
On The E↵ect of Auxiliary Tasks on Representation Dynamics

On The E↵ect of Auxiliary Tasks on Representation Dynamics:
Appendices

A Additional results

In this section, we state and prove some additional lemmas that are useful in proving the results stated in the
main paper.

Lemma A.1. Let x 2 Rd, and let (vt)t�0 be a sequence of vectors in Rd satisfying vt = f(t)x + o(f(t)), for
some function f : [0,1) ! (0,1). Then d(hvti, hxi) ! 0 as t ! 1.

Proof. The Grassmann distance d(hvti, hxi) between two one-dimensional subspaces has a particular simple form,
given by

d(hvti, hxi) = min

✓
arccos

✓
hvt, xi
kvtkkxk

◆
, arccos

✓
h�vt, xi
kvtkkxk

◆◆
.

In our case, for su�ciently large t this yields

d(hvti, hxi) = arccos

✓
hf(t)x+ o(f(t)), xi

kf(t)x+ o(|f(t)|)kkxk

◆

= arccos

✓
hx+ o(1), xi
kx+ o(1)kkxk

◆

! arccos

✓
hx, xi
kxkkxk

◆

= 0 .

Lemma A.2. Let U1, . . . , U|X | be a basis for RX , let K < |X |, and let (aij |i 2 [K], j 2 [|X |]) be real coe�cients.
Let 0 < �1 < · · · < �|X | , and consider time-dependent vectors W1(t), . . . ,Wd(t) defined by

Wi(t) =

|X |X

j=1

aije
��jtUj , t � 0 .

Then for almost all sets of coe�cients (aij |i 2 [K], j 2 [|X |]), we have

d(W1:K(t), U1:K) ! 0 .

Proof. Without loss of generality, we may take the vectors U1, . . . , U|X | to be the canonical basis vectors. Under
the assumptions of the theorem, we exclude initial conditions for which the matrix A with (i, j)th element aij

is not full rank. Note that under this condition, the matrix At with (k, i)th element akie
�it is also full rank

for all but finitely many t. By performing row reduction operations and scaling rows, for all such t we may
pass from (Wk(t) | k 2 [K]) to an alternative spanning set (fWk(t) | k 2 [K]) of the same subspace such that
fWk(t) � Uk 2 hUK+1:|X |i, and kfWk(t) � Ukk = O(e�t(�K+1��k)) = o(1). We therefore obtain an orthonormal
basis for this subspace of the form U1 + o(1), . . . , UK + o(1).

We now use the singular value decomposition characterisation of Grassmann distance in Definition 3.2. Since
we have obtained an orthonormal basis for the subspace hWk(t) | k 2 [K]i, the top-K singular values of the

matrix (
PK

k=1 UkU
>
k)(
PK

k=1(Uk+o(1))(Uk+o(1))>) determine the Grassmann distance. However, this matrix is
equal to diag(1, . . . , 1, 0, . . . , 0)+ o(1), with K entries of 1 in the diagonal matrix. But the top-K singular values
this matrix are 1 + o(1), and so the principal angles between the subspaces are o(1), and hence the Grassmann
distance between the subspaces is o(1), as required.

Clare Lyle*, Mark Rowland*, Georg Ostrovski, Will Dabney

Lemma A.3. For M 2 N, let (rm)Mm=1 be independent random variables drawn from some fixed mean-zero
distribution in P(RX⇥A) such that the covariance between coordinates (x, a), (y, a) is ⌃xy, independent of a 2 A.
Let (wm)Mm=1 be independent random variables taking values in RK⇥A, with columns drawn independently from

N (0, (1/M)I). Then
PM

m=1 r
m(wm)> converges (in distribution) to a mean-zero Gaussian distribution over

RX⇥K , with independent columns, and individual columns having covariance matrix ⌃.

Proof. The proof simply follows by noting that
PM

m=1 r
mwm may be written 1/

p
M
PM

m=1 r
m
"
m, with ("m)1m=1

i.i.d. N(0, I) random variables. The individual terms have the desired mean and variance, and the resulting
converge in distribution now follows from the central limit theorem.

Lemma A.4. For fixed M , let (wm)Mm=1, wm 2 Rd, be sampled i.i.d. according to N (0, 1
M I). Then the

following hold.

lim
M!1

MX

m=1

wm(wm)> = I and lim
M!1

MX

m=1

wm D
= ✏ ⇠ N (0, I) (17)

Proof. We prove two results on the limit of W =
PM

m=1 w
m(wm)> as k ! 1. First

lim
M!1

MX

m=1

wm(wm)>
P
= I ,

which we observe by evaluating an arbitrary diagonal and o↵-diagonal element of
PM

m=1 w
m(wm)>. For the

diagonal terms, note that

MX

m=1

wm(wm)>
!
[j, j] =

MX

m=1

(wm
j)2

Now observe that

E
"

MX

m=1

(wm
j)2

#
= M

1

M
= 1 , and Var

MX

m=1

(wm
j)2

!
= M

1

M2
! 0

Similarly, for the o↵-diagonal terms, let j 6= `. Then we have

MX

m=1

wm(wm)>
!
[j, `] =

MX

m=1

wm
j wm

` ,

and further

E
"

MX

m=1

wm
j wm

`

#
= 0 , and Var

MX

m=1

wm
` wm

j

!
= M

1

M2
! 0;

The limit in probability is immediately implied by Chebyshev’s inequality. The result on
PM

m=1 w
m follows

immediately from part 1 and the fact that a sum of Gaussian random variables is another Gaussian random
variable whose mean and variance in this case will be a standard normal.

B Proofs

Lemma 3.1. If (Vt)t�0 satisfies Equation (3) with initial condition V0 at time t = 0, then we have

Vt = exp(�t(I � �P
⇡))(V0 � V

⇡) + V
⇡
. (4)

Proof. Equation (4) can be verified as a solution to Equation (3) by direct di↵erentiation. Uniqueness of the
solution follows since this is an autonomous initial value problem that satisfies the Lipschitz condition, and so
the Picard-Lindelhöf theorem applies.

On The E↵ect of Auxiliary Tasks on Representation Dynamics

Proposition 3.4. Under Assumption 3.3, and (Vt)t�0 the solution to Equation (3), for almost every3 initial
condition V0, we have

d(hVt � V
⇡i, hU1i) ! 0 .

Proof. By Assumption 3.3, P⇡ is diagonalisable, with eigenbasis U1, . . . , U|X |, with corresponding eigenvalues
�1:|X | with strictly decreasing magnitudes |�1| > · · · > |�|X ||. We note then that exp�(t(I � �P

⇡)) is also
diagonaisable under the same basis, with eigenvalues exp(t(��i � 1)), for i = 1, . . . , |X |. We may therefore
expand V0 with respect to this eigenbasis, and write

V0 � V
⇡ =

|X |X

i=1

↵iUi ,

for some ↵1:|X | 2 R|X |. Now note from the di↵erential equation (4), we have

Vt � V
⇡ = exp(�t(I � �P

⇡))(V0 � V
⇡) =

|X |X

i=1

↵i exp(t(��i � 1))Ui .

Note that as P⇡ is a stochastic matrix, we have |�i|  1 for all i = 1, . . . , |X |, and hence exp(t(��i � 1)) ! 0 for
all i = 1, . . . , |X |. Further, exp(t(��i � 1)) = o(exp(t(��1 � 1))) for all i = 2, . . . , |X |. We make the additional
assumption that ↵1 6= 0, which makes the ‘almost every initial condition’ assumption in the statement precise.
Under this assumption, we therefore have

Vt � V
⇡ = ↵1 exp(t(��1 � 1))U1 +

|X |X

i=2

↵i exp(t(��i � 1))Ui = ↵1 exp(t(��1 � 1))U1 + o(exp(t(��1 � 1))) .

Then Lemma A.1 applies to give d(hVt � V
⇡i, hU1i) ! 0, as required.

Proposition 3.5. Under Assumption 3.3, and (V (k)
t)t�0 the solution to Equation (3) for each k = 1, . . . ,K, for

almost every initial condition (V (k)
0)Kk=1, we have

d(hV (k)
t � V

⇡ | k 2 [K]i, hU1:Ki) ! 0 .

Proof. Expanding V
(k)
0 � V

⇡ with respect to U1, . . . , U|X | for each k = 1, . . . , |X |, we obtain expressions of the
form

V
(k)
0 � V

⇡ =

|X |X

i=1

akiUi .

By the ODE solution in Lemma 3.1, we then have

V
(k)
t � V

⇡ =

|X |X

i=1

akie
�t(1���i)Ui .

We may now apply Lemma A.2 to obtain the desired result.

Lemma 3.6. Let �t and wt parameterize a value function approximator as defined above. Then

@t�t = ↵(R⇡ + �P
⇡�twt � �twt)w

>
t , (7)

@twt = ��>
t (R

⇡ + �P
⇡�twt � �twt) . (8)

Proof. This follows immediately by computing the derivatives in Equations (5) & (6), and so we omit the direct
calculations.

3In the measure-theoretic sense that the set of excluded initial conditions V0 has Lebesgue measure 0.

Clare Lyle*, Mark Rowland*, Georg Ostrovski, Will Dabney

Theorem 4.1. For M 2 N, let (�M
t)t�0 be the solution to Equation (9), with each wm

t for m = 1, . . . ,M
initialised independently from N(0,�2

M), and fixed throughout training (� = 0). We consider two settings: first,
where the learning rate ↵ is scaled as 1

M and �
2
M = 1 for all M , and second where �

2
M = 1

M and the learning
rate ↵ is equal to 1. These two settings yield the following dynamics, respectively:

lim
M!1

@t�
M
t

P
=� (I � �P

⇡)�M
t , and (11)

lim
M!1

@t�
M
t

D
=� (I � �P

⇡)�M
t +R

⇡
✏
> , ✏ ⇠ N (0, I) . (12)

The corresponding limiting trajectories for a fixed initialisation �0 2 RX⇥K , are therefore given respectively by

lim
M!1

�M
t

P
=exp(�t(I � �P

⇡))�0 , and (13)

lim
M!1

�M
t

D
=exp(�t(I � �P

⇡))(�0 � (I � �P
⇡)�1

R
⇡
"
>)

+ (I � �P
⇡)�1

R
⇡
"
>
, ✏ ⇠ N (0, I) . (14)

Proof. We write the dynamics on �M
t as follows and apply the results of Lemma A.4. We first consider the

scaled initialization setting (implicitly setting the learning rate ↵ = 1), where we find

@t�
M
t = (I � �P

⇡)�M
t

MX

m=1

wm(wm)> +
MX

m=1

R
⇡(wm)> (18)

lim
M!1

@t�
M
t = (I � �P

⇡)�M
t lim

M!1

MX

m=1

wm(wm)> + lim
M!1

R
⇡(

MX

m=1

wm)> (19)

D
= (I � �P

⇡)�M
t I +R

⇡
✏
>
, ✏ ⇠ N (0, I). (20)

We further observe that, for any finite interval, in the setting of zero reward we obtain uniform convergence of the
induced trajectory �M

t to the trajectory of the limiting dynamics. We first observe that for a fixed initialization,
we have that the induced dynamics are linear (in the zero-reward setting, a�ne otherwise) function of �M

t , and
so

@t�
M
t = (I � �P

⇡)�M
t

MX

m=1

w
m(wm)> = LM�M

t

where LM (A) = (I � �P
⇡)A

MX

m=1

w
m(wm)>

=) �M
t = exp(tLM)�M

0 .

Because the function t 7! exp(tA) is Lipschitz on a bounded interval for any A, this implies that for any finite
interval [0, T], the functions t 7! �M

t , as well as limiting solution, are L-Lipschitz for some L. Further, since the
exponential is continuous,

lim
M!1

�M
t = lim

M!1
exp(tLM)�M

0 = exp(t lim
M!1

LM)�0

= exp(�t(I � �P
⇡))�0 = �1

t .

Therefore, the functions t 7! �M
t are L-Lipschitz and converge to the limit �1

t on the interval [0, T], which
implies that they converge uniformly.

To evaluate the scaled learning rate setting, we observe that we now have

@t�
M
t =

1

M
(I � �P

⇡)�M
t

MX

m=1

wm(wm)> +
MX

m=1

R
⇡(wm)> (21)

On The E↵ect of Auxiliary Tasks on Representation Dynamics

lim
M!1

@t�
M
t = (I � �P

⇡)�M
t lim

M!1

1

M

MX

m=1

wm(wm)> + lim
M!1

1

M
R

⇡(
MX

m=1

wm)> (22)

= (I � �P
⇡)�M

t I. (23)

=) lim
M!1

�M
t = exp(�t(I � �P

⇡))�0 , (24)

almost surely. The principal di↵erence between this and the scaled initialization setting is that here we divide
the R

⇡w> term by 1
M , whereas the scaled initialization is equivalent to scaling by 1p

M
. Therefore the scaled

learning rate limit can be computed by the law of large numbers and converges in probability to its mean (zero),
whereas under the scaled initialization it converges via the central limit theorem to a Gaussian distribution.

Corollary 4.2. Under the feature flow (9) with wm
t fixed at initialization for each i = 1, . . . ,M and Assump-

tion 3.3, for almost all initialisations �0, we have when R
⇡ = 0

d(h�ti, hU1:Ki) ! 0 , as t ! 1.

Proof. As described in the proof of Theorem 4.1, we have �t = exp(�t(I � �P
⇡))(�0 � �1) + �1. Under

Assumption 3.3, we may now apply an analogous argument as in Proposition 3.5 to the columns of �t � �1,
and apply Lemma A.2 to obtain the desired result.

Theorem 4.3. For fixed M 2 N, let the random rewards (rm)Mm=1 and weights (wm)Mm=1 be as defined above,
let ↵ = 1, and consider the representation dynamics in Equation (15), with weights fixed throughout training
(� = 0). Let ⌃ denote the covariance matrix of the random cumulant distribution. Then

lim
M!1

MX

m=1

r
m(wm)>

D
= Z⌃ ⇠ N (0,⌃), and

lim
M!1

�M
t

D
= exp(�t(I � �P

⇡))(�0 � (I � �P
⇡)�1

Z⌃)

+ (I � �P
⇡)�1

Z⌃ .

As the columns of Z⌃ are mean-zero, uncorrelated, with covariance matrices ⌃, the limiting distribution of each
column of �1 = limt!1 limM!1 �M

t has covariance ⌃ >, where is the resolvent (I � �P
⇡)�1.

Proof. We recall from Theorem 4.1 that the limiting dynamics follow the distribution

lim
t!1

lim
M!1

�t
D
= lim

t!1
exp(�t(I � �P

⇡))(�0 � (I � �P
⇡)�1

Z⌃) + (I � �P
⇡)�1

Z⌃ (25)

D
= (I � �P

⇡)�1
Z⌃ (26)

for which we can straightforwardly apply known properties of Gaussian distributions: namely, that the distri-
bution of a linear transformation A of a Gaussian random variable with parameters µ,⌃ is also Gaussian with
mean Aµ and covariance A⌃A>. Letting A = (I � �P

⇡) therefore gives the desired result.

Corollary 4.4. Under the feature flow (15) with wm
t fixed at initialization for each i = 1, . . . ,M and Assump-

tion 3.3, for almost all initialisations �0, we have when R
⇡ = 0

d(lim
M!1

h�M
t � �1i, hU1:Ki) ! 0 , as t ! 1.

Proof. As described in the proof of Theorem 4.3, we have �t = exp(�t(I � �P
⇡))(�0 � (I � �P

⇡)�1
Z⌃) +

(I � �P
⇡)�1

Z⌃. Under Assumption 3.3, we may now apply an analogous argument as in Proposition 3.5 to the
columns of �t � (I � �P

⇡)�1
Z⌃, and apply Lemma A.2 to obtain the desired result.

Clare Lyle*, Mark Rowland*, Georg Ostrovski, Will Dabney

C Additional results from Table 1

We begin this section by noting the following property of systems following linear dynamics.

Lemma C.1. Let �t 2 RX⇥M follow the dynamics @t�t
D
= A�t +B, where A is a linear operator for which all

eigenvalues have negative real part, and B is a vector. Then

lim
t!1

�t = �A
�1

B . (27)

Further, if A is diagonalisable, with all eigenvalues of di↵erent magnitudes,

lim
t!1

d(h�t � �1i, hU1:K(A)i) = 0 , (28)

where Ui(A) is the eigenvector of A corresponding to the eigenvalue with i
th largest magnitude.

Proof. We observe that the dynamics @t�t = A�t induce the trajectory

�t = exp(tA)�0 + (I � exp(tA))(�A
�1

B) , (29)

with limit �1 = �A
�1

B. When A is diagonalizable, we can therefore straightforwardly apply the results of
Lemma A.2 to get that the limiting subspace will be characterized by the top k eigenvectors of A. In the settings
we are interested in, A = �(I � �P

⇡) for some ⇡ and some �, and so the principal eigenvectors of A will be the
principal eigenvectors of P⇡.

The following two theorems characterize the learning dynamics under the past policies and multiple timescale
auxiliary tasks listed in Table 1. With these characterizations, it becomes straightforward to deduce �1 and
the limiting subspace error as a direct consequence of the previous lemma.

Theorem C.2. Let ⇡1, . . . ,⇡L be a fixed set of policies. Given fixed M and L, we define the indexing function
im = d L

me for m 2 [1,M]. Let �M
t follow the dynamics

@t�
M
t =

MX

m=1

�((I � �P
⇡im)�M

t wm
t +R

⇡im)(wm
t)> (30)

Then �M
t satisfies the following dynamics and trajectory in the limit as M ! 1, where ⇡̄ =

PL
i=1 ⇡i and ✏i 2 Rd

is an isotropic Gaussian with variance 1
L . Note that we cannot naively average the rewards without changing

the variance of the induced distribution unless R⇡i = R
⇡j for all i, j.

lim
M!1

@t�
M
t

D
= �(I � �P

⇡̄)�t +
LX

i=1

R
⇡i✏i (31)

lim
M!1

�M
t

D
= exp(�t(I � �P

⇡̄))(�0 � �1) + (I � �P
⇡̄)�1

✓ LX

i=1

R
⇡i✏

>
i

◆
(32)

Proof. The result on the trajectories follows immediately from the result on the dynamics, so it su�ces to prove
convergence of the dynamics. We approach this problem by decomposing the dynamics of �M

t as follows.

@t�
M
t =

MX

m=1

�(I � �P
⇡im)�M

t wm
t (wm

t)> �
MX

m=1

R
⇡im (wm

t)> . (33)

We first consider the random variables in the term which includes the rewards R
⇡. For this, we can directly

apply the results from the previous theorems to the random variables ✏j =
P

m:im=j w
m, whose limiting variance

is easily computed to be

lim
M!1

Var

0

@
X

m:im=j

wm

1

A = lim
M!1

b j+1
n McX

b j
nMc

1

M
I =

1

L
I . (34)

On The E↵ect of Auxiliary Tasks on Representation Dynamics

For the term which depends on �t, we see

MX

m=1

�(I � �P
⇡im)�M

t wm
t (wm

t)> =
LX

i=1

MX

m:im=i

�(I � �P
⇡im)�M

t wm
t (wm

t)> (35)

=
LX

i=1

�(I � �P
⇡i)�M

t

MX

m:im=i

wm
t (wm

t)> . (36)

Since L is finite and fixed,
PM

m:im=i w
m
t (wm

t)> converges to 1
LI

�!
M!1

LX

i=1

�(I � �P
⇡i)�M

t
1

L
I (37)

= �(I � �
1

L

LX

i=1

P
⇡i)�M

t (38)

= �(I � �P
⇡̄)�M

t . (39)

And so the limiting distribution becomes

lim
M!1

@t�
M
t = �(I � �P

⇡̄)�M
t �

✓ LX

i=1

R
⇡i✏i

◆
. (40)

Corollary C.3. The above result can be readily adapted to the setting in which each head predicts a randomly
selected (deterministic) policy in MDPs with finite state and action spaces. Let L = |A||X |, {⇡1, . . . ,⇡L} be an
enumeration of AX , and im denote the index of the policy randomly assigned to head m; then the above result
still holds, and ⇡̄ is the uniform policy.

Theorem C.4. We consider the task of predicting the value functions of a fixed policy under multiple discount
rates �1, . . . , �L. For fixed M , L, let im denote the indexing function defined in Theorem C.2 Let �t follow the
dynamics

@t�
M
t =

MX

m=1

�((I � �imP
⇡)�M

t wm
t +R

⇡)(wm
t)> . (41)

Then the limiting dynamics as M ! 1 of �M
t are as follows, where �̄ =

P 1
L�i

lim
M!1

@t�
M
t

D
= �(I � �̄P

⇡)�t +R
⇡
✏
> (42)

and

lim
M!1

�M
t

D
= exp(�t(I � �P

⇡̄))(�0 � �1) + (I � �P
⇡)�1

R
⇡
✏
>) . (43)

Proof. We follow a similar derivation as for Theorem C.2 in deriving the component of the dynamics which
depends on �M

t . The result of Theorem 4.1 immediately applies to the
P

R
⇡(wm

t)> term:

MX

m=1

�(I � �imP
⇡)�M

t wm
t (wm

t)> =
LX

i=1

MX

m:im=i

�(I � �iP
⇡)�M

t wm
t (wm

t)> (44)

=
LX

i=1

�(I � �iP
⇡)�M

t

MX

m:im=i

wm
t (wm

t)> . (45)

Clare Lyle*, Mark Rowland*, Georg Ostrovski, Will Dabney

Since L is finite and fixed,
PM

m:im=i w
m
t (wm

t)> converges to 1
LI as before:

�!
M!1

LX

i=1

�(I � �iP
⇡)�M

t
1

L
I (46)

= �(I �
LX

i=1

�i

L
P

⇡)�M
t (47)

= �(I � �̄P
⇡)�M

t . (48)

D Experimental details

D.1 Experimental details for Figure 2

In our evaluations of the evolution of single feature vectors, we compute the continuous-time feature evolution
defined in Equation (5), using P

⇡ defined by a random walk on a simple Four-Rooms Gridworld with no reward.
We use a randomly initialized representation � 2 R|X |⇥10, and use a single column of this matrix in our feature
visualization (we observed similar behaviour in each feature). To compute trajectories, we use the SciPy ODE
solver solve ivp (Virtanen et al., 2020).

D.2 Experimental details for Section 5.1

Here, we provide details of the environment used in producing Figure 5.1. The environment is a 30-state chain,
with two actions, left and right, which move the agent one state to the left or right, respectively. When the
agent cannot move further left or right (due to being at an end state of the chain), the result of the corresponding
action keeps the agent in the same state. There is additionally environment stochasticity of 0.01, meaning that
with this probability, a uniformly random action is executed instead. This stochasticity ensures that P⇡ satisfies
the conditions of Assumption 3.3. Taking the action left in the left-most state incurs a reward of +2, and taking
the action right in the right-most state incurs a reward of +1; all other rewards are zero.

D.3 Experimental details for Section 5.2

We modify a base Double DQN agent (Van Hasselt et al., 2016) and evaluate on the ALE without sticky actions
(Bellemare et al., 2013). Our agents are implemented in Jax (Bradbury et al., 2018), and are based on the DQN
Zoo (Quan and Ostrovski, 2020). Unless otherwise mentioned, all hyperparameters are as for the default Double
DQN agent, with the exception of the epsilon parameter in the evaluation policy, which is set to 0.001 in all
agents, and the optimizer, which for agents using auxiliary tasks CV, REM and Ensemble is Adam with epsilon
0.1/322, and a lightly tuned learning rate; see below for further details.

Experimental results shown in bar plots, such as Figures 5 and 7, report a “relative score” which is the per-game
score normalized by the maximum average score achieved by any agent or configuration. The same, per-game,
normalization values are used for all such figures.

Auxiliary task details. In this section, we describe the implementations of all auxiliary tasks considered in
the main paper.

• QR-DQN. The implementation and hyperparameters match QR-DQN-1 in Dabney et al. (2018).

• DDQN+RC. We use a many-head DQN network which is identical to the standard neural network used for
DQN, except that the output dimension is (M +1)⇥ |A| instead of |A|, where M is the number of auxiliary
heads. Random cumulants are generated using a separate neural network with the same architecture as a
standard DQN, but with output dimension equal to the number of auxiliary heads. The width of the Huber
loss for each auxiliary head is equal to the number of auxiliary tasks. Let �(x) 2 RM be the output of the
cumulant network given input observation x, with M the number of auxiliary heads. Then the cumulant for
auxiliary head m, at time step t, is given by ct = s⇥ (�(xt+1)� �(xt)), where s 2 R is a scaling factor. We

On The E↵ect of Auxiliary Tasks on Representation Dynamics

performed a small hyperparameter sweep over scaling factors in {1, 10, 100, 500}, finding s = 100 to provide
the best performance and use this value for all reported experiments. Note that this auxiliary task and the
details are nearly identical to the CumulantValues auxiliary task of Dabney et al. (2020), except that we do
not pass the values through a tanh non-linearity as this did not appear to have any impact in practice. We
performed a hyperparameter sweep over learning rates and gradient norm clipping for this agent, considering
learning rates {0.00025, 0.0001, 0.00005} and gradient clipping in {10, 40}. We found that a learning rate of
0.00005 and gradient norm clipping of 40 to work best and use these values for all experiments.

• DDQN+REM. We use a many-head variant of Double DQN, with heads trained according to the REM loss
of Agarwal et al. (2020). For the agent’s policy, an argmax over a uniform average of the heads is used. We
swept over learning rates of 0.0001 and 0.00005, generally finding 0.00005 to perform best.

• DDQN+Ensemble. As for the REM auxiliary task, we use a many-head variant of Double DQN. Each head
is trained using its own double DQN loss, and the resulting losses are averaged. For the agent’s policy, an
argmax over a uniform average of the heads is used. We swept over learning rates of 0.0001 and 0.00005,
generally finding 0.00005 to perform best.

Modified dense-reward games. We modified four Atari games (Pong, MsPacman, Seaquest, and Q*bert) to
obtain sparse, harder versions of these games to test the performance of random cumulants and other auxiliary
tasks. The details of these games are given below. In each case a low-valued, commonly encountered reward is
‘censored’, which means that during training the agent observes a reward of 0 instead of the targeted reward.
When evaluated, and thus for all empirical results reported, the standard uncensored rewards are reported.

• Sparse Pong. All negative rewards are censored (i.e. set to 0 before being fed to the agent), so the agent
receives a reward of +1 for scoring against the opponent, but no reward when it concedes a point to the
opponent. As 0, 1, and �1 are the only rewards in Pong, this modification makes Pong significantly harder.
The agent can no longer learn to ‘avoid losing points‘, but can only improve by learning to score points
directly.

• Sparse MsPacman. All rewards less than or equal to 10 are censored. This corresponds to rewards for the
numerous small pellets that MsPacman eats, but not the larger pellets or ghosts. Each level ends when all
of the small pellets are consumed, thus, by hiding these from the agent we may have significantly changed
the primary incentive for the agent to advance the game.

• Sparse Seaquest. All rewards less than or equal to 20 are censored. This corresponds to the rewards for
shooting the sharks underwater, but not the rewards for picking up divers or surfacing. Additionally, even
the rewards for sharks increase beyond this level, and thus become visible, once the agent has surfaced and
collected enough divers.

• Sparse Q*bert. All rewards less than or equal to 25 are censored. These are the rewards for flipping the
colour of a tile, which is the primary source of reward and the mechanism for advancing to the next level of
the game. Once all tiles are flipped, the agent will go to the next level. However, the agent can still observe
rewards for going to the next level and for dispatching the enemies.

As described in the main paper,we found that the sparse versions of MsPacman, Seaquest, and Q*bert were
too di�cult for any agent we tested to achieve a reasonable level of performance. In Figure 6, we display the
performance of several auxiliary tasks on these games, noting that the performance achieved is extremely low in
comparison to the agents trained on the standard versions of these games (see Figure 4).

Hyperparameter sweeps. In Figure 7 we vary the weight of the auxiliary loss for the random cumulants
agents, with the aim of understanding how this hyperparameters a↵ect each method’s performance. Next, in
Figures 8 and 9 we present the results of a hyperparameter sweep for Ensemble and REM respectively. For these
two, since there is no separate auxiliary loss as in RC, we vary number of heads and the learning rate. Results
presented in the main text use the best settings for each algorithm found from these sweeps.

Clare Lyle*, Mark Rowland*, Georg Ostrovski, Will Dabney

Figure 6: Learning curves on sparsified MsPacman (left), sparsified Seaquest (centre), and sparisifed Q*bert
(right).

ms_pacman seaquest qbert pong pong_sparse montezuma
revenge

ms_pacman seaquest qbert pong pong_sparse montezuma
revenge

ms_pacman seaquest qbert pong pong_sparse montezuma
revenge

ms_pacman seaquest qbert pong pong_sparse montezuma
revenge

Figure 7: Results of hyper-parameter sweep for Random Cumulant (RC) method, where each row is for a di↵erent
value of multiplicative scale applied to the auxiliary losses and each bar corresponds to the number of auxiliary
heads (M). Note that the first row of results corresponds to initializing a network with the auxiliary heads, but
setting the weight to zero, e↵ectively disabling the auxiliary task.

On The E↵ect of Auxiliary Tasks on Representation Dynamics

ms_pacman seaquest qbert pong pong_sparse montezuma
revenge

ms_pacman seaquest qbert pong pong_sparse montezuma
revenge

Figure 8: Results of hyper-parameter sweep for the Ensemble method, where each row is for a di↵erent learning
rate and each bar corresponds to the number of auxiliary heads (M).

ms_pacman seaquest qbert pong pong_sparse montezuma
revenge

ms_pacman seaquest qbert pong pong_sparse montezuma
revenge

Figure 9: Results of hyper-parameter sweep for the REM method, where each row is for a di↵erent learning rate
and each bar corresponds to the number of auxiliary heads (M).

Clare Lyle*, Mark Rowland*, Georg Ostrovski, Will Dabney

E Extensions beyond one-step temporal di↵erence learning

Our analysis in the main paper has focused on the case of learning dynamics under one-step temporal di↵erence
learning. This choice is largely because one-step temporal di↵erence learning is such a popular algorithm, not
because the results do not hold more generally. In this section, we describe the elements of analogous results
for n-step learning and TD(�) for interested readers. We focus on the case of value function dynamics, and
believe extensions of the representation dynamics analysis in the main paper along these lines will be interesting
directions for future work.

E.1 Temporal di↵erence learning with n-step returns

In the case of n-step returns, the dynamics on the value function (Vt)t�0 are given by

@tVt(x) = E⇡

"
n�1X

k=0

�
k
Rk + �

n
Vt(Xn)

�����X0 = x

#
� Vt(x) .

In full vector notation, we have

@tVt = �(I � �
n(P⇡)n)Vt +

"
n�1X

k=0

(�P⇡)k
#
R

⇡
.

The solution to this di↵erential equation is

Vt = exp(�t(I � (�P⇡)n))(V0 � V
⇡) + V

⇡
.

This bears a close relationship with the result obtained for 1-step temporal di↵erence learning in the main paper.
As expected, we obtain the same limit point. Further, under Assumption 3.3, (P⇡)n has the same eigenvectors
as P⇡, and so results analogous to Propositions 3.4 & 3.5 hold for n-step temporal di↵erence learning too under
these conditions.

E.2 Temporal di↵erence learning with �-returns

In the case of temporal di↵erence learning with �-returns (for � 2 [0, 1)), the dynamics on the value function
(Vt)t�0 are given by

@tVt(x) = E⇡

" 1X

k=0

(��)k(P⇡)k(R⇡ + �P
⇡
Vt(Xk+1)� Vt(Xk))

�����X0 = x

#
� Vt(x) .

In full vector notation, we have

@tVt =
1X

k=0

(��)k(P⇡)k(R⇡ + �P
⇡
Vt � Vt)

The solution to this di↵erential equation is

Vt = exp

t

(1� �)

1X

k=1

�
k�1

�
k(P⇡)k � I

!!
(V0 � V

⇡) + V
⇡
.

As with n-step temporal di↵erence learning, this bears a close relationship with the result obtained for 1-step
temporal di↵erence learning in the main paper. As expected, we obtain the same limit point. Further, under
Assumption 3.3, each (P⇡)k has the same eigenvectors as P⇡, and so results analogous to Propositions 3.4 & 3.5
hold for n-step temporal di↵erence learning too under these conditions.

On The E↵ect of Auxiliary Tasks on Representation Dynamics

F Beyond diagonalisability assumptions

In this section, we briefly describe extensions of the results of the main paper in scenarios where Assumption 3.3
does not hold. There are two main cases we consider: (i) those in which P

⇡ is still diagonalisable, but does not
have all eigenvalues with distinct magnitudes; and (ii) those in which P

⇡ is not diagonalisable.

In the former case, we do not have the di↵erent convergence rates of coe�cients of di↵erent eigenvectors as
in the proof of Proposition 3.5. By similar arguments we can still deduce convergence of Vt to the span of
the eigenspaces with highest magnitude eigenvalues, but we can no longer deduce convergence to individual
eigenspaces if there are several other eigenvalues with the same magnitude as the eigenvalue concerned. Note
also that this includes the case where the matrix P

⇡ is complex- but not real-diagonalisable, since in such case
non-real eigenvalues must come in conjugate pairs (which are necessarily of the same absolute value).

In the latter case, we no longer have an eigenbasis for RX based on P
⇡. However, we can consider the Jordan

normal decomposition, and may still recover analogous results to those in main paper, where convergence is now
to the subspaces generated by Jordan blocks with high absolute value eigenvalues. See Parr et al. (2008) for
further commentary on Jordan normal decompositions in feature analysis.

G Further discussion of features and operator decompositions

Proto-value functions (PVFs), were first defined by Mahadevan and Maggioni (2007) as the eigenvectors of the
incidence matrix induced by the environment transition matrix P . In the ensuing years, the term PVF has been
used to refer to a number of related but not necessarily equivalent concepts. To clarify our use of the term and
the relationship of our decompositions of the resolvent and transition matrices of an MDP, we provide a brief
discussion here; a summary is provided in Table 2.

We will use A to refer to the adjacency matrix of the unweighted, undirected graph induced by the matrix P

(i.e. A[i, j] is 1 if there exists some action with nonzero probability of taking the agent from state i to state j or
from state j to state i, and 0 otherwise). LG will refer to the graph Laplacian based on this matrix A.

We can additionally consider the Laplacian of the weighted, directed graph defined by P
⇡; we will refer to this

matrix as LP⇡ , in reference to its dependence on the probability of transitioning. T denotes the matrix defined
by a collection of sampled transitions indexed by t, with entries Tit = �1 if the transition t leaves i and +1 if it
enters state i.

Our first observation is that eigendecomposition and SVD are equivalent for symmetric matrices because any
real symmetric matrix has an orthogonal eigenbasis; this means that performing either decomposition yields the
same eigenvectors and easily related eigenvalues. Our second observation is that when P

⇡ is not symmetric, its
singular value decomposition and eigendecomposition may diverge; further, the relationship between the SVD
of the resolvent matrix = (I � �P

⇡)�1 and of P⇡ is no longer straightforward, despite the eigenspaces of the
two matrices being analogous. This means that analysis of the singular value decomposition of P⇡ does not
immediately imply any results about the resolvent matrix.

Matrix SVD Eigendecomposition (ED)
LG PVFs (Mahadevan and Maggioni, 2007) Equivalent to SVD
T sometimes ⌘ ED(LG) (Machado et al., 2017) not discussed

LP⇡ 6= ED(LP⇡) Stachenfeld et al. (2014)
(I � �P

⇡)�1 RSBFs ⌘ LP⇡

P
⇡ Behzadian and Petrik (2018) ⌘ LP⇡

Table 2: Summary of decompositions of various matrices associated with MDP transition operators, and associ-
ated features.

Finally, we note that applying a uniform random walk policy may not be su�cient to guarantee that P⇡ will be
symmetric, and that in general it will not be possible to obtain a policy which will symmetrize the transition
matrix. For example: when G is a connected, non-regular graph (as is the case in many environments such as
chains), there must be a node v of degree d adjacent to a node v

0 of degree d
0 6= d. A random walk policy will

assign p(v, v0) = 1
d , while p(v0, v) will receive probability 1

d0 ; thus, P⇡ will not be symmetric. Fortunately, this

Clare Lyle*, Mark Rowland*, Georg Ostrovski, Will Dabney

is not a barrier to spectral analysis; the eigenvectors and eigenvalues of P⇡ will still be real, as their transition
matrix will be similar to a symmetric matrix. We defer to Machado et al. (2017) for a more detailed discussion
of this relationship.

H Bayes-optimality of RSBFs

We can develop the discussion of RSBFs beyond their properties as a matrix decomposition described in Section G
to observe that the RSBFs characterize the Bayes-optimal features for predicting an unknown value function
given an isotropic Gaussian prior distribution on the reward, and further characterize a Bayesian posterior over
value functions given by conditioning on the known dynamics of the MDP. We will denote by VK() the top K

eigenvectors of the matrix >, i.e. the top K left singular vectors of .

Corollary H.1. Under an isotropic Gaussian prior on reward function r 2 RX , the subspace VK() corresponds
to the optimal subspace with respect to the following regression problem.

min
�2RX⇥K

Er⇠N (0,I)

⇥
k⇧�?(I � �P

⇡)�1
rk2
⇤
, (49)

where ⇧�? denotes orthogonal projection onto the orthogonal complement of �.

Proof. Let S denote some subspace S ⇢ V .

E[k⇧s rk2] = E[r> >⇧>
s ⇧s r] (50)

We note that for any real symmetric matrix A we can rewrite A =
P

↵iviv
>
i .

E[r> >⇧>
s ⇧S r] = E[r>(

X
↵iviv

>
i)r] = E[

X
↵i(r

>
vi)(v

>
i r)] (51)

= E[
X

↵iv
>
i rr

>
vi] =

X
↵iv

>
i E[rr>]vi (52)

=
X

↵iv
>
i vi = Tr(>⇧>

S⇧S) = Tr(>⇧S) (53)

Finally, we can re-express the minimization problem as follows

argminS:Dim(S)=kTr(
>(⇧S?)) = argmaxS:Dim(S)=kTr(

>⇧S) (54)

Now, because the subspace spanned by the top k left-singular vectors {u1, . . . , uk} of is known to be the
maximizer of the above equation, we finally obtain

= hu1, . . . , uki = VK() . (55)

Corollary H.2. The limiting distribution of �M
t under the random cumulant auxiliary task described in The-

orem 4.3 is equivalent to the Bayesian posterior over value functions obtained by conditioning on the dynamics
P

⇡, and given a prior distribution on the reward function equal to N (0,⌃).

Proof. Each column of Z⌃ is sampled from an isotropic Gaussian distribution, and therefore each feature �i
D
=

(I � �P
⇡)✏i. It therefore su�ces to show that under a suitable prior distribution, the distribution of �i is equal

to a Bayesian posterior. For this, it su�ces to show that such a posterior can be obtained by conditioning on the
transition dynamics P

⇡, and looking at the induced pushforward measure on the reward distribution. Noting
that (I � �P

⇡) is invertible, we then obtain the following prior over V
⇡, assuming an isotropic Gaussian prior

on pr(r) and any arbitrary distribution over potential transition dynamics p⇡(P⇡) which covers R|S|⇥d.

P (V ⇡) =

Z

(r,P⇡)
[(I � �P

⇡)�1
r = V

⇡]dpr(r)dp⇡(P
⇡) (56)

On The E↵ect of Auxiliary Tasks on Representation Dynamics

We observe that the random variable V
⇡ has conditional distribution P (V ⇡|P⇡) = P ((I � �P

⇡)�1
r), whose

density is proportional to pr((I � �P
⇡)V) by the change of variables formula.

P (V ⇡|P⇡) = cpr(r = (I � �P
⇡)V ⇡) (57)

Because our prior over r is equal to the initialization distribution of ✏i, we obtain

= cpinit(✏i = (I � �P
⇡)V ⇡) (58)

which is precisely the limiting distribution p1 of �i (again applying the change of variables formula).

= p1(�i = (I � �P
⇡)�1

✏i = V
⇡) (59)

So we see that the limiting distribution of �i is equal to the prior over value functions conditioned on the
transition dynamics.

I Learning Dynamics for Ensemble Prediction

We provide some visualizations of the induced behaviour on features as a result of training an ensemble with
multiple heads and zero reward, replicating the analysis of Section 2.2, to highlight how the eigendecomposition
of P⇡ a↵ects the learned representations. We run our evaluations on the Four-Rooms Gridworld by initializing
� 2 R105⇥10 (i.e. |X | = 105 and the number of features d = 10) and simulating the ODE defined in Equation 9
for time t = 100 with transition matrix P

⇡ defined by the uniform random policy on this Gridworld. In some
cases, the features converged to zero quickly and so we show a final t < 100 to highlight the behaviour of the
representation before it reaches zero.

We consider three variables which we permit to vary: the initialization scheme of features, in one case sampled
from an isotropic Gaussian rand or from a randomly initialized 2-layer MLP nn); whether the weight matrix is
fixed at initialization fix or permitted to follow the flow defined by Equation 6 train; and finally the number
of ‘heads’, M=1, 20, and 200.

In Figure 10, we plot the output of an arbitrary head wm of the ensemble. In Figure 11 we visualize the value
of a single feature (i.e. a single column of �). In Figure 12, we track the dot product of the columns of � with
the eigenfunctions of P⇡.

We observe, as predicted, that for fixed heads in the overparameterized regime, the features (and the value
functions they induce) converge to smooth eigenfunctions. We do not see meaningful convergence of the features
trained in conjunction with a single weight vector. In contrast, the value functions and features trained in
conjunction with ensembles with more heads than the feature dimension consistently resemble the eigenfunctions
of P⇡. When (wm) are held fixed, we see convergence to smooth eigenfunctions as predicted by our theory; when
(wm) are permitted to vary according to the flow in Equation 10, we see convergence to the most eigenfunction
corresponding to the most negative eigenfunction of P

⇡. We can observe the evolution of the dot product
between the features and the EBFs of P⇡ more clearly in Figure 12. Here, each red line corresponds to the dot
product between a feature and an EBF. The colour of the line indicates the order i of the eigenvalue �i to which
the EBF corresponds, interpolating between red �1 and blue �105. Lower values of i correspond to smoother
eigenfunctions. We observe that for su�ciently large M , the representations exhibit higher dot product with the
smoother eigenfunctions, while for M = 1 the features stay largely fixed during training.

Clare Lyle*, Mark Rowland*, Georg Ostrovski, Will Dabney

Figure 10: Value functions learned by the ensemble head at index 0 for di↵erent training regimes. Plot titles
of form (feature initialization scheme, train/fix weight matrix, number of heads in ensemble). Observe that the
representation learned with fixed weights tends to converge to smoother eigenfunctions than those learned with
weights that are also allowed to train.

On The E↵ect of Auxiliary Tasks on Representation Dynamics

Figure 11: Values of ensemble feature at index 0 for di↵erent training regimes. Plot titles of form (feature
initialization scheme, train/fix weight matrix, number of heads in ensemble). Observe that the representation
learned with fixed weights tends to converge to smoother eigenfunctions than those learned with weights that
are also allowed to train.

Clare Lyle*, Mark Rowland*, Georg Ostrovski, Will Dabney

Figure 12: Projection of features onto eigenvectors of P⇡. Red lines correspond to projection onto eigenvectors
of higher eigenvalues, blue lines to lower eigenvalues.

	Introduction
	Background
	Value-based reinforcement learning
	Features and representations
	Representation learning and auxiliary tasks

	Learning dynamics
	Warm-up: Tabular value function dynamics
	Representation dynamics

	Auxiliary task dynamics
	Ensemble value prediction
	Random cumulants
	Analysis of additional auxiliary tasks

	Experiments
	Feature generalisation across the value-improvement path
	Auxiliary tasks for large-scale environments with sparse rewards

	Related work
	Conclusion
	Additional results
	Proofs
	Additional results from Table 1
	Experimental details
	Experimental details for Figure 2
	Experimental details for Section 5.1
	Experimental details for Section 5.2

	Extensions beyond one-step temporal difference learning
	Temporal difference learning with n-step returns
	Temporal difference learning with -returns

	Beyond diagonalisability assumptions
	Further discussion of features and operator decompositions
	Bayes-optimality of RSBFs
	Learning Dynamics for Ensemble Prediction

