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Abstract

While auxiliary tasks play a key role in shap-
ing the representations learnt by reinforce-
ment learning agents, much is still unknown
about the mechanisms through which this
is achieved. This work develops our under-
standing of the relationship between auxil-
iary tasks, environment structure, and repre-
sentations by analysing the dynamics of tem-
poral di↵erence algorithms. Through this ap-
proach, we establish a connection between
the spectral decomposition of the transition
operator and the representations induced by
a variety of auxiliary tasks. We then lever-
age insights from these theoretical results to
inform the selection of auxiliary tasks for
deep reinforcement learning agents in sparse-
reward environments.

1 Introduction

Auxiliary tasks have provided robust benefits to deep
reinforcement learning agents (Jaderberg et al., 2017a;
Mirowski et al., 2017; Lin et al., 2019). A commonly-
held belief is that these benefits are mediated through
improved representation learning. This hypothesis
naturally raises a number of questions that, broadly
speaking, remain open. What makes a good auxiliary
task? Can we predict how an auxiliary task will a↵ect
an agent’s representation? When should one auxiliary
task be used instead of another? More generally, how
should this hypothesis about the mechanism of aux-
iliary tasks itself be tested? The complex interacting
components of large-scale deep reinforcement learning
agents make it di�cult to extract general insights. In
this work we aim to shed light on the answers to these
questions by distilling the benefits of auxiliary tasks
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Figure 1: An example of qualitatively di↵erent value
function dynamics for a two-state MDP for 1-step tem-
poral di↵erence learning and Monte Carlo learning,
with fixed point V ⇡ in red.

down to the e↵ects on the dynamics of the representa-
tions of reinforcement learning agents.

We begin by considering a learning dynamics frame-
work for studying the e↵ects of auxiliary tasks; see
Figure 1 for a toy illustration, with full details given
in Section 3. The central idea behind this framework
is that it is not just what an agent learns that dictates
how its representation is shaped, but how it learns.

This framework provides a model for representation
learning in RL. Under this model, even in the case of
value-based algorithms, it is shown that agents auto-
matically incorporate the transition structure of the
environment into their representations. We character-
ize the dynamics induced by a number of auxiliary
tasks, with particular focus on ensemble predictions
and random cumulant functions, and prove conver-
gence of the induced representations to subspaces de-
fined by certain decompositions of the environment’s
transition operator. We then consider the e↵ectiveness
of auxiliary tasks in sparse-reward environments, and
via the use of the learning dynamics framework, con-
struct a hypothesis as to which auxiliary tasks should
be particularly well suited to such environments; we
then test these developments in the Arcade Learning
Environment (Bellemare et al., 2013), demonstrating
strong performance with random cumulant auxiliary
tasks.
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2 Background

We consider a Markov decision process (X ,A, P,R)
comprising a finite state space X , finite action space
A, transition kernel P : X ⇥A ! P(X ), and reward
distribution function R : X ⇥A ! P(R).

2.1 Value-based reinforcement learning

Two key tasks in reinforcement learning are policy

evaluation and policy optimisation. The former is
specified by a policy ⇡ : X ! P(A). An agent
using the policy ⇡ to interact with the environment
generates a sequence of states, actions and rewards
(Xt, At, Rt)t�0. The performance of the agent is sum-
marised by the return

P
t�0 �

t
Rt, for a discount factor

� 2 [0, 1). The goal of policy evaluation is to (approx-
imately) compute the value function

V
⇡(x) = E⇡[

P
t�0 �

t
Rt | X0 = x] ,

for all x 2 X . Policy optimisation consists of finding a
policy ⇡

⇤ 2 P(A)X that maximises the expected re-
turn from all possible initial states. The value function
associated with ⇡

⇤ is denoted V
⇤.

Crucial to the value-based approach to reinforcement
learning are the Bellman operators. The one-step eval-
uation operator associated with a policy ⇡ is the func-
tion T

⇡ : RX ! RX defined by

(T⇡
V )(x, a) = E⇡[R0 + �V (X1) | X0 = x] .

Introducing the transition operator P
⇡ 2 RX⇥X de-

fined by P
⇡(x0|x) =

P
a2A ⇡(a|x)P (x0|x, a), and the

expected reward vector R⇡ 2 RX defined by R
⇡(x) =

E⇡[R0|X0 = x], this can be expressed even more suc-
cinctly in operator notation as

T
⇡
V = R

⇡ + �P
⇡
V .

The Bellman optimality operator is the function T
⇤ :

RX⇥A ! RX⇥A defined by

(T ⇤
V )(x)=max

a2A
E[R0+�V (X1)|X0 = x,A0 = a] .

Repeated application of T⇡ (resp., T ⇤) to any initial
value function converges to V

⇡ (resp., V ⇤) (Bertsekas
and Tsitsiklis, 1996). Popular algorithms such as Q-
learning (Watkins and Dayan, 1992), which form the
basis of many deep RL agents (Mnih et al., 2015), can
be viewed as approximating the iterative application
of T ⇤ and related operators (Tsitsiklis, 1994; Jaakkola
et al., 1994; Bertsekas and Tsitsiklis, 1996).

2.2 Features and representations

In many environments, it is impractical to store a value
function as a table indexed by states, and further this

does not permit generalisation in the course of learn-
ing. Instead, it is typical to parametrise V 2 RX

through a feature map � : X ! RK and weight vector

w 2 RK , leading to a factorisation of the form

V (x) = h�(x),wi .

Such a parametrisation may be amenable to more ef-
ficient learning, for example if � abstracts away unim-
portant information, allowing for generalisation be-
tween similar states. Even more concisely, writing
� 2 RX⇥K for the matrix with rows �(x) yields

V = �w . (1)

The quantity � is often referred to as the agent’s rep-
resentation of the environment (Boyan, 1999; Levine
et al., 2017; Bertsekas, 2018; Chung et al., 2018; Belle-
mare et al., 2019; Dabney et al., 2020). In many
small- and medium-scale applications, the represen-
tation is fixed ahead of time, and only w is updated
during learning; this is the linear function approxima-
tion regime. Many common choices of features relate
to various decompositions of operators associated with
the transition operators P

⇡. In deep reinforcement
learning, however, � and w are learnt simultaneously.

2.3 Representation learning and auxiliary
tasks

To perfectly express a value function V
⇡ in the form

of Equation (1), the following condition is necessary:

h�i ◆ hV ⇡i , (2)

where h�i denotes the column span of �, and hV ⇡i
denotes the one-dimensional subspace of RX spanned
by V

⇡. However, this condition is not su�cient for ef-
ficient sample-based learning (Du et al., 2019). There
are several reasons for this; for some intuition, consider
that since value functions are typically learnt through
bootstrapping algorithms, the agent is required to ac-
curately express a sequence of value functions as its
estimates are updated, and thus a good representation
should also allow such intermediate value functions to
be expressed in the course of learning (Dabney et al.,
2020).

Despite the importance of the representation �, it re-
mains unclear how exactly the notion of a good repre-
sentation in this sense should be formalised. In spite
of this, representation learning is a hugely important
aspect of deep reinforcement learning. A consistent
finding in empirical deep RL research is that requir-
ing the agent to use its representation to predict other
functions of state, referred to as auxiliary tasks, in ad-
dition to its primary task of learning an optimal policy,



Clare Lyle*, Mark Rowland*, Georg Ostrovski, Will Dabney

can lead to considerable boosts in performance. Exam-
ples of commonly-used auxiliary tasks include predict-
ing the expected return associated with other reward
functions (Sutton et al., 2011), other discount factors
(Fedus et al., 2019), and other policies (Dabney et al.,
2020), as well as other properties of the return distri-
bution (Bellemare et al., 2017) and other aspects of the
environment observations (Jaderberg et al., 2017a),
amongst others. We discuss prior work on auxiliary
tasks in greater detail in Section 6. A popular hy-
pothesis is that auxiliary tasks add further constraints
to Expression (2), requiring the representation � to
contain more functions of interest than just V ⇡ in its
column span (Bellemare et al., 2019; Dabney et al.,
2020).

3 Learning dynamics

Our aim in the remainder of the paper is to develop
an understanding of the ways in which auxiliary tasks
shape representations in RL. Our central results estab-
lish connections between decompositions of transition
operators, commonly used in static feature selection,
and certain classes of auxiliary tasks used in deep rein-
forcement learning. To build up to these results, in this
section we examine learning algorithms in the absence
of auxiliary tasks, first considering tabular learning al-
gorithms, and then moving to the case where represen-
tations and feature weights are learnt simultaneously.

3.1 Warm-up: Tabular value function
dynamics

We consider the following one-step temporal di↵erence
(TD) continuous-time learning dynamics:

@tVt(x) = E⇡[R0 + �Vt(X1)|X0 = x]� Vt(x) ,

for each x 2 X , which may also be written

@tVt(x) = R
⇡(x) + �(P⇡

Vt)(x)� Vt(x) ,

or in full matrix notation,

@tVt = �(I � �P
⇡)Vt +R

⇡
. (3)

The di↵erential equation in (3) is an a�ne autonomous
system, and is straightforwardly solvable.

Lemma 3.1. If (Vt)t�0 satisfies Equation (3) with ini-
tial condition V0 at time t = 0, then we have

Vt = exp(�t(I � �P
⇡))(V0 � V

⇡) + V
⇡
. (4)

We recover as a straightforward corollary the well-
known result that Vt ! V

⇡ as t ! 1, since all eigen-
values of (I � �P

⇡) have strictly positive real part.

However, the solution in Equation (4) also describes
the trajectory by which Vt reaches this limiting value.
Figure 1 provides an illustration of this in a small
MDP; the value functions accumulate along a partic-
ular a�ne subspace of RX prior to convergence.

This phenomenon can in fact be formalised. To do
so, we need a notion of distance between subspaces
of RX . The following definition follows Ye and Lim
(2016). Intuitively, it can be thought of as generalizing
the notion of an angle between vectors to subspaces.

Definition 3.2. For two K-dimensional subspaces
Y1, Y2  RX , the principal angles ✓1, . . . , ✓K 2 [0,⇡/2]
between the subspaces are defined by taking orthonor-
mal matrices Y1 2 RX⇥K and Y2 2 RX⇥K the
columns of which span Y1 and Y2 respectively, and
defining ✓k = cos�1(�k(Y>

1 Y2)), where �k(A) is the
k
th singular value of the matrix A. One can check

that this definition is independent of the matrices Y1

and Y2, depending only on the subspaces Y1, Y2 them-
selves. The Grassmann distance d(Y1, Y2) between Y1

and Y2 is then defined as k✓k2 = (
PK

k=1 ✓
2
k)

1/2.

With these definitions in hand, we now give a precise
version of the statement alluded to in the discussion
and figure above. We make some simplifying assump-
tions to avoid focusing on technicalities here, and give
a discussion of the more general case in Appendix F.

Assumption 3.3. P
⇡ is real-diagonalisable, with

strictly decreasing eigenvalue sequence 1 = |�1| >

|�2| > · · · > |�|X ||, and corresponding right-
eigenvectors U1, . . . , U|X |.

Proposition 3.4. Under Assumption 3.3, and (Vt)t�0

the solution to Equation (3), for almost every1 initial
condition V0, we have

d(hVt � V
⇡i, hU1i) ! 0 .

The behaviour described by Proposition 3.4 is exhib-
ited in Figure 1, as the value function Vt approaches
the a�ne subspace in direction (1, 1) prior to converg-
ing to V

⇡. A more general version of this statement
can also be given with an ensemble of K value func-
tions, which indicates that yet more information about
the environment is contained in the learnt collection.
The proofs of these results relate to the classical power
method in linear algebra.

Proposition 3.5. Under Assumption 3.3, and

(V (k)
t )t�0 the solution to Equation (3) for each k =

1, . . . ,K, for almost every initial condition (V (k)
0 )Kk=1,

we have

d(hV (k)
t � V

⇡ | k 2 [K]i, hU1:Ki) ! 0 .
1In the measure-theoretic sense that the set of excluded

initial conditions V0 has Lebesgue measure 0.
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Key insight.
Even in an environment with no reward signal at
all (in which case V

⇡ = 0), an agent performing
TD learning still picks up information about the
transition structure of the environment within its
value function.

Due to the importance of the vectors U1:K in this
analysis, we introduce the term eigen-basis functions

(EBFs) to describe them.

We observe that a similar analysis, indicating similar
behaviour, is possible for related learning algorithms
such as n-step temporal di↵erence learning and TD(�);
see Appendix E for further details. In contrast, Monte
Carlo learning dynamics correspond to the di↵erential
equation

@tVt = (I � �P
⇡)�1

R
⇡ � Vt ,

which has the solution

Vt = e
�t(V0 � (I � �P

⇡)�1
R

⇡) + (I � �P
⇡)�1

R
⇡
.

The trajectory associated with this solution simply lin-
early interpolates between V0 and V

⇡, as illustrated in
Figure 1, and does not pick up any additional infor-
mation about the environment in the value function as
learning proceeds. See Appendix E for further details.
This example serves to illustrate that it is not just
what an agent learns (V ⇡), but how the agent learns
that plays a key, measurable role in what environment
information is picked up in its value function. We now
apply this perspective to representation learning.

3.2 Representation dynamics

Recall the parametrisation of V 2 RX from Sec-
tion 2.2, taking the form

V = �w ,

for � 2 RX⇥K , w 2 RK . Central to deep reinforce-
ment learning agents is the idea that � and w are
simultaneously learnt from a single RL loss. As in
the value function case, we will focus on the dynamics
with single-step temporal di↵erence learning; remarks
on other learning algorithms are given in Appendix E.
The dynamics associated with single-step TD learning
are given by

@t�t = �↵
1

2
r�tkR⇡ + SG[�P⇡�twt]� �twtk22 , (5)

@twt = ��
1

2
rwtkR⇡ + SG[�P⇡�twt]� �twtk22 , (6)

where ↵,� 2 [0,1) are learning rates, implying that
features and weights may be learnt at di↵erent rates.

Further, SG[] denotes a stop-gradient, indicating that
we treat the instances of �t and wt within the expres-
sion as constants with regard to computing derivatives;
this reflects the fact that temporal di↵erence learning
is a semi-gradient method.

The use of a single loss to learn both the representation
and weights corresponds to the approach taken in deep
RL, and we will use these dynamics as an idealized
model of the deep RL setting. While this model ig-
nores some practicalities of deep RL (such as visitation
distributions, implicit bias from the function approx-
imation architecture, and stochasticity introduced by
mini-batch training), it allows us to obtain valuable in-
sights into representation dynamics which, as we shall
see in Section 5, accurately predict the behaviour of
deep RL agents.

Lemma 3.6. Let �t and wt parameterize a value
function approximator as defined above. Then

@t�t = ↵(R⇡ + �P
⇡�twt � �twt)w

>
t , (7)

@twt = ��>
t (R

⇡ + �P
⇡�twt � �twt) . (8)

This joint flow on �t and wt leads to much richer be-
haviour than the flow considered on value functions
in the previous section. Without further assumptions,
the evolution of the representation �t may be com-
plex, and will not necessarily incorporate environment
information as described for the case of value functions
in Proposition 3.5. In particular, in sparse reward en-
vironments, the agent may learn to predict a near-zero
value function by setting the weights wt close to zero,
which would e↵ectively prevent any further updating
of the features �t, ruling out the possibility of a result
analogous to Proposition 3.5.

4 Auxiliary task dynamics

Having studied the temporal di↵erence learning dy-
namics in Equation (7) & (8), we now examine
how auxiliary value-prediction tasks influence the be-
haviour of the agent’s representation during the learn-
ing process.

As described above, developing a granular description
of the joint learning dynamics of the representation
and weights of the learner is a complex task, and so
we focus on the limiting case in which the number
of auxiliary tasks is large relative to the dimension-
ality of the representation. We conclude that under
certain conditions, representations learnt in the many-
task limit bear a close connection with the eigen-basis

functions described in Section 3.1, and also resolvent

singular basis functions, a new decomposition intro-
duced in Section 4.2. The reader may find it useful to



Clare Lyle*, Mark Rowland*, Georg Ostrovski, Will Dabney

refer to Appendix G for a more detailed discussion of
these decompositions.

4.1 Ensemble value prediction

We begin by considering the auxiliary task of ensemble

value prediction (Osband et al., 2016; Anschel et al.,
2017; Agarwal et al., 2020). Rather than making a
single prediction of the value function Q

⇡, the learner
makes M 2 N separate predictions as linear func-
tions of a common representation �M , using M in-
dependently initialized weights matrices wm 2 RK

(m = 1, . . . ,M). We note that while at initialization
�M

0 2 RX⇥d is independent of M , its dynamics do de-
pend on M through the contribution of the weights.
Simultaneous temporal di↵erence learning on all pre-
dictions leads to the following dynamics:

@t�
M
t =↵

MX

m=1

(R⇡+�P
⇡�M

t wm
t ��M

t wm
t )(wm

t )> ,

(9)

@tw
m
t =�(�M

t )>(R⇡ + �P
⇡�M

t wm
t � �tw

m
t ) . (10)

The following result characterises the representation
learnt by the agent in the many-tasks limit, again es-
tablishing a connection to EBFs; we follow the ap-
proach described by Arora et al. (2019b) in fixing the
linear weights associated with the value function; this
dramatically simplifies our analysis, while still describ-
ing practical settings in which the features and weights
are trained separately as in Chung et al. (2018).

Theorem 4.1. For M 2 N, let (�M
t )t�0 be the solu-

tion to Equation (9), with each wm
t for m = 1, . . . ,M

initialised independently from N(0,�2
M ), and fixed

throughout training (� = 0). We consider two set-
tings: first, where the learning rate ↵ is scaled as 1

M
and �

2
M = 1 for all M , and second where �2

M = 1
M and

the learning rate ↵ is equal to 1. These two settings
yield the following dynamics, respectively:

lim
M!1

@t�
M
t

P
=� (I � �P

⇡)�M
t , and (11)

lim
M!1

@t�
M
t

D
=� (I � �P

⇡)�M
t +R

⇡
✏
> , ✏ ⇠ N (0, I) .

(12)

The corresponding limiting trajectories for a fixed ini-
tialisation �0 2 RX⇥K , are therefore given respec-
tively by

lim
M!1

�M
t

P
=exp(�t(I � �P

⇡))�0 , and (13)

lim
M!1

�M
t

D
=exp(�t(I � �P

⇡))(�0 � (I � �P
⇡)�1

R
⇡
"
>)

+ (I � �P
⇡)�1

R
⇡
"
>
, ✏ ⇠ N (0, I) .

(14)

In contrast to the case described in Section 3.2, this re-
sult indicates that the introduction of auxiliary tasks
leads to useful environment information being incor-
porated into the representation. Indeed, the dynamics
described above imply the following convergence re-
sult, analogous to Proposition 3.5.

Corollary 4.2. Under the feature flow (9) with wm
t

fixed at initialization for each i = 1, . . . ,M and As-
sumption 3.3, for almost all initialisations �0, we have
when R

⇡ = 0

d(h�ti, hU1:Ki) ! 0 , as t ! 1.

Key insight.
Under the conditions of Theorem 4.1 and Corol-
lary 4.2, the ensemble auxiliary tasks cause the
agent’s representation � to align with EBFs.

We show in Appendix I that this behaviour is observed
in practice when M � K and the value of wm

t is
fixed at initialization. We additionally compare the
representations learned when wm

t is allowed to vary
over training. Here we find empirically that allowing
the weights to vary during training induces dynamics
that di↵er from those predicted by Theorem 4.1 for
the fixed-weights setting. To illustrate this, we follow
the evolution of a single column of �t, i.e. a single
feature vector �t, trained with the ensemble prediction
dynamics of Equations (9) & (10) on a simple four-
rooms gridworld environment in Figure 2.

Figure 2: Visualization of a single column of �t (i.e.
feature vector) after application of the ODE in Equa-
tion (7) for t 2 [0, 100] in the four rooms environment,
with K = 10 and M = 20. Early in its trajectory,
�t exhibits similarity to smooth eigenfunctions (e.g.
the eigenfunction corresponding to the 5th greatest
eigenvalue �5 which we plot in the top right) of P⇡,
but later converges to non-smooth eigenfunctions (e.g.
the eigenfunction corresponding to eigenvalue �105, the
most negative eigenvalue, plotted in the bottom right).
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Auxiliary task Dynamics (r = 0) �1 (r = 0) �1 (r 6= 0) Limit of h�t � �1i
Ensemble �(I � �P

⇡)�t 0 (I � �P
⇡)�1

r✏
> EBFs of P⇡

Random cumulants �(I � �P
⇡)�t + Z⌃ (I � �P

⇡)�1
Z⌃ (I � �P

⇡)�1
Z⌃ EBFs of P⇡

Additional policies �(I � �P
⇡)�t 0 (I � �P

⇡)�1
R

⇡
✏
> EBFs of P ⇡̄

Multiple �s �(I � �P
⇡)�t 0 (I � �P

⇡)�1
R

⇡
✏
> EBFs of P⇡

Table 1: Summary of dynamics and limiting solutions under some common auxiliary tasks in the limit of
infinitely-many prediction outputs. For additional policies, ⇡ denotes the average of the finite set of policies
⇡1, . . . ,⇡L under consideration (L fixed and independent of M), and for multiple discount factors, � denotes the
average of the discount factors �1, . . . , �L under consideration.

We visualize �t along with two illustrative eigenfunc-
tions of the transition matrix P

⇡, corresponding to
one positive and one negative eigenvalue. We observe
that while the feature �t quickly evolves to resemble
the smooth eigenfunction corresponding to the posi-
tive eigenvalue for small values of t, it later converges
to the non-smooth eigenfunction corresponding to the
most negative eigenvalue of the transition matrix P

⇡.
While we leave further analysis to future work, this ex-
ample hints at an intriguing relationship between the
EBFs and the joint representation dynamics.

4.2 Random cumulants

In the case of zero rewards, our previous results show
that whilst from the perspective of subspaces the rep-
resentation approaches the EBF subspace in Grass-
mann distance, in Euclidean distance the representa-
tion is approaching the zero matrix pointwise. This
has important implications for the scenario of large-
scale sparse-reward environments, in which the agent
may not encounter rewards for long periods of time,
and indicates that the agent’s representation is at risk
of collapsing in such cases.

Motivated by this analysis, we consider a means of al-
leviating this representation collapse, by learning value
functions for randomly generated cumulants (Osband
et al., 2018; Dabney et al., 2020). Mathematically,
the agent again makes many predictions from a com-
mon representation, with each prediction indexed by
m = 1, . . . ,M attempting to learn the value function
associated with a randomly drawn reward function
r
m 2 RX under the policy ⇡. Thus, the agent’s pa-
rameters are the representation � and a set of weights
wm for each prediction. The learning dynamics are
then given by:

@t�
M
t =↵

MX

m=1

(rm+�P⇡�M
t wm

t ��M
t wm

t )(wm
t )>,

(15)

@tw
m
t =�(�M

t )>(rm + �P
⇡�M

t wm
t � �tw

m
t ) . (16)

The main result of this section is to show that, even

in the absence of reward, the limiting distribution in-
duced by random cumulant auxiliary tasks dynamics
described in Equation (15) is not the zero subspace.

Theorem 4.3. For fixed M 2 N, let the random re-
wards (rm)Mm=1 and weights (wm)Mm=1 be as defined
above, let ↵ = 1, and consider the representation dy-
namics in Equation (15), with weights fixed through-
out training (� = 0). Let ⌃ denote the covariance
matrix of the random cumulant distribution. Then

lim
M!1

MX

m=1

r
m(wm)>

D
= Z⌃ ⇠ N (0,⌃), and

lim
M!1

�M
t

D
= exp(�t(I � �P

⇡))(�0 � (I � �P
⇡)�1

Z⌃)

+ (I � �P
⇡)�1

Z⌃ .

As the columns of Z⌃ are mean-zero, uncorrelated,
with covariance matrices ⌃, the limiting distribution
of each column of �1 = limt!1 limM!1 �M

t has co-
variance  ⌃ >, where  is the resolvent (I��P

⇡)�1.

Corollary 4.4. Under the feature flow (15) with wm
t

fixed at initialization for each i = 1, . . . ,M and As-
sumption 3.3, for almost all initialisations �0, we have
when R

⇡ = 0

d( lim
M!1

h�M
t � �1i, hU1:Ki) ! 0 , as t ! 1.

Theorem 4.3 indicates that the left-singular vectors
of ⌃1/2 (or equivalently, the right-eigenvectors of
 ⌃ >) are key to understanding the e↵ects on ran-
dom cumulants on representations; we introduce the
term resolvent singular basis functions (RSBFs) to re-
fer to these vectors in the canonical case ⌃ = I.

Key insight.
With random cumulant auxiliary tasks, under the
assumptions of Theorem 4.3 and Corollary 4.4,
the distribution of the limiting representation
does not collapse, and is characterized by the RS-
BFs of P⇡, while the trajectory it follows to reach
this subspace is determined by the EBFs of P⇡.

These decompositions of P
⇡ bear deep connections

to prior work on feature learning. EBFs correspond
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to the eigendecomposition of the successor representa-
tion, which can be explicitly related to the proto-value
functions described by Mahadevan (2009) when the
transition matrix P

⇡ corresponds to that of a random
walk policy (Machado et al., 2018b). For symmetric
P

⇡ we obtain an additional correspondence between
EBFs and RSBFs, though we note that when P

⇡ is not
symmetric the RSBFs may di↵er from both the EBFs
and the singular value decomposition of the transition
matrix P

⇡. We provide further discussion of RSBFs
and comparisons against existing concepts in feature
selection in Appendix G.

In Appendix H we show that RSBFs can be viewed
as Bayes-optimal features in the sense that they mini-
mize the expected value function approximation error
given an isotropic Gaussian prior on an unknown re-
ward function.

4.3 Analysis of additional auxiliary tasks

The infinite-task limit simplifies the analysis of a broad
range of auxiliary tasks, and analogous results to The-
orem 4.1 can be easily derived for families of auxiliary
tasks which predict returns associated with additional
policies and multiple discounts factors. We provide a
summary of these results in Table 1, including their
full statements and derivations in Appendix B.

We consider two additional classes of auxiliary task:
predicting the values of multiple policies (Dabney
et al., 2020), and predicting value under multiple dis-
count factors (Fedus et al., 2019). Under the multi-
ple policies auxiliary task, the agent’s objective is to
learn a set of value functions V

1
, . . . , V

M such that
V

i(x) = E⇡i [R
⇡i(x)+�P

⇡iV
i(x)]. Under the multiple

discount factors auxiliary task, the agent’s objective is
analogously to find V

i(x) = E⇡i [R
⇡(x) + �iP

⇡
V

i(x)]
for �i 2 �1, . . . , �k. We consider an ensemble predic-
tion variant of these objectives, where given a fixed
set of k policies, we train an ensemble of M predictors
V

1,1
, . . . , V

m,1
, . . . , V

1,k
, . . . , V

m,k, where m = M
k and

the value function V
i,j is trained on policy (respec-

tively discount factor) ⇡j (respectively �j).

In both cases, under the conditions of the previous
theorems the dynamics of the ensemble converge to
the dynamics induced by the mean of the set of aux-
iliary tasks, implying the counter-intuitive result that
training with multiple auxiliary tasks doesn’t provide
additional utility over the single task setting. This ap-
parent shortcoming can be addressed by ensuring that
the weights corresponding to each auxiliary task ⇡i or
�i are initialized in orthogonal subspaces, so that the
vector space V in which the representation evolves can
be decomposed as V = �i2[1,k]Vi. In this case, we ob-
tain an analogous decomposition of the representation

� and its corresponding dynamics, obtaining conver-
gence to a direct sum of the limiting representation of
each task. This suggests that the benefits of auxiliary
tasks might be maximized by appropriate initialization
schemes which encourage the representations learned
for each task to be independent.

5 Experiments

In this section, we complement the theoretical results
above with empirical investigations in both tabular
and deep reinforcement learning settings.

5.1 Feature generalisation across the
value-improvement path

Having established connections between the represen-
tations induced by auxiliary tasks and several decom-
positions of the environment transition operator, we
now turn to the question of how useful these repre-
sentations are to a reinforcement learning agent. In
particular, we address how well representations learnt
under one policy generalize under the policy improve-
ment step to approximate future value functions, with
particular attention paid to EBFs and RSBFs, the de-
compositions that feature in our earlier analysis.

To address this question empirically we run tabular
policy iteration on a stochastic chain MDP, yielding a
sequence of policies (⇡j)Jj=1 and associated value func-

tions (Vj)Jj=1. We then compute EBFs and RSBFs
associated with P

⇡, and compute the acute angle be-
tween Vj and the subspace spanned by these features,
for each j 2 [J ]; this is in fact equal to a generalisation
of the Grassmann distance for subspaces of unequal di-
mension (Ye and Lim, 2016). We also compare against
a baseline of isotropic randomly-generated features;
full experimental details are provided in Appendix D.

Figure 3: Transfer of EBFs, RSBFs, and RFs across
the value-improvement path of a chain MDP, with and
without the value function as an additional feature.
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Figure 4: Learning curves for DDQN, DDQN+RC, DDQN+Ensemble, DDQN+REM, and QR-DQN agents on
several dense reward ALE environments. Two games with sparse rewards are shown in the shaded box.

ms_pacman seaquest qbert pong pong_sparse montezuma
revenge

ms_pacman seaquest qbert pong pong_sparse montezuma
revenge

ms_pacman seaquest qbert pong pong_sparse montezuma
revenge

Figure 5: Sweep over number of auxiliary heads for
RC, REM and Ensemble. Each bar corresponds to a
single game, presented in the same order as Figure 4.
Relative score is the per-game score divided by the
maximum over all algorithms and hyperparameters.

Results are given in the top row of Figure 3 for the
case of four features; each individual heatmap plots
Grassmann distances, with rows indexing the policy
that generated the features, and columns indexing the
policy yielding the target value function. In general,
the RSBFs provide better transfer across policies in
the improvement path relative to random features and
EBFs. For times j, j0 2 [J ], we observe that the Grass-
mann distance between the RSBFs of P

⇡j and the
value function of j0, V ⇡j0 , increases as |j � j

0| does.

We also evaluate transfer when the vector V ⇡j is added
to the set of features, in the bottom row of Figure 3.
This contains the subspace to which the value func-
tions described in Proposition 3.5 converge, as the lim-
iting solutions can be described as being of the form
V

⇡j + u for u 2 hU1:Ki. Surprisingly, we find that in
this setting the EBFs for ⇡j outperform RSBFs specif-
ically in predicting V

⇡j+1 . This can be observed in
the upper o↵-diagonal the EBF plot in Figure 3. We
conclude that the dynamics induced by TD updates
may be particularly beneficial to transfer between poli-
cies in the value-improvement path, and further study
of this phenomenon is a promising avenue for future
work.

5.2 Auxiliary tasks for large-scale
environments with sparse rewards

We now consider the problem of deep RL agents in-
teracting with environments with sparse reward struc-
ture. Motivated by the theoretical results obtained in
earlier sections, we study the e↵ects of a variety of
auxiliary tasks in this setting; our analysis indicates
that random cumulants may be particularly e↵ective
in preventing representation collapse in such environ-
ments.

We modify a Double DQN agent (Van Hasselt et al.,
2016) with a variety of auxiliary tasks, including ran-
dom cumulants (RC) (Dabney et al., 2020), random
ensemble mixtures (REM) (Agarwal et al., 2020), an
ensembling approach (Anschel et al., 2017), and also
compare with QR-DQN, a distributional agent (Dab-
ney et al., 2018). Full details of these agents, including
specific implementation details for deep RL versions of
these auxiliary tasks, are given in Appendix D.

We evaluate these agents on a series of Atari games
from the Arcade Learning Environment (Bellemare
et al., 2013; Machado et al., 2018a), comprising Mon-
tezuma’s Revenge, Pong, MsPacman, Seaquest, and
Q⇤bert. In addition, we evaluate on a more challeng-
ing, sparse reward, version of Pong in which the agent
does not observe negative rewards.2

Figure 4 shows the main results from these experi-
ments. Recall from Section 4 that the random cu-
mulant auxiliary task causes the agent’s representa-
tion to converge to the RSBFs of P⇡ in the idealized
setting. We hypothesize that this auxiliary task will
therefore improve agent performance over ensemble-
based auxiliary tasks in sparse-reward environments.
Our empirical results support our hypothesis, with the
random cumulant agent (DDQN+RC) generally per-

2We attempted a similar modification of the other three
dense reward games, but found no agent or configuration
that was able to successfully learn on them. Full details,
along with hyperparameters and results on these unsuc-
cessful modifications, are given in Appendix D.
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forming well in the sparse-reward environments. Of
particular note is the strong performance in Mon-
tezuma’s Revenge. We expected reduced performance
for DDQN+RC in the dense-reward games, but were
surprised to observe improved performance here as
well. However, we do note the instability seen in
Seaquest. Finally, Figure 5 shows the result of a
hyperparameter sweep over the number of auxiliary
task heads, revealing relevant di↵erences in the three
methods considered. Overall, we find that random cu-
mulants are a promising auxiliary task specifically in
sparse-reward environments, and believe that this mo-
tivates further theoretical development to close the gap
between the dynamics of representations in deep RL
agents, and the settings studied above.

6 Related work

As described previously, a wide variety of auxiliary
tasks have been demonstrated to improve performance
in deep reinforcement learning (Sutton et al., 2011; An-
schel et al., 2017; Jaderberg et al., 2017b; Bellemare
et al., 2017; Barreto et al., 2017; Mirowski et al., 2017;
Du et al., 2018; Riedmiller et al., 2018; van den Oord
et al., 2018; Dabney et al., 2018; Gelada et al., 2019;
Fedus et al., 2019; Kartal et al., 2019; Lin et al., 2019;
Stooke et al., 2020; Dabney et al., 2020; Guo et al.,
2020; Laskin et al., 2020). These works principally fo-
cus on demonstrating the empirical benefits of these
tasks on agent performance, leaving an analysis as to
why these e↵ects occur to future work. Follow-up work
on distributional reinforcement learning, for example,
has begun to close the theory-practice gap (Lyle et al.,
2019; Rowland et al., 2018). There is also a growing
body of work on understanding the impact of repre-
sentations on the sample e�ciency of reinforcement
learning; see for example Du et al. (2019); Van Roy
and Dong (2019); Lattimore et al. (2020).

Further analysis of auxiliary tasks in deep reinforce-
ment learning focuses on their e↵ect on the represen-
tation learned by the agent (Bellemare et al., 2019;
Dabney et al., 2020) and its ability to approximate
the value functions of several policies. Additionally,
Ghosh and Bellemare (2020) propose an auxiliary task
based on its e↵ect on the stability of learned represen-
tations. Kumar et al. (2021) also study representation
collapse in deep reinforcement learning, in the absence
of auxiliary tasks. Aside from reinforcement learning,
there are also related empirical approaches using boot-
strapping to shape representations in self-supervised
learning (Grill et al., 2020), and theoretical work in
characterising the regularising e↵ect of self-distillation
(Mobahi et al., 2020) and over-parametrisation (Arora
et al., 2019a; Li et al., 2018) in supervised learning.

Recent work in representation learning has its roots
in the broader feature selection problem in reinforce-
ment learning. This problem has been extensively
studied (Parr et al., 2008, 2007; Mahadevan and Mag-
gioni, 2007; Petrik, 2007; Mahadevan, 2009; Kroon and
Whiteson, 2009; Fard et al., 2013; Jiang et al., 2015),
particularly in the linear value function approximation
setting. Parr et al. (2008) analyze power-iteration-
style feature learning methods, to which our analysis
of the convergence of features presents notable sim-
ilarity. Also closely related is the notion of feature
adaptation (Menache et al., 2005; Yu and Bertsekas,
2009; Di Castro and Mannor, 2010; Bhatnagar et al.,
2013; Prabuchandran et al., 2014, 2016; Barker and
Ras, 2019), in which features are adaptively updated
simultaneously with the weights used for value func-
tion approximation.

7 Conclusion

We have introduced a framework based on learning
dynamics to analyse representations in reinforcement
learning. This led to a variety of theoretical results
concerning learning with and without the presence
of auxiliary tasks, as well as several straightforward
models for studying representation learning empiri-
cally. With this, we were able to thoroughly test a
new hypothesis on the e↵ectiveness of particular aux-
iliary tasks in sparse reward environments, which led
to improved understanding of representation learning
in RL, as well as practical modifications to deep RL
algorithms.

There are many natural follow-up directions to this
work. One direction is to further develop the theory
associated with the learning dynamics perspective, in
order to (i) understand how additional types of aux-
iliary tasks, in particular auxiliary tasks that don’t
correspond to value functions, a↵ect the representa-
tions in the learning models developed in this paper,
(ii) extend the learning models themselves to incorpo-
rate further aspects of large-scale learning scenarios,
such as sample-based learning and state-visitation dis-
tribution corrections, and (iii) investigate other com-
mon learning dynamics, such as gradient TD methods
(Sutton et al., 2008). There is also scope for further
empirical work to develop an understanding of which
auxiliary tasks are useful in certain types of environ-
ments, extending the observations relating to sparse-
reward environments and random cumulants in this
paper. We hope that the community will find this
framework useful for testing many more hypotheses in
a wide range of scenarios, ultimately leading to a bet-
ter understanding of how reinforcement learning and
representation learning fit together.
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