored interactively on a companion website.
All code is open source, making it possible
to contribute further benchmark tasks and
inference algorithms.

1 Introduction

Many domains of science, engineering, and economics
make extensive use of models implemented as stochastic
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numerical simulators (Gourieroux et al., 1993; Ratmann
et al., 2007; Alsing et al., 2018; Brehmer et al., 2018;
Karabatsos and Leisen, 2018; Gonçalves et al., 2020).
A key challenge when studying and validating such
simulation-based models is the statistical identifica-
tion of parameters which are consistent with observed
data. In many cases, calculation of the likelihood is
intractable or impractical, rendering conventional ap-
proaches inapplicable. The goal of simulation-based in-
ference (SBI), also known as ‘likelihood-free inference’,
is to perform Bayesian inference without requiring nu-
merical evaluation of the likelihood function (Sisson
et al., 2018; Cranmer et al., 2020). In SBI, it is gen-
erally not required that the simulator is differentiable,
nor that one has access to its internal random variables.

In recent years, several new SBI algorithms have been
developed (e.g., Gutmann and Corander, 2016; Papa-
makarios and Murray, 2016; Lueckmann et al., 2017;
Chan et al., 2018; Greenberg et al., 2019; Papamakarios
et al., 2019b; Prangle, 2019; Brehmer et al., 2020; Her-
mans et al., 2020; Järvenpää et al., 2020; Picchini et al.,
2020; Rodrigues et al., 2020; Thomas et al., 2020), en-
ergized, in part, by advances in probabilistic machine
learning (Rezende and Mohamed, 2015; Papamakarios
et al., 2017, 2019a). Despite—or possibly because—of
these rapid and exciting developments, it is currently
difficult to assess how different approaches relate to
each other theoretically and empirically: First, different
studies often use different tasks and metrics for com-
parison, and comprehensive comparisons on multiple
tasks and simulation budgets are rare. Second, some
commonly employed metrics might not be appropriate
or might be biased through the choice of hyperparam-
eters. Third, the absence of a benchmark has made
it necessary to reimplement tasks and algorithms for
each new study. This practice is wasteful, and makes
it hard to rapidly evaluate the potential of new al-
gorithms. Overall, it is difficult to discern the most
promising approaches and decide on which algorithm
to use when. These problems are exacerbated by the
interdisciplinary nature of research on SBI, which has



Benchmarking Simulation-Based Inference

led to independent development and co-existence of
closely-related algorithms in different disciplines.

There are many exciting challenges and opportunities
ahead, such as the scaling of these algorithms to high-
dimensional data, active selection of simulations, and
gray-box settings, as outlined in Cranmer et al. (2020).
To tackle such challenges, researchers will need an ex-
tensible framework to compare existing algorithms and
test novel ideas. Carefully curated, a benchmark frame-
work will make it easier for researchers to enter SBI
research, and will fuel the development of new algo-
rithms through community involvement, exchange of
expertise and collaboration. Furthermore, benchmark-
ing results could help practitioners to decide which
algorithm to use on a given problem of interest, and
thereby contribute to the dissemination of SBI.

The catalyzing effect of benchmarks has been evident,
e.g., in computer vision (Russakovsky et al., 2015),
speech recognition (Hirsch and Pearce, 2000; Wang
et al., 2018), reinforcement learning (Bellemare et al.,
2013; Duan et al., 2016), Bayesian deep learning (Filos
et al., 2019; Wenzel et al., 2020), and many other fields
drawing on machine learning. Open benchmarks can
be an important component of transparent and repro-
ducible computational research. Surprisingly, a bench-
mark framework for SBI has been lacking, possibly due
to the challenging endeavor of designing benchmarking
tasks and defining suitable performance metrics.

Here, we begin to address this challenge, and provide
a benchmark framework for SBI to allow rapid and
transparent comparisons of current and future SBI al-
gorithms: First, we selected a set of initial algorithms
representing distinct approaches to SBI (Fig. 1; Cran-
mer et al., 2020). Second, we analyzed multiple perfor-
mance metrics which have been used in the SBI litera-
ture. Third, we implemented ten tasks including tasks
popular in the field. The shortcomings of commonly
used metrics led us to focus on tasks for which a likeli-
hood can be evaluated, which allowed us to calculate
reference (‘ground-truth’) posteriors. These reference
posteriors are made available to allow rapid evalua-
tion of SBI algorithms. Code for the framework is
available at github.com/sbi-benchmark/sbibm and
we maintain an interactive version of all results at
sbi-benchmark.github.io.

The full potential of the benchmark will be real-
ized when it is populated with additional community-
contributed algorithms and tasks. However, our initial
version already provides useful insights: 1) the choice
of performance metric is critical; 2) the performance of
the algorithms on some tasks leaves substantial room
for improvement; 3) sequential estimation generally
improves sample efficiency; 4) for small and moderate

simulation budgets, neural-network based approaches
outperform classical ABC algorithms, confirming re-
cent progress in the field; and 5) there is no algorithm
to rule them all. The performance ranking of algo-
rithms is task-dependent, pointing to a need for better
guidance or automated procedures for choosing which
algorithm to use when. We highlight examples of how
the benchmark can be used to diagnose shortcomings of
algorithms and facilitate improvements. We end with
a discussion of the limitations of the benchmark.

2 Benchmark

The benchmark consists of a set of algorithms, per-
formance metrics and tasks. Given a prior p(θ) over
parameters θ, a simulator to sample x ∼ p(x|θ) and
an observation xo, an algorithm returns an approxi-
mate posterior q(θ|xo), or samples from it, θ ∼ q. The
approximate solution is tested, according to a perfor-
mance metric, against a reference posterior p(θ|xo).

2.1 Algorithms

Following the classification introduced in the review by
Cranmer et al. (2020), we selected algorithms address-
ing SBI in four distinct ways, as schematically depicted
in Fig. 1. An important difference between algorithms
is how new simulations are acquired: Sequential algo-
rithms adaptively choose informative simulations to
increase sample efficiency. While crucial for expen-
sive simulators, it can require non-trivial algorithmic
steps and hyperparameter choices. To evaluate whether
the potential is realized empirically and justifies the
algorithmic burden, we included sequential and non-
sequential counterparts for algorithms of each category.

Keeping our initial selection focused allowed us to care-
fully consider implementation details and hyperparam-
eters: We extensively explored performance and sen-
sitivity to different choices in more than 10k runs, all
results and details of which can be found in Appendix H.
Our selection is briefly described below, full algorithm
details are in Appendix A.

REJ-ABC and SMC-ABC. Approximate Bayesian
Computation (ABC, Sisson et al., 2018) is centered
around the idea of Monte Carlo rejection sampling
(Tavaré et al., 1997; Pritchard et al., 1999). Parameters
θ are sampled from a proposal distribution, simulation
outcomes x are compared with observed data xo, and
are accepted or rejected depending on a (user-specified)
distance function and rejection criterion. While rejec-
tion ABC (REJ-ABC) uses the prior as a proposal
distribution, the efficiency can be improved by using
sequentially refined proposal distributions (SMC-ABC,
Beaumont et al., 2002; Marjoram and Tavaré, 2006;

https://github.com/sbi-benchmark/sbibm
https://sbi-benchmark.github.io
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Figure 1: Overview of algorithms. We compare algorithms belonging to four distinct approaches to SBI:
Classical ABC approaches as well as model-based approaches approximating likelihoods, posteriors, or density
ratios. We contrast algorithms that use the prior distribution to propose parameters against ones that sequentially
adapt the proposal. Classification and schemes following Cranmer et al. (2020).

Sisson et al., 2007; Toni et al., 2009; Beaumont et al.,
2009). We implemented REJ-ABC with quantile-based
rejection and used the scheme of Beaumont et al. (2009)
for SMC-ABC. We extensively varied hyperparameters
and compared the implementation of an ABC-toolbox
(Klinger et al., 2018) against our own (Appendix H).
We investigated linear regression adjustment (Blum and
François, 2010) and the summary statistics approach
by Prangle et al. (2014) (Suppl. Fig. 1).

NLE and SNLE. Likelihood estimation (or ‘synthetic
likelihood’) algorithms learn an approximation to the
intractable likelihood, for an overview see Drovandi
et al. (2018). While early incarnations focused on
Gaussian approximations (SL; Wood, 2010), recent
versions utilize deep neural networks (Papamakarios
et al., 2019b; Lueckmann et al., 2019) to approximate a
density over x, followed by MCMC to obtain posterior
samples. Since we primarily focused on these latter
versions, we refer to them as neural likelihood esti-
mation (NLE) algorithms, and denote the sequential
variant with proposals as SNLE. In particular, we used
the scheme proposed by Papamakarios et al. (2019b)
which uses masked autoregressive flows (MAFs, Pa-
pamakarios et al., 2017) for density estimation. We
improved MCMC sampling for (S)NLE and compared
MAFs against Neural Spline Flows (NSFs; Durkan
et al., 2019), see Appendix H.

NPE and SNPE. Instead of approximating the like-
lihood, these approaches directly target the posterior.
Their origins date back to regression adjustment ap-
proaches (Blum and François, 2010). Modern variants
(Papamakarios and Murray, 2016; Lueckmann et al.,
2017; Greenberg et al., 2019) use neural networks for
density estimation (approximating a density over θ).
Here, we used the recent algorithmic approach proposed
by Greenberg et al. (2019) for sequential acquisitions.
We report performance using NSFs for density estima-
tion, which outperformed MAFs (Appendix H).

NRE and SNRE. Ratio Estimation approaches to
SBI use classifiers to approximate density ratios (Izbicki
et al., 2014; Pham et al., 2014; Cranmer et al., 2015;
Dutta et al., 2016; Durkan et al., 2020; Thomas et al.,
2020). Here, we used the recent approach proposed by
Hermans et al. (2020) as implemented in Durkan et al.
(2020): A neural network-based classifier approximates
probability ratios and MCMC is used to obtain samples
from the posterior. SNRE denotes the sequential vari-
ant of neural ratio estimation (NRE). In Appendix H we
compare different classifier architectures for (S)NRE.

In addition, we benchmarked Random Forest ABC
(RF-ABC; Raynal et al., 2019), a recent ABC variant,
and Synthetic Likelihood (SL; Wood, 2010), mentioned
above. However, RF-ABC only targets individual pa-
rameters (i.e. assumes posteriors to factorize), and SL
requires new simulations for every MCMC step, thus
requiring orders of magnitude more simulations than
other algorithms. Therefore, we report results for these
algorithms separately, in Suppl. Fig. 2 and Suppl. Fig.
3, respectively.

Algorithms can be grouped with respect to how their
output is represented: 1) some return samples from
the posterior, θ ∼ q(θ|xo) (REJ-ABC, SMC-ABC); 2)
others return samples and allow evaluation of unnor-
malized posteriors q̃(θ|xo) ((S)NLE, (S)NRE); and 3)
for some, the posterior density q(θ|xo) can be evaluated
and sampled directly, without MCMC ((S)NPE). As
discussed below, these properties constrain the metrics
that can be used for comparison.

2.2 Performance metrics

Choice of a suitable performance metric is central to
any benchmark. As the goal of SBI algorithms is to
perform full inference, the ‘gold standard’ would be
to quantify the similarity between the true posterior
and the inferred one with a suitable distance (or di-
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vergence) measure on probability distributions. This
would require both access to the ground-truth posterior,
and a reliable means of estimating similarity between
(potentially) richly structured distributions. Several
performance metrics have been used in past research,
depending on the constraints imposed by knowledge
about ground-truth and the inference algorithm (see
Table 1). In real-world applications, typically only the
observation xo is known. However, in a benchmarking
setting, it is reasonable to assume that one has at least
access to the ground-truth parameters θo. There are
two commonly used metrics which only require θo and
xo, but suffer severe drawbacks for our purposes:

Probability θo. The negative log probability
of true parameters averaged over different (θo,xo),
−E[log q(θo|xo)], has been used extensively in the liter-
ature (Papamakarios and Murray, 2016; Durkan et al.,
2018; Greenberg et al., 2019; Papamakarios et al., 2019b;
Durkan et al., 2020; Hermans et al., 2020). Its appeal
lies in the fact that one does not need access to the
ground-truth posterior. However, using it only for a
small set of (θo,xo) is highly problematic: It is only a
valid performance measure if averaged over a large set of
observations sampled from the prior (Talts et al., 2018,
detailed discussion including connection to simulation-
based calibration in Appendix M). For reliable results,
one would require inference for hundreds of xo which
is only feasible if inference is rapid (amortized) and
the density q can be evaluated directly (among the
algorithms used here this applies only to NPE).

Posterior-Predictive Checks (PPCs). As the
name implies, PPCs should be considered a mere check
rather than a metric, although the median distance be-
tween predictive samples and xo has been reported in
the SBI literature (Papamakarios et al., 2019b; Green-
berg et al., 2019; Durkan et al., 2020). A failure mode
of such a metric is that an algorithm obtaining a good
MAP point estimate, could perfectly pass this check
even if the estimated posterior is poor. Empirically, we
found median-distances (MEDDIST) to be in disagree-
ment with other metrics (see Results).

The shortcomings of these commonly-used metrics led
us to focus on tasks for which it is possible to get sam-
ples from ground-truth posterior θ ∼ p, thus allowing
us to use metrics based on two-sample tests:

Maximum Mean Discrepancy (MMD). MMD
(Gretton et al., 2012; Sutherland et al., 2017) is a
kernel-based 2-sample test. Recent papers (Papamakar-
ios et al., 2019b; Greenberg et al., 2019; Hermans et al.,
2020) reported MMD using translation-invariant Gaus-
sian kernels with length scales determined by the me-
dian heuristic (Ramdas et al., 2015). We empirically
found that MMD can be sensitive to hyperparameter

choices, in particular on posteriors with multiple modes
and length scales (see Results and Liu et al., 2020).

Classifier 2-Sample Tests (C2ST). C2STs (Fried-
man, 2004; Lopez-Paz and Oquab, 2017) train a classi-
fier to discriminate samples from the true and inferred
posteriors, which makes them simple to apply and easy
to interpret. Therefore, we prefer to report and com-
pare algorithms in terms of accuracy in classification-
based tests. In the context of SBI, C2ST has e.g. been
used in Gutmann et al. (2018); Dalmasso et al. (2020).

Other metrics that could be used include:

Kernelized Stein Discrepancy (KSD). KSD (Liu
et al., 2016; Chwialkowski et al., 2016) is a 1-sample test,
which require access to ∇θ p̃(θ|xo) rather than samples
from p (p̃ is the unnormalized posterior). Like MMD,
current estimators use translation-invariant kernels.

f-Divergences. Divergences such as Total Variation
(TV) divergence and KL divergences can only be com-
puted when the densities of true and approximate pos-
teriors can be evaluated (Table 1). Thus, we did not
use f -divergences for the benchmark.

Full discussion and details of metrics in Appendix M.

2.3 Tasks

The preceding considerations guided our selection of
inference tasks: We focused on tasks for which reference
posterior samples θ ∼ p can be obtained, to allow
calculation of 2-sample tests. We focused on eight
purely statistical problems and two problems relevant
in applied domains, with diverse dimensionalities of
parameters and data (details in Appendix T):

Gaussian Linear/Gaussian Linear Uniform. We
included two versions of simple, linear, 10-d Gaussian
models, in which the parameter θ is the mean, and the
covariance is fixed. The first version has a Gaussian
(conjugate) prior, the second one a uniform prior. These
tasks allow us to test how algorithms deal with trivial
scaling of dimensionality, as well as truncated support.

SLCP/SLCP Distractors. A challenging inference
task designed to have a simple likelihood and a complex
posterior (Papamakarios et al., 2019b; Greenberg et al.,
2019): The prior is uniform over five parameters θ
and the data are a set of four two-dimensional points
sampled from a Gaussian likelihood whose mean and
variance are nonlinear functions of θ. This induces a
complex posterior with four symmetrical modes and
vertical cut-offs. We included a second version with
92 additional, non-informative outputs (distractors) to
test the ability to detect informative features.

Bernoulli GLM/Bernoulli GLM Raw. 10-
parameter Generalized Linear Model (GLM) with
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Table 1: Applicability of metrics given knowledge about ground truth and algorithm. Whether a
metric can be used depends on both what is known about the ground-truth of an inference task and what an
algorithm returns: Information about ground truth can vary between just having observed data xo (typical setting
in practice), knowing the generating parameter θo, having posterior samples, gradients, or being able to evaluate
the true posterior p. Tilde denotes unnormalized distributions. Access to information is cumulative.

Ground truth →

↓ Algorithm xo θo θ ∼ p ∇p̃(θ|xo) p(θ|xo)

θ ∼ q 1 1 1, 3 1, 3, 4 1, 3, 4

q̃(θ|xo) 1 1 1, 3 1, 3, 4 1, 3, 4

q(θ|xo) 1 1, 2 1, 2, 3 1, 2, 3, 4 1, 2, 3, 4, 5

1 = PPCs, 2 = Probability θ0, 3 = 2-sample tests, 4 = 1-sample tests, 5 = f -divergences.

Bernoulli observations. Inference was either performed
on sufficient statistics (10-d) or raw data (100-d).

Gaussian Mixture. This inference task, introduced
by Sisson et al. (2007), has become common in the
ABC literature (Beaumont et al., 2009; Toni et al.,
2009; Simola et al., 2020). It consists of a mixture of
two two-dimensional Gaussian distributions, one with
much broader covariance than the other.

Two Moons. A two-dimensional task with a poste-
rior that exhibits both global (bimodality) and local
(crescent shape) structure (Greenberg et al., 2019) to
illustrate how algorithms deal with multimodality.

SIR. Dynamical systems represent paradigmatic use
cases for SBI. SIR is an influential epidemiological
model describing the dynamics of the number of indi-
viduals in three possible states: susceptible S, infectious
I, and recovered or deceased, R. We infer the contact
rate β and the mean recovery rate γ, given observed
infection counts I at 10 evenly-spaced time points.

Lotka-Volterra. An influential model in ecology de-
scribing the dynamics of two interacting species, widely
used in SBI studies. We infer four parameters θ related
to species interaction, given the number of individuals
in both populations at 10 evenly-spaced points in time.

2.4 Experimental Setup

For each task, we sampled 10 sets of true parameters
from the prior and generated corresponding observa-
tions (θo,xo)1:10. For each observation, we generated
10k samples from the reference posterior. Some refer-
ence posteriors required a customised (likelihood-based)
approach (Appendix B).

In SBI, it is typically assumed that total computation
cost is dominated by simulation time. We therefore
report performance at different simulation budgets.

For each observation, each algorithm was run with a
simulation budget ranging from 1k to 100k simulations.

For each run, we calculated metrics described above.
To estimate C2ST accuracy, we trained a multilayer
perceptron to tell apart approximate and reference pos-
terior samples and performed five-fold cross-validation.
We used two hidden layers, each with 10 times as many
ReLu units as the dimensionality of the data. We also
measured and report runtimes (Appendix R).

2.5 Software

Code. All code is released publicly at
github.com/sbi-benchmark/sbibm. Our frame-
work includes tasks, reference posteriors, metrics,
plotting, and infrastructure tooling and is designed to
be 1) easily extensible, 2) used with external toolboxes
implementing algorithms. All tasks are implemented
as probabilistic programs in Pyro (Bingham et al.,
2019), so that likelihoods and gradients for reference
posteriors can be extracted automatically. To make
this possible for tasks that use ODEs, we developed
a new interface between DifferentialEquations.jl
(Rackauckas and Nie, 2017; Bezanson et al., 2017) and
PyTorch (Paszke et al., 2019). In addition, specifying
simulators in a probabilistic programming language
has the advantage that ‘gray-box’ algorithms (Brehmer
et al., 2020; Cranmer et al., 2020) can be added in the
future. We here evaluated algorithms implemented
in pyABC (Klinger et al., 2018), pyabcranger (Collin
et al., 2020), and sbi (Tejero-Cantero et al., 2020).
See Appendix B for details and existing SBI toolboxes.

Reproducibility. Instructions to reproduce experi-
ments on cloud-based infrastructure are in Appendix B.

Website. Along with the code, we provide a web
interface which allows interactive exploration of all the
results (sbi-benchmark.github.io; Appendix W).

https://github.com/sbi-benchmark/sbibm
https://sbi-benchmark.github.io
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Figure 2: Performance on Two Moons according to various metrics. Best possible performance would be
0.5 for C2ST, 0 for MMD2 and MEDDIST. Results for 10 observations each, means and 95% confidence intervals.

3 Results

We first consider empirical results on a single task, Two
Moons, according to different metrics, which illustrate
the following important insight:

#1: Choice of performance metric is key. While
C2ST results on Two Moons show that performance
increases with higher simulation budgets and that se-
quential algorithms outperform non-sequential ones for
low to medium budgets, these results were not reflected
in MMD and MEDDIST (Fig. 2): In our analyses, we
found MMD to be sensitive to hyperparameter choices,
in particular on tasks with complex posterior struc-
ture. When using the commonly employed median
heuristic to set the kernel length scale on a task with
multi-modal posteriors (like Two Moons), MMD had
difficulty discerning markedly different posteriors. This
can be ‘fixed’ by using hyperparameters adapted to the
task (Suppl. Fig. 4). As discussed above, the median
distance (though commonly used) can be ‘gamed’ by
a good point estimate even if the estimated posterior
is poor and is thus not a suitable performance metric.
Computation of KSD showed numerical problems on
Two Moons, due to the gradient calculation.

We assessed relationships between metrics empirically
via the correlations across tasks (Suppl. Fig. 5). As
discussed above, the log-probability of ground-truth
parameters can be problematic when averaged over
too few observations (e.g., 10, as is common in the
literature): indeed, this metric had a correlation of
only 0.3 with C2ST on Two Moons and 0.6 on the
SLCP task. Based on these considerations, we used
C2ST for reporting performance (Fig. 3; results for
MMD, KSD and median distance on the website).

Based on the comparison of the performance across all
tasks, we highlight the following main points:

#2: These are not solved problems. C2ST uses
an interpretable scale (1 to 0.5), which makes it possible
to conclude that, for several tasks, no algorithm could
solve them with the specified budget (e.g., SLCP, Lotka-
Volterra). This highlights that our problems—though
conceptually simple—are challenging, and there is room
for development of more powerful algorithms.

#3: Sequential estimation improves sample ef-
ficiency. Our results show that sequential algorithms
outperform non-sequential ones (Fig. 3). The differ-
ence was small on simple tasks (i.e. linear Gaussian
cases), yet pronounced on most others. However, we
also found these methods to exhibit diminishing re-
turns as the simulation budget grows, which points to
an opportunity for future improvements.

#4: Density or ratio estimation-based al-
gorithms generally outperform classical tech-
niques. REJ-ABC and SMC-ABC were generally
outperformed by more recent techniques which use
neural networks for density- or ratio-estimation, and
which can therefore efficiently interpolate between dif-
ferent simulations (Fig. 3). Without such model-based
interpolation, even a simple 10-d Gaussian task can be
challenging. However, classical rejection-based meth-
ods have a computational footprint that is orders of
magnitudes smaller, as no network training is involved
(Appendix R). Thus, on low-dimensional problems and
for cheap simulators, these methods can still be com-
petitive. See Suppl. Fig. 1 for results with additional
ABC variants (Blum and François, 2010; Prangle et al.,
2014) and Suppl. Fig. 2 for results on RF-ABC.
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Figure 3: Performance on other benchmark tasks. Classification accuracy (C2ST) of REJ-ABC, SMC-ABC,
NLE, SNLE, NPE, SNPE, NRE, SNRE for 10 observations each, means and 95% confidence intervals.

#5: No one algorithm to rule them all. Al-
though sequential density or ratio estimation-based
algorithms performed better than their non-sequential
counterparts, there was no clear-cut answer as to which
sequential method (SNLE, SNRE, and SNPE) should
be preferred. To some degree, this is to be expected:
these algorithms have distinct strengths that can play
out differently depending on the problem structure (see
discussions e.g., in Greenberg et al., 2019; Durkan et al.,
2018, 2020). However, this has not been shown system-
atically before. We formulate some practical guidelines
for choosing appropriate algorithms in Box 1.

#6: The benchmark can be used to diagnose
implementation issues and improve algorithms.
For example, (S)NLE and (S)NRE rely on MCMC sam-
pling to compute posteriors, and this sampling step
can limit the performance. Access to a reference pos-

terior can help identify and improve such issues: We
found that single chains initialized by sampling from
the prior with axis-aligned slice sampling (as intro-
duced in Papamakarios et al., 2019b) frequently got
stuck in single modes. Based on this observation, we
changed the MCMC strategy (details in Appendix A),
which, though simple, yielded significant performance
and speed improvements on the benchmark tasks. Sim-
ilarly, (S)NLE and (S)NRE improved by transforming
parameters to be unbounded: Without transforma-
tions, runs on some tasks can get stuck during MCMC
sampling (e.g., Lotka-Volterra). While this is com-
mon advice for MCMC (Hogg and Foreman-Mackey,
2018), it has been lacking in code and papers of SBI
approaches.

We used the benchmark to systematically compare
hyperparameters: For example, as density estimators
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Do we need the Bayesian posterior, or is a point estimate sufficient?

Our focus was on SBI algorithms that target the Bayesian posterior. If one only aims for a single estimate,
optimization methods (e.g. Rios and Sahinidis, 2013; Shahriari et al., 2015) might be more efficient.

Is the simulator really ‘black-box’?

The SBI algorithms presented in the benchmark can be applied to any ‘black-box’ simulator. However,
if the likelihood is available, methods exploiting it (e.g. MCMC, variational inference) will generally be
more efficient. Similarly, if one has access to the internal random numbers, probabilistic programming
approaches (Le et al., 2017; Baydin et al., 2019; Wood et al., 2020) might be preferable. If additional
quantities that characterize the latent process are available, i.e., the simulator is ‘gray-box’, they can be
used to augment training data and improve inference (Brehmer et al., 2020; Cranmer et al., 2020).

What domain knowledge do we have about the problem?

For any practical application of SBI, it is worth thinking carefully about domain knowledge. First,
knowledge about plausible parameters should inform the choice of the prior. Second, domain knowledge
can help design appropriate distance functions or summary statistics required for classical ABC algorithms.
When using model-based approaches, domain knowledge can potentially be built into the SBI algorithm
itself, for example, by incorporating neural network layers with appropriate inductive biases or invariances.

Do we have, or can we learn summary statistics?

Summary statistics are especially important when facing problems with high-dimensional data: It is
important to point out that the posterior given summary statistics p(θ|s(xo)) is only equivalent to p(θ|xo)
if the summary statistics are sufficient. The problem at hand can guide the manual design of summary
statistics that are regarded particularly important or informative. Alternatively, many automatic approaches
exist (e.g., Prangle et al., 2014; Charnock et al., 2018; Dinev and Gutmann, 2018) and this is an active
area of research (e.g., Chen et al. 2021 recently proposed an approach to learn approximately sufficient
statistics for SMC-ABC and (S)NLE). (S)NPE and (S)NRE can directly reduce high-dimensional data as
part of their network architectures.

Do we have low-dimensional data and parameters, and a cheap simulator?

If both the parameters and the data (or suitable summary-statistics thereof) are low-dimensional, and
a very large number of simulations can be generated, model-free algorithms such as classical ABC can
be competitive. These have the benefit of adding little computational overhead. Conversely, for limited
simulation budgets and/or higher dimensionalities, approaches that train a model of the likelihood, posterior,
or likelihood ratio will generally be preferable.

Are simulations expensive? Can we simulate online?

For time-intensive and complex simulators, it can be beneficial to use sequential methods to increase sample
efficiency: We found that sequential schemes generally outperformed non-sequential ones. While we focused
on simple strategies which use the previous estimate of the posterior to propose new parameters, more
sophisticated schemes (e.g., Gutmann and Corander, 2016; Lueckmann et al., 2019; Järvenpää et al., 2019)
may increase sample efficiency if only few simulations can be obtained. For some applications, inference is
performed on a fixed dataset, and one cannot resort to sequential algorithms.

Do we want to carry out inference once, or repeatedly?

To perform SBI separately for different data points (i.e. compute p(θ|x1), p(θ|x2), . . .), methods that allow
‘amortization’ (NPE) are likely preferable. While NLE and NRE allow amortisation of the neural network,
MCMC sampling is required, which takes additional time. Conversely, if we want to run SBI conditioned
on many i.i.d. data (e.g. p(θ|x1,x2, . . .)) methods based on likelihood or ratio estimation (NLE, NRE), or
NPE with exchangeable neural networks (Chan et al., 2018) would be appropriate.

Box 1: Practitioners’ advice for applying SBI algorithms. Based on our current results and understanding,
we provide advice to practitioners seeking to apply SBI. There is no one-fits-all solution—which algorithm to use
in practice will depend on the problem at hand. For additional advice, see Cranmer et al. (2020).
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for (S)NLE and (S)NPE, we used NSFs (Durkan et al.,
2020) which were developed after these algorithms were
published. This revealed that higher capacity density
estimators were beneficial for posterior but not likeli-
hood estimation (detailed analysis in Appendix H).

These examples show how the benchmark makes it
possible to diagnose problems and improve algorithms.

4 Limitations

Our benchmark, in its current form, has several limi-
tations. First, the algorithms considered here do not
cover the entire spectrum of SBI algorithms: We did
not include sequential algorithms using active learning
or Bayesian Optimization (Gutmann and Corander,
2016; Järvenpää et al., 2019; Lueckmann et al., 2019;
Aushev et al., 2020), or ‘gray-box’ algorithms, which
use additional information about or from the simula-
tor (e.g., Baydin et al., 2019; Brehmer et al., 2020).
We focused on approaches using neural networks for
density estimation and did not compare to alternatives
using Gaussian Processes (e.g., Meeds and Welling,
2014; Wilkinson, 2014). There are many other algo-
rithms which the benchmark is currently lacking (e.g.,
Nott et al., 2014; Ong et al., 2018; Clarté et al., 2020;
Prangle, 2019; Priddle et al., 2019; Picchini et al., 2020;
Radev et al., 2020; Rodrigues et al., 2020). Keeping
our initial selection small allowed us to carefully investi-
gate hyperparameter choices. We focused on sequential
algorithms with less sophisticated acquisition schemes
and the black-box scenario, since we think these are
important baselines for future comparisons.

Second, the tasks we considered do not cover the vari-
ety of possible challenges. Notably, while we have tasks
with high dimensional data with and without structure,
we have not included tasks with high-dimensional spa-
tial structure, e.g., images. Such tasks would require
algorithms that automatically learn summary statistics
while exploring the structure of the data (e.g., Dinev
and Gutmann, 2018; Greenberg et al., 2019; Hermans
et al., 2020; Chen et al., 2021), an active research area.

Third, while we extensively investigated tuning choices
and compared implementations, the results might nev-
ertheless reflect our own areas of expertise.

Fourth, in line with common practice in SBI, results
presented in the paper focused on performance as a
function of the number of simulation calls. It is impor-
tant to remember that differences in computation time
can be substantial (see Appendix R): For example,
(S)ABC was much faster than approaches requiring
network training. Overall, sequential neural algorithms
exhibited longest runtimes.

Fifth, for reasons described above, we focused on prob-

lems for which reference posteriors can be computed.
This raises the question of how insights on these prob-
lems will generalize to ‘real-world’ simulators. Notably,
even these simple problems already identify clear dif-
ferences between, and limitations of, different SBI ap-
proaches. Since it is not possible to rigorously compare
the performance of different algorithms directly on ‘real-
world’ simulators due to the lack of appropriate metrics,
we see the benchmark as a necessary stepping stone
towards the development of (potentially automated)
selection strategies for practical problems.

Sixth, in practice, the choice of algorithm can depend
on aspects that are difficult to quantify: It will depend
on the available information about a problem, the in-
ference goal, and the speed of the simulator, among
other considerations. We included some practical con-
siderations and recommendations in Box 1.

Finally, benchmarking is an important tool, but not
an end in itself—for example, conceptually new ideas
might initially not yield competitive results but only
reveal their true value later. Conversely, ‘overfitting’
on benchmarks can lead to the illusion of progress,
and result in an undue focus on small implementation
details which might not generalize beyond it. It would
certainly be possible to cheat on this benchmark: In
particular, as the simulators are available, one could use
samples (or even likelihoods) to excessively tune hyper-
parameters for each task. This would hardly transfer to
practice where such tuning is usually impossible (lack of
metrics and expensive simulators). Therefore, we care-
fully compared choices and selected hyperparameters
performing best across tasks (Appendix H).

5 Discussion

Quantitatively evaluating, comparing and improving
algorithms through benchmarking is at the core of
progress in machine learning. We here provided an
initial benchmark for simulation-based inference. If
used sensibly, it will be an important tool for clari-
fying and expediting progress in SBI. We hope that
the current results on multiple widely-used algorithms
already provide insights into the state of the field, assist
researchers with algorithm development, and that our
recommendations for practitioners will help them in
selecting appropriate algorithms.

We believe that the full potential of the benchmark
will be revealed as more researchers participate and
contribute. To facilitate this process, and allow users
to quickly explore and compare algorithms, we are
providing precomputed reference posteriors, a website
(sbi-benchmark.github.io), and open-source code
(github.com/sbi-benchmark/sbibm).

https://sbi-benchmark.github.io
https://github.com/sbi-benchmark/sbibm


Benchmarking Simulation-Based Inference

Acknowledgements

We thank Álvaro Tejero-Cantero, Auguste Schulz,
Conor Durkan, François Lanusse, Leandra White, Mar-
cel Nonnenmacher, Michael Deistler, Pedro Rodrigues,
Poornima Ramesh, Sören Becker and Theofanis Kar-
aletsos for discussions and comments on the manuscript.
In addition, J.-M.L. would like to thank the organisers
and participants of the Likelihood-Free Inference Work-
shop hosted by the Simons Foundation for discussions,
in particular, Danley Hsu, François Lanusse, George
Papamakarios, Henri Pesonen, Joeri Hermans, Johann
Brehmer, Kyle Cranmer, Owen Thomas and Umberto
Simola. We also acknowledge and thank the Python
(Van Rossum and Drake Jr, 1995) and Julia (Bezanson
et al., 2017) communities for developing the tools en-
abling this work, including Altair (VanderPlas et al.,
2018), DifferentialEquations.jl (Rackauckas and
Nie, 2017), Hydra (Yadan, 2019), kernel-gof (Jitkrit-
tum et al., 2017), igms (Sutherland, 2017), NumPy
(Harris et al., 2020), pandas (pandas development
team, 2020), pyABC (Klinger et al., 2018), pyabcranger
(Collin et al., 2020), Pyro (Bingham et al., 2019),
PyTorch (Paszke et al., 2019), sbi (Tejero-Cantero
et al., 2020), Scikit-learn (Pedregosa et al., 2011),
torch-two-sample (Djolonga, 2017), and vega-lite
(Satyanarayan et al., 2017).

This work was supported by the German Research
Foundation (DFG; SFB 1233 PN 276693517, SFB 1089,
SPP 2041, Germany’s Excellence Strategy – EXC num-
ber 2064/1 PN 390727645) and the German Federal
Ministry of Education and Research (BMBF; project
’ADIMEM’, FKZ 01IS18052 A-D).

References

Alsing, J., B. Wandelt, and S. Feeney
2018. Massive optimal data compression and density
estimation for scalable, likelihood-free inference in
cosmology. Monthly Notices of the Royal Astronomi-
cal Society, 477(3):2874–2885.

Aushev, A., H. Pesonen, M. Heinonen, J. Corander,
and S. Kaski
2020. Likelihood-free inference with deep gaussian
processes. Deep Learning and Inverse Problems
Workshop at Neural Information Processing Systems.

Baydin, A. G., L. Shao, W. Bhimji, L. Heinrich,
L. Meadows, J. Liu, A. Munk, S. Naderiparizi,
B. Gram-Hansen, G. Louppe, et al.
2019. Etalumis: bringing probabilistic programming
to scientific simulators at scale. In Proceedings of
the International Conference for High Performance
Computing, Networking, Storage and Analysis, Pp. 1–
24.

Beaumont, M. A., J.-M. Cornuet, J.-M. Marin, and

C. P. Robert
2009. Adaptive approximate bayesian computation.
Biometrika, 96(4):983–990.

Beaumont, M. A., W. Zhang, and D. J. Balding
2002. Approximate bayesian computation in popula-
tion genetics. Genetics, 162(4):2025–2035.

Bellemare, M. G., Y. Naddaf, J. Veness, and M. Bowl-
ing
2013. The arcade learning environment: An evalua-
tion platform for general agents. Journal of Artificial
Intelligence Research, 47:253–279.

Bezanson, J., A. Edelman, S. Karpinski, and V. B.
Shah
2017. Julia: A fresh approach to numerical comput-
ing. SIAM review, 59(1):65–98.

Bingham, E., J. P. Chen, M. Jankowiak, F. Obermeyer,
N. Pradhan, T. Karaletsos, R. Singh, P. Szerlip,
P. Horsfall, and N. D. Goodman
2019. Pyro: Deep universal probabilistic pro-
gramming. Journal of Machine Learning Research,
20(1):973–978.

Blum, M. G. and O. François
2010. Non-linear regression models for approximate
bayesian computation. Statistics and Computing,
20(1):63–73.

Brehmer, J., K. Cranmer, G. Louppe, and J. Pavez
2018. Constraining effective field theories with
machine learning. Physical Review Letters,
121(11):111801.

Brehmer, J., G. Louppe, J. Pavez, and K. Cranmer
2020. Mining gold from implicit models to improve
likelihood-free inference. Proceedings of the National
Academy of Sciences, 117(10):5242–5249.

Chan, J., V. Perrone, J. Spence, P. Jenkins, S. Math-
ieson, and Y. Song
2018. A likelihood-free inference framework for pop-
ulation genetic data using exchangeable neural net-
works. In Advances in Neural Information Processing
Systems 31, Pp. 8594–8605. Curran Associates, Inc.

Charnock, T., G. Lavaux, and B. D. Wandelt
2018. Automatic physical inference with information
maximizing neural networks. Physical Review D,
97(8):083004.

Chen, Y., D. Zhang, M. Gutmann, A. Courville, and
Z. Zhu
2021. Neural approximate sufficient statistics for im-
plicit models. In Proceedings of the 9th International
Conference on Learning Representations, ICLR.

Chwialkowski, K., H. Strathmann, and A. Gretton
2016. A kernel test of goodness of fit. In Proceed-
ings of The 33rd International Conference on Ma-
chine Learning, volume 48 of Proceedings of Machine
Learning Research, Pp. 2606–2615. PMLR.



Jan-Matthis Lueckmann, Jan Boelts, David S. Greenberg, Pedro J. Gonçalves, Jakob H. Macke

Clarté, G., C. P. Robert, R. J. Ryder, and J. Stoehr
2020. Component-wise approximate bayesian com-
putation via gibbs-like steps. Biometrika.

Collin, F.-D., A. Estoup, J.-M. Marin, and L. Raynal
2020. Bringing abc inference to the machine learn-
ing realm: Abcranger, an optimized random forests
library for abc. In JOBIM 2020, volume 2020.

Cranmer, K., J. Brehmer, and G. Louppe
2020. The frontier of simulation-based inference.
Proceedings of the National Academy of Sciences.

Cranmer, K., J. Pavez, and G. Louppe
2015. Approximating likelihood ratios with cal-
ibrated discriminative classifiers. arXiv preprint
arXiv:1506.02169.

Dalmasso, N., A. B. Lee, R. Izbicki, T. Pospisil, and
C.-A. Lin
2020. Validation of approximate likelihood and em-
ulator models for computationally intensive simu-
lations. In Proceedings of The 23rd International
Conference on Artificial Intelligence and Statistics
(AISTATS).

Dinev, T. and M. U. Gutmann
2018. Dynamic likelihood-free inference via ratio
estimation (dire). arXiv preprint arXiv:1810.09899.

Djolonga, J.
2017. torch-two-sample: A pytorch library for differ-
entiable two-sample tests. Github.

Drovandi, C. C., C. Grazian, K. Mengersen, and
C. Robert
2018. Approximating the likelihood in approximate
bayesian computation. In Handbook of Approxi-
mate Bayesian Computation, S. Sisson, Y. Fan, and
M. Beaumont, eds., chapter 12. CRC Press, Taylor
& Francis Group.

Duan, Y., X. Chen, R. Houthooft, J. Schulman, and
P. Abbeel
2016. Benchmarking deep reinforcement learning
for continuous control. In Proceedings of the 33th
International Conference on Machine Learning, vol-
ume 48 of Proceedings of Machine Learning Research,
Pp. 1329–1338. PMLR.

Durkan, C., A. Bekasov, I. Murray, and G. Papamakar-
ios
2019. Neural spline flows. In Advances in Neu-
ral Information Processing Systems, Pp. 7509–7520.
Curran Associates, Inc.

Durkan, C., I. Murray, and G. Papamakarios
2020. On contrastive learning for likelihood-free in-
ference. In Proceedings of the 36th International
Conference on Machine Learning, volume 98 of Pro-
ceedings of Machine Learning Research. PMLR.

Durkan, C., G. Papamakarios, and I. Murray
2018. Sequential neural methods for likelihood-free
inference. Bayesian Deep Learning Workshop at
Neural Information Processing Systems.

Dutta, R., J. Corander, S. Kaski, and M. U. Gutmann
2016. Likelihood-free inference by ratio estimation.
arXiv preprint arXiv:1611.10242.

Filos, A., S. Farquhar, A. N. Gomez, T. G. Rudner,
Z. Kenton, L. Smith, M. Alizadeh, A. de Kroon, and
Y. Gal
2019. A systematic comparison of bayesian deep
learning robustness in diabetic retinopathy tasks.
Bayesian Deep Learning Workshop at Neural Infor-
mation Processing Systems.

Friedman, J.
2004. On multivariate goodness-of-fit and two-sample
testing. In Conference on Statistical Problems in
Particle Physics, Astrophysics and Cosmology.

Gonçalves, P. J., J.-M. Lueckmann, M. Deistler,
M. Nonnenmacher, K. Öcal, G. Bassetto, C. Chin-
taluri, W. F. Podlaski, S. A. Haddad, T. P. Vogels,
D. S. Greenberg, and J. H. Macke
2020. Training deep neural density estimators to iden-
tify mechanistic models of neural dynamics. eLife.

Gourieroux, C., A. Monfort, and E. Renault
1993. Indirect inference. Journal of Applied Econo-
metrics, 8(S1):S85–S118.

Greenberg, D., M. Nonnenmacher, and J. Macke
2019. Automatic posterior transformation for
likelihood-free inference. In Proceedings of the 36th
International Conference on Machine Learning, vol-
ume 97 of Proceedings of Machine Learning Research,
Pp. 2404–2414. PMLR.

Gretton, A., K. M. Borgwardt, M. J. Rasch,
B. Schölkopf, and A. Smola
2012. A kernel two-sample test. The Journal of
Machine Learning Research, 13(Mar):723–773.

Gutmann, M. U. and J. Corander
2016. Bayesian optimization for likelihood-free in-
ference of simulator-based statistical models. The
Journal of Machine Learning Research, 17(1):4256–
4302.

Gutmann, M. U., R. Dutta, S. Kaski, and J. Corander
2018. Likelihood-free inference via classification.
Statistics and Computing, 28(2):411–425.

Harris, C. R., K. J. Millman, S. J. van der Walt,
R. Gommers, P. Virtanen, D. Cournapeau, E. Wieser,
J. Taylor, S. Berg, N. J. Smith, et al.
2020. Array programming with numpy. Nature,
585(7825):357–362.

Hermans, J., V. Begy, and G. Louppe
2020. Likelihood-free mcmc with approximate likeli-
hood ratios. In Proceedings of the 37th International



Benchmarking Simulation-Based Inference

Conference on Machine Learning, volume 98 of Pro-
ceedings of Machine Learning Research. PMLR.

Hirsch, H.-G. and D. Pearce
2000. The aurora experimental framework for the per-
formance evaluation of speech recognition systems un-
der noisy conditions. In ASR2000-Automatic Speech
Recognition: Challenges for the new Millenium ISCA
Tutorial and Research Workshop (ITRW).

Hogg, D. W. and D. Foreman-Mackey
2018. Data analysis recipes: Using markov chain
monte carlo. The Astrophysical Journal Supplement
Series, 236(1):11.

Izbicki, R., A. Lee, and C. Schafer
2014. High-dimensional density ratio estimation with
extensions to approximate likelihood computation.
In Artificial Intelligence and Statistics, Pp. 420–429.

Järvenpää, M., M. U. Gutmann, A. Pleska, A. Vehtari,
P. Marttinen, et al.
2019. Efficient acquisition rules for model-based ap-
proximate bayesian computation. Bayesian Analysis,
14(2):595–622.

Järvenpää, M., M. U. Gutmann, A. Vehtari, P. Martti-
nen, et al.
2020. Parallel gaussian process surrogate bayesian
inference with noisy likelihood evaluations. Bayesian
Analysis.

Jitkrittum, W., W. Xu, Z. Szabó, K. Fukumizu, and
A. Gretton
2017. A linear-time kernel goodness-of-fit test. In
Advances in Neural Information Processing Systems,
Pp. 262–271.

Karabatsos, G. and F. Leisen
2018. An approximate likelihood perspective on abc
methods. Statistics Surveys, 12:66–104.

Klinger, E., D. Rickert, and J. Hasenauer
2018. pyabc: distributed, likelihood-free inference.
Bioinformatics, 34(20):3591–3593.

Le, T. A., A. G. Baydin, and F. Wood
2017. Inference compilation and universal proba-
bilistic programming. In Proceedings of the 20th
International Conference on Artificial Intelligence
and Statistics (AISTATS), volume 54. JMLR.

Liu, F., W. Xu, J. Lu, G. Zhang, A. Gretton, and D. J.
Sutherland
2020. Learning deep kernels for non-parametric two-
sample tests. In Proceedings of the 37th International
Conference on Machine Learning, volume 98 of Pro-
ceedings of Machine Learning Research. PMLR.

Liu, Q., J. Lee, and M. Jordan
2016. A kernelized stein discrepancy for goodness-of-
fit tests. In Proceedings of The 33rd International

Conference on Machine Learning, volume 48 of Pro-
ceedings of Machine Learning Research, Pp. 276–284.
PMLR.

Lopez-Paz, D. and M. Oquab
2017. Revisiting classifier two-sample tests. In 5th In-
ternational Conference on Learning Representations,
ICLR.

Lueckmann, J.-M., G. Bassetto, T. Karaletsos, and
J. H. Macke
2019. Likelihood-free inference with emulator net-
works. In Proceedings of The 1st Symposium on
Advances in Approximate Bayesian Inference, vol-
ume 96 of Proceedings of Machine Learning Research,
Pp. 32–53. PMLR.

Lueckmann, J.-M., P. J. Goncalves, G. Bassetto,
K. Öcal, M. Nonnenmacher, and J. H. Macke
2017. Flexible statistical inference for mechanistic
models of neural dynamics. In Advances in Neural
Information Processing Systems 30, Pp. 1289–1299.
Curran Associates, Inc.

Marjoram, P. and S. Tavaré
2006. Modern computational approaches for
analysing molecular genetic variation data. Nature
Reviews Genetics, 7(10):759–770.

Meeds, E. and M. Welling
2014. Gps-abc: Gaussian process surrogate approx-
imate bayesian computation. In Proceedings of the
Thirtieth Conference on Uncertainty in Artificial In-
telligence, UAI’14, P. 593–602, Arlington, Virginia,
USA. AUAI Press.

Nott, D. J., Y. Fan, L. Marshall, and S. Sisson
2014. Approximate bayesian computation and
bayes’ linear analysis: toward high-dimensional abc.
Journal of Computational and Graphical Statistics,
23(1):65–86.

Ong, V. M.-H., D. J. Nott, M.-N. Tran, S. A. Sisson,
and C. C. Drovandi
2018. Likelihood-free inference in high dimensions
with synthetic likelihood. Computational Statistics
& Data Analysis, 128:271 – 291.

pandas development team, T.
2020. pandas-dev/pandas: Pandas.

Papamakarios, G. and I. Murray
2016. Fast ε-free inference of simulation models
with bayesian conditional density estimation. In
Advances in Neural Information Processing Systems
29, Pp. 1028–1036. Curran Associates, Inc.

Papamakarios, G., E. Nalisnick, D. J. Rezende, S. Mo-
hamed, and B. Lakshminarayanan
2019a. Normalizing flows for probabilistic modeling
and inference. arXiv preprint arXiv:1912.02762.



Jan-Matthis Lueckmann, Jan Boelts, David S. Greenberg, Pedro J. Gonçalves, Jakob H. Macke

Papamakarios, G., T. Pavlakou, and I. Murray
2017. Masked autoregressive flow for density estima-
tion. In Advances in Neural Information Processing
Systems 30, Pp. 2338–2347. Curran Associates, Inc.

Papamakarios, G., D. Sterratt, and I. Murray
2019b. Sequential neural likelihood: Fast likelihood-
free inference with autoregressive flows. In Proceed-
ings of the 22nd International Conference on Ar-
tificial Intelligence and Statistics (AISTATS), vol-
ume 89 of Proceedings of Machine Learning Research,
Pp. 837–848. PMLR.

Paszke, A., S. Gross, F. Massa, A. Lerer, J. Brad-
bury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein,
L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. De-
Vito, M. Raison, A. Tejani, S. Chilamkurthy,
B. Steiner, L. Fang, J. Bai, and S. Chintala
2019. Pytorch: An imperative style, high-
performance deep learning library. In Advances in
Neural Information Processing Systems 32, Pp. 8024–
8035. Curran Associates, Inc.

Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay
2011. Scikit-learn: Machine learning in Python. Jour-
nal of Machine Learning Research, 12:2825–2830.

Pham, K. C., D. J. Nott, and S. Chaudhuri
2014. A note on approximating abc-mcmc using
flexible classifiers. Stat, 3(1):218–227.

Picchini, U., U. Simola, and J. Corander
2020. Adaptive mcmc for synthetic likelihoods and
correlated synthetic likelihoods. arXiv preprint
arXiv:2004.04558.

Prangle, D.
2019. Distilling importance sampling. arXiv preprint
arXiv:1910.03632.

Prangle, D., P. Fearnhead, M. P. Cox, P. J. Biggs, and
N. P. French
2014. Semi-automatic selection of summary statis-
tics for abc model choice. Statistical applications in
genetics and molecular biology, 13(1):67–82.

Priddle, J. W., S. A. Sisson, and C. Drovandi
2019. Efficient bayesian synthetic likelihood
with whitening transformations. arXiv preprint
arXiv:1909.04857.

Pritchard, J. K., M. T. Seielstad, A. Perez-Lezaun, and
M. W. Feldman
1999. Population growth of human y chromosomes:
a study of y chromosome microsatellites. Molecular
Biology and Evolution, 16(12):1791–1798.

Rackauckas, C. and Q. Nie
2017. Differentialequations.jl – a performant and

feature-rich ecosystem for solving differential equa-
tions in julia. The Journal of Open Research Software,
5(1).

Radev, S. T., U. K. Mertens, A. Voss, L. Ardizzone,
and U. Köthe
2020. Bayesflow: Learning complex stochastic models
with invertible neural networks. IEEE Transactions
on Neural Networks and Learning Systems.

Ramdas, A., S. J. Reddi, B. Poczos, A. Singh, and
L. Wasserman
2015. On the decreasing power of kernel and distance
based nonparametric hypothesis tests in high dimen-
sions. AAAI Conference on Artificial Intelligence.

Ratmann, O., O. Jørgensen, T. Hinkley, M. Stumpf,
S. Richardson, and C. Wiuf
2007. Using likelihood-free inference to compare
evolutionary dynamics of the protein networks of
h. pylori and p. falciparum. PLoS Computational
Biology, 3(11).

Raynal, L., J.-M. Marin, P. Pudlo, M. Ribatet, C. P.
Robert, and A. Estoup
2019. Abc random forests for bayesian parameter
inference. Bioinformatics, 35(10):1720–1728.

Rezende, D. and S. Mohamed
2015. Variational inference with normalizing flows.
In Proceedings of The 32nd International Conference
on Machine Learning, volume 37 of Proceedings of
Machine Learning Research, Pp. 1530–1538. PMLR.

Rios, L. M. and N. V. Sahinidis
2013. Derivative-free optimization: a review of algo-
rithms and comparison of software implementations.
Journal of Global Optimization, 56(3):1247–1293.

Rodrigues, G., D. J. Nott, and S. Sisson
2020. Likelihood-free approximate gibbs sampling.
Statistics and Computing, Pp. 1–17.

Russakovsky, O., J. Deng, H. Su, J. Krause, S. Satheesh,
S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bern-
stein, et al.
2015. Imagenet large scale visual recognition chal-
lenge. International Journal of Computer Vision,
115(3):211–252.

Satyanarayan, A., D. Moritz, K. Wongsuphasawat, and
J. Heer
2017. Vega-lite: A grammar of interactive graphics.
IEEE Trans. Visualization & Comp. Graphics (Proc.
InfoVis).

Shahriari, B., K. Swersky, Z. Wang, R. P. Adams, and
N. De Freitas
2015. Taking the human out of the loop: A review
of bayesian optimization. Proceedings of the IEEE,
104(1):148–175.



Benchmarking Simulation-Based Inference

Simola, U., J. Cisewski-Kehe, M. U. Gutmann,
J. Corander, et al.
2020. Adaptive approximate bayesian computation
tolerance selection. Bayesian Analysis.

Sisson, S. A., Y. Fan, and M. M. Tanaka
2007. Sequential monte carlo without likelihoods.
Proceedings of the National Academy of Sciences,
104(6):1760–1765.

Sisson, S. A., F. Y., and B. M. A.
2018. Overview of abc. In Handbook of Approximate
Bayesian Computation, chapter 1. CRC Press, Taylor
& Francis Group.

Sutherland, D. J.
2017. igms: Implicit generative models. Github.

Sutherland, D. J., H.-Y. Tung, H. Strathmann, S. De,
A. Ramdas, A. Smola, and A. Gretton
2017. Generative models and model criticism via
optimized maximum mean discrepancy. 5th Inter-
national Conference on Learning Representations,
ICLR.

Talts, S., M. Betancourt, D. Simpson, A. Vehtari, and
A. Gelman
2018. Validating bayesian inference algorithms
with simulation-based calibration. arXiv preprint
arXiv:1804.06788.

Tavaré, S., D. J. Balding, R. C. Griffiths, and P. Don-
nelly
1997. Inferring coalescence times from dna sequence
data. Genetics, 145(2).

Tejero-Cantero, A., J. Boelts, M. Deistler, J.-M. Lueck-
mann, C. Durkan, P. J. Gonçalves, D. S. Greenberg,
and J. H. Macke
2020. sbi: A toolkit for simulation-based inference.
Journal of Open Source Software, 5(52):2505.

Thomas, O., R. Dutta, J. Corander, S. Kaski, and
M. U. Gutmann
2020. Likelihood-free inference by ratio estimation.
Bayesian Analysis.

Toni, T., D. Welch, N. Strelkowa, A. Ipsen, and M. P.
Stumpf
2009. Approximate bayesian computation scheme for
parameter inference and model selection in dynami-
cal systems. Journal of the Royal Society Interface,
6(31):187–202.

Van Rossum, G. and F. L. Drake Jr
1995. Python tutorial. Centrum voor Wiskunde en
Informatica Amsterdam, The Netherlands.

VanderPlas, J., B. E. Granger, J. Heer, D. Moritz,
K. Wongsuphasawat, A. Satyanarayan, E. Lees,
I. Timofeev, B. Welsh, and S. Sievert
2018. Altair: Interactive statistical visualizations
for python. The Journal of Open Source Software,
3(32).

Wang, A., A. Singh, J. Michael, F. Hill, O. Levy, and
S. Bowman
2018. GLUE: A multi-task benchmark and analy-
sis platform for natural language understanding. In
Proceedings of the 2018 EMNLP Workshop Black-
boxNLP: Analyzing and Interpreting Neural Networks
for NLP, Pp. 353–355. Association for Computa-
tional Linguistics.

Wenzel, F., K. Roth, B. S. Veeling, J. Świątkowski,
L. Tran, S. Mandt, J. Snoek, T. Salimans, R. Jenat-
ton, and S. Nowozin
2020. How good is the bayes posterior in deep neural
networks really? In Proceedings of the 37th Interna-
tional Conference on Machine Learning, volume 98 of
Proceedings of Machine Learning Research. PMLR.

Wilkinson, R. D.
2014. Accelerating abc methods using gaussian pro-
cesses. In Proceedings of the 17th International Con-
ference on Artificial Intelligence and Statistics (AIS-
TATS), volume 33 of Proceedings of Machine Learn-
ing Research, Pp. 1015–1023. PMLR.

Wood, F., A. Warrington, S. Naderiparizi, C. Weilbach,
V. Masrani, W. Harvey, A. Scibior, B. Beronov, and
A. Nasseri
2020. Planning as inference in epidemiological models.
arXiv preprint arXiv:2003.13221.

Wood, S. N.
2010. Statistical inference for noisy nonlinear ecolog-
ical dynamic systems. Nature, 466(7310):1102–1104.

Yadan, O.
2019. Hydra - a framework for elegantly configuring
complex applications. Github.


	Introduction
	Benchmark
	Algorithms
	Performance metrics
	Tasks
	Experimental Setup
	Software

	Results
	Limitations
	Discussion
	Acknowledgements
	References

