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A Appendix

A.1 Proof of Lemma 1

Proof. To simplify the notation, let w̃i = exp(wi).
Then

P (S1 � · · · � SM )

=
∑

(i1,··· ,iN )∈σ(S1�···�SM )

N∏
l=1

w̃il∑N
r=l w̃ir

=
∑
σ(S1)

· · ·
∑
σ(SM )

M∏
m=1

nm∏
l=nm−1+1

w̃il∑N
r=l w̃ir

=

M∏
m=1

∑
(j1,··· ,jnm )∈σ(Sm)

nm∏
l=1

w̃jl∑
k∈Rm

w̃k −
∑l−1
r=1 w̃jr

=

M−1∏
m=1

P (Sm � Rm+1),

A.2 Proof of Proposition 1

Proof. We first show P (A � B;w) = P (mina∈A gwa >
maxb∈B gwb

). If A∪B = bNc, then the event of A � B
is equivalent to the event of mina∈A gwa

> maxb∈B gwb

so this equality holds true. Otherwise, assume there is
a c ∈ bNc but c /∈ A ∪B.

We introduce a few notations to assist the proof. For
any D ⊆ bNc, let G(D) = {gwi

| i ∈ D}. Further let
Ω(A � B;D) be the set of all possible permutations of
D that are consistent with the partial ranking A � B,
i.e.,

Ω(A � B;D)

={(i1, · · · , iN ) ∈ σ(D) | k < l,∀ik ∈ A, il ∈ B}.

Then we can write the LHS as

P (A � B;w)

=
∑

(i1,··· ,iN )∈
Ω(A�B;bNc)

P (gwi1
> gwi2

> · · · > gwiN
)

=
∑

(i1,··· ,iN )∈
Ω(A�B;bNc)

∫
· · ·
∫
G(bNc)

1[gwi1
> gwi2

> · · · > gwiN
]

=

∫
· · ·
∫
G(bNc)

∑
(i1,··· ,iN )∈

Ω(A�B;bNc)

1[gwi1
> gwi2

> · · · > gwiN
],

where we slightly abused the notation gwi by using
it to refer both the Gumbel random variables in the
first line and the corresponding integral variables in

the following lines. We have also omitted the integral
variables and the probability densities df(gwi

) in the
derivation. To further ease the notation, we define
gwj0

= +∞ and gwjN
= −∞, then

P (A � B;w)

=

∫
· · ·
∫
G(bNc)

N∑
k=1

∑
(j1,··· ,jN−1)∈

Ω(A�B;bNc\{c})

1[gwj1
> · · · > gwjk−1

> gwc
> gwjk

> · · · > gwjN−1
]

=

∫
· · ·
∫
G(bNc)

∑
(j1,··· ,jN−1)∈

Ω(A�B;bNc\{c})

1[gwj1
> · · · > gwjN−1

]

·
N∑
k=1

1[gwjk−1
> gwc > gwjk

]

=

∫
· · ·
∫
G(bNc\{c})

∑
(j1,··· ,jN−1)∈

Ω(A�B;bNc\{c})

1[gwj1
> · · · > gwjN−1

]

·
∫
gwc

N∑
k=1

1[gwjk−1
> gwc

> gwjk
], (9)

where the last equality utilizes the fact that all the
Gumbel variables are independent.

Note that, in Eq. (9), given gwj1
> · · · > gwjN−1

,∑N
k=1 1[gwjk−1

> gwc > gwjk
] ≡ 1 regardless the

choice of (j1, · · · , jN−1). Therefore,

∫
gwc

N∑
k=1

1[gwjk−1
> gwc > gwjk

] ≡ 1,

and

P (A � B;w)

=

∫
· · ·
∫
G(bNc\{c})

∑
(j1,··· ,jN−1)∈

Ω(A�B;bNc\{c})

1[gwj1
> · · · > gwjN−1

].

(10)

By applying Eq. (10) to all the items that do not be-
long to A ∪B, we get

P (A � B;w)

=

∫
· · ·
∫
G(A∪B)

∑
(j1,··· ,j|A|+|B|)∈

Ω(A�B;A∪B)

1[gwj1
> · · · > gwj|A|+|B|

].

(11)

And note that this reduces to a situation equivalent
to the case A ∪ B = bNc. Therefore we have shown
P (A � B;w) = P (mina∈A gwa

> maxb∈B gwb
).
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The proof for

P (min
a∈A

gwa
> max

b∈B
gwb

) =

∫ 1

u=0

∏
a∈A

(1−uexp(wa−wB))du

remains the same no matter if A∪B = bNc or not, as
the Gumbel variables are independent. We refer the
reader to the Appendix B of Kool et al. (2020) for the
proof.

A.3 Proof of Lemma 2

Proof. We first expand the gradients of the log-
likelihood w.r.t. w in Eq. (6) below.

∇w logP (S1 � · · · � SM ;w)

=

M−1∑
m=1

∇w logP (Sm � Rm+1;w)

=

M−1∑
m=1

1

P (Sm � Rm+1;w)
∇wP (Sm � Rm+1;w)

=

M−1∑
m=1

1

P (Sm � Rm+1;w)

·∇w

∫ 1

u=0

∏
i∈Sm

(1− uexp(wi−wRm+1
))du.

(12)

Further note that

∇w

∏
i∈Sm

(1− uexp(wi−wRm+1
))

=
∑
i∈Sm

[ ∏
j∈Sm\{i}

(1− uexp(wj−wRm+1
))
]

·
[
−∇wu

exp(wi−wRm+1
)
]

=−
∑
i∈Sm

[ ∏
j∈Sm\{i}

(1− uexp(wj−wRm+1
))
]

·
[
uexp(wi−wRm+1

) log u
]
∇w exp(wi − wRm+1

)

=−
[ ∏
j∈Sm

(1− uexp(wj−wRm+1
))
]

·
∑
i∈Sm

uexp(wi−wRm+1
) log u

1− uexp(wi−wRm+1
)

·∇w exp(wi − wRm+1
). (13)

Plugging Eq. (13) into the gradients (12), we have

∇w logP (S1 � · · · � SM ;w)

=−
M−1∑
m=1

1

P (Sm � Rm+1;w)

·
∫ 1

u=0

[ ∏
j∈Sm

(1− uexp(wj−wRm+1
))
]

·
∑
i∈Sm

uexp(wi−wRm+1
) log u

1− uexp(wi−wRm+1
)
∇w exp(wi − wRm+1)du

=−
M−1∑
m=1

1

P (Sm � Rm+1;w)

∑
i∈Sm

∇w exp(wi − wRm+1
)

·
∫ 1

u=0

[ ∏
j∈Sm

(1− uexp(wj−wRm+1
))
]

·u
exp(wi−wRm+1

) log u

1− uexp(wi−wRm+1
)
du. (14)

A.4 Proof of Theorem 1

Before we start our proof of Theorem 1, we first in-
troduce the well-known discretization error bound for
the composite mid-point rule of numerical integration
in Lemma 3.

Lemma 3 (Discretization Error Bound of the Com-
posite Mid-point Rule.). Suppose we use the composite
mid-point rule with T intervals to approximate the fol-
lowing integral for some x1 > x0,∫ x1

x0

f(x)dx.

Assume f ′′(x) is continuous for x ∈ [x0, x1] and M =
supx∈[x0,x1] |f ′′(x)|. Then the discretization error is

bounded by M(x1−x0)3

24T 2 .

Proof of the part (a). The sketch of the proof
is as follows. We first give an upper bound of the
discretization error in terms of the number of intervals.
Then we can obtain the number of intervals required
for any desired level of error.

In particular, we bound the discretization error in two
parts. We first bound the absolute value of the in-
tegral on the region [0, δ] for some sufficiently small
δ > 0. We then bound the second derivative of the
integrand on [δ, 1] and apply Lemma 3 to bound the
discretization error of the integral on (δ, 1]. The total
discretization error is then bounded by the sum of the
two parts.
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Proof. We first re-write the likelihood as follows,

P (S1 � · · · � SM ;w)

=

M−1∏
m=1

∫ 1

u=0

∏
i∈Sm

(
1− uexp(wi−wRm+1)

)
du

=

M−1∏
m=1

exp(wRm+1
+ c)

·
∫ 1

v=0

vexp(wRm+1
+c)−1

∏
i∈Sm

(
1− vexp(wi+c)

)
dv

,
M−1∏
m=1

Im, (15)

where in the last second equality we have applied a
change of variable v = uexp(−c−wRm+1

) for each inte-
gral.

To simplify the notations, let us define gi(v) =
1 − vexp(wi+c) for any i ∈ Sm, and g0(v) =

vexp(wRm+1
+c)−1. Then Im can be written as

Im = exp(wRm+1
+ c)

∫ 1

v=0

∏
i∈Sm∪{0}

gi(v)dv.

Further let

f(v) =
∏

i∈Sm∪{0}

gi(v).

It remains to investigate the properties of f(v) and its
derivatives on [0, 1] to bound the discretization error
of Im.

We first bound the absolute value of the integral on
[0, δ] for some δ > 0. We have∣∣∣∣∣∣exp(wRm+1

+ c)

∫ δ

v=0

∏
i∈Sm∪{0}

gi(v)dv

∣∣∣∣∣∣
≤C

∫ δ

v=0

vexp(wRm+1
+c)−1dv

=
C

exp
(
wRm+1 + c

)δexp(wRm+1
+c)

≤C
2
δ2.

For any ε > 0, let δ = ( εC )1/2, then∣∣∣∣∣∣exp(wRm+1
+ c)

∫ δ

v=0

∏
i∈Sm∪{0}

gi(v)dv

∣∣∣∣∣∣ ≤ ε/2.
Next we bound the second derivative of the integrand,

f ′′(v), on [δ, 1]. We have

f
′′
(v) =

∑
i,j∈Sm∪{0},i6=j

g′i(v)g′j(v)
∏

k∈Sm∪{0}\{i,j})

gk(v)

+
∑

i∈Sm∪{0}

g
′′

i (v)
∏

k∈Sm∪{0}\{i})

gk(v).

For v ∈ [δ, 1], and each i ∈ Sm, we know that

|g′i(v)| = exp(wi + c)vexp(wi+c)−1

≤ exp(wi + c)
1

δ

≤C
3/2

ε1/2
,

and

|g
′′

i (v)| =| exp(wi + c)2 − exp(wi + c)|vexp(wi+c)−2

≤| exp(wi + c)2 − exp(wi + c)| 1

δ2

≤C
3

ε
.

Further,

|g′0(v)| =| exp(wRm+1
+ c)− 1|vexp(wRm+1

+c)−2

≤ exp(wRm+1
+ c)

≤C,

and

|g
′′

0 (v)| =| exp(wRm+1
+ c)− 1|| exp(wRm+1

+ c)− 2|

·vexp(wRm+1
+c)−3

≤ exp(wRm+1 + c)2 1

δ

≤C
5/2

ε1/2
.

Therefore, for v ∈ [δ, 1], we have

|f
′′
(v)| ≤

∑
i,j∈Sm∪{0},i6=j

|g′i(v)||g′j(v)|+
∑

i∈Sm∪{0}

|g
′′

i (v)|

≤C
3(nm + 1)2

ε
.

By Lemma 3, we know that the discretization error of
the integral on [δ, 1] is bounded by

C4(nm + 1)2

24T 2ε
.

For the total discretization error of Im to be smaller
than ε, it suffices to have

C4(nm + 1)2

24T 2ε
≤ ε/2,
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which means

T ≥ C2(nm + 1)

2
√

3ε
.

Proof of the part (b). We follow a similar strat-
egy as the proof of part (a). In this case, we bound
the discretization error in three parts. We first bound
the absolute values of the integral on the region [0, δ1]
and [1 − δ2, 1] for some sufficiently small δ1, δ2 > 0.
We then bound the second derivative of the integrand
on [δ1, 1 − δ2] and apply Lemma 3 to bound the dis-
cretization error of the integral on [δ1, 1 − δ2]. The
total discretization error is then bounded by the sum
of the three parts.

Proof. We first denote the (m, i)-th integral in Eq. (14)
for each m = 1, · · · ,M − 1 and each i ∈ Sm as Im,i,
i.e.,

Im,i =

∫ 1

u=0

[ ∏
j∈Sm

(1− uexp(wj−wRm+1
))
]

·u
exp(wi−wRm+1

) log u

1− uexp(wi−wRm+1
)
du.

Similarly as what we did in the proof of part (a), by

applying a change of variable v = uexp(−c−wRm+1
), we

can rewrite Im,i as

Im,i = exp(wRm+1 + c)2

∫ 1

v=0

∏
j∈Sm

(1− vexp(wj+c))

·v
exp(wi+wRm+1

+2c)−1 log v

1− vexp(wi+c)
dv,

(16)

To simplify the notation, define gj(v) = 1− vexp(wj+c)

for any j ∈ Sm, and

g0(v) =
vexp(wi+wRm+1

+2c)−1 log v

1− vexp(wi+c)
.

Then Eq. (16) becomes

Im,i = exp(wRm+1
+ c)2

∫ 1

v=0

∏
j∈Sm∪{0}

gj(v)dv.

Further let
f(v) =

∏
j∈Sm∪{0}

gj(v).

Recall that we have defined a = exp(wi +wRm+1 + 2c)
and b = exp(wi + c) in the statement of the theo-
rem. For ease of notation in the proof, we redefine

a = exp(wi + wRm+1 + 2c) − 1, and the assumptions
(8) become

a > 3, a+ 2b > 4, and b > C0.

Then we can simplify the notation of g0(v) as

g0(v) =
va log v

1− vb
.

It remains to investigate the property of f(v) and its
derivatives on [0, 1] to bound the discretization error.

We first bound the absolute value of the integral on
[0, δ1] for some small δ1 > 0. We have∣∣∣∣∣∣exp(wRm+1

+ c)2

∫ δ1

v=0

∏
j∈Sm∪{0}

gj(v)dv

∣∣∣∣∣∣
≤C2

∫ δ1

v=0

va| log v|
1− vb

∏
j∈Sm

gj(v)dv.

Observe that i ∈ Sm so 1 − vb = gi(v). Further by
the fact that log v > 1− 1

v for all v > 0, we know that
| log v| < |1− 1

v | for v ∈ (0, 1). So

C2

∫ δ1

v=0

va| log v|
1− vb

∏
j∈Sm

gj(v)dv

≤C2

∫ δ1

v=0

(va−1 − va)
∏

j∈Sm\{i}

gj(v)dv

≤C2

∫ δ1

v=0

va−1dv

=
C2

a
δa1

≤C
2

3
δ3
1

For any ε > 0, let δ1 = ( ε
C2 )1/3, then∣∣∣∣∣∣exp(wRm+1

+ c)2

∫ δ1

v=0

∏
j∈Sm∪{0}

gj(v)dv

∣∣∣∣∣∣ ≤ ε/3.
Similarly as the proof of part (a), for each j ∈ Sm and
v ∈ [δ1, 1], we have

|g′j(v)| ≤ C/δ1 = C5/3/ε1/3 ≤ C2/ε1/3,

and

|g
′′

j (v)| ≤ C2/δ2
1 = C10/3/ε2/3 ≤ C4/ε2/3.

We note that, however, g0(v) is not well-defined at
v = 1. Therefore we instead try to bound the absolute
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value of the integral on the [1 − δ2, 1] for some small
δ2 > 0.

When v is close to 1, by L’Hospital’s rule, we have

lim
v→1

log v

1− vb
= lim
v→1

1/v

−bvb−1
= −1

b
,

and hence

lim
v→1

g0(v) = −1

b
.

Further, from the assumptions in Eq. (7) and Eq. (8),
we can derive that a > b > 0. In this case, we can
also show that g′0(v) < 0 on [0, 1] so |g0(v)| ≤ 1

b ≤
1
C0

.
Therefore,

∣∣∣∣exp(wRm+1 + c)2

∫ 1

1−δ2
f(v)dv

∣∣∣∣
≤C2

∫ 1

1−δ2

∏
j∈Sm

gj(v)|g0(v)|dv

≤C
2

C0

∫ 1

1−δ2

∏
j∈Sm

(1− vexp(wj+c))dv

≤C
2

C0

∫ 1

1−δ2

∏
j∈Sm

exp(wj + c)(1− v)dv

≤

C2

C0

∏
j∈Sm

exp(wj + c)

 δnm+1
2

≤C
2

C0
(Cδ2)nm ,

where for the last third inequality we have used the
fact that 1−xα ≤ α(1−x) when 0 < x < 1 and α > 0.

For any ε > 0, let

δ2 =
1

C

(
C0ε

3C2

)1/nm

, (17)

then ∣∣∣∣exp(wRm+1
+ c)2

∫ 1

1−δ
f(v)dv

∣∣∣∣ ≤ ε

3
.

Finally, we seek to bound the first and second deriva-
tives of g0(v) on [δ1, 1 − δ2] in order to bound f

′′
(v).

We write down g′0(v) and g
′′

0 (v) as follows,

g′0(v) =
ava−1 log v

1− vb
+

va−1

1− vb
+
bva+b−1 log v

(1− vb)2
,

and

g
′′

0 (v) =
(a2 − a)va−2 log v

1− vb
+
ava−2

1− vb
+
abva+b−2 log v

(1− vb)2

+
(a− 1)va−2

1− vb
+
bva+b−2 log v

(1− vb)2

+
(b2 + ab− b)va+b−2 log v

(1− vb)2
+

bva+b−2

(1− vb)2

+
2ab2va+2b−3 log v

(1− vb)3
.

Again we know the fact that | log v| < |1 − 1
v | for v ∈

(0, 1). It is also clear that a < 2C and b < C. In
combination with the conditions listed in (8), we can
bound g0(v) and its derivatives as follows,

|g0(v)| ≤ 1

1− vb
, |g′0(v)| ≤ 4C

(1− vb)2
,

and |g
′′

0 (v)| ≤ 16C3

(1− vb)3
.

We can now bound f ′′(v) on the interval [δ1, 1− δ2],

|f
′′
(v)| ≤

∑
i,j∈Sm∪,i6=j

|g′i(v)||g′j(v)||g0(v)|

+
∑
i∈Sm

(
|g
′′

i (v)||g0(v)|+ |g′i(v)||g′0(v)|
)

+|g
′′

0 (v)|

≤ C4n2
m

(1− vb)ε2/3
+

4C3nm
(1− vb)2ε1/3

+
16C3

(1− vb)3

≤ 16C4n2
m

ε2/3(1− (1− δ2)C0)3

≤ 16C4n2
m

ε2/3(C0δ2)3
. (18)

Plugging Eq. (17) into the inequality (18), we have

|f
′′
(v)| ≤ 16C7n2

m

ε2/3C
3+3/nm

0
ε

3C2
3/nm

≤48C9n2
m

C4
0ε

,

where for the last inequality, we have assumed nm ≥ 9
to ease the notation, as the case with small nm is not
very interesting.

Applying the result of Lemma 3, we know the dis-
cretization error of the integral on [δ1, 1 − δ2] is
bounded by

2C11n2
m

T 2C4
0ε

.

For the total discretization error of Im,i to be smaller
than ε, it suffices to have

2C11n2
m

T 2C4
0ε
≤ ε/3,
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Figure 3: MSE of the estimated PL parameters vs various numbers of items N and number of samples n. Both
x-axis and y-axis are in the logarithmic scale with base 10. The results are averaged over 5 different random
seeds and error bars indicate the standard error of the mean.

which means

T ≥
√

6C11/2nm
C2

0ε
.

To control the error of the m-th term in Eq. (14), we
may want to have discretization error of Im,i smaller
than ε/nm. As an immediate corollary, we only need

T ≥
√

6C11/2n2
m

C2
0ε

.

A.5 Alleviate the Round-off Error

For each integral in the likelihood (5), the integrand∏
i∈Sm

(1−uexp(wi−wRm+1
)) is a product of many small

numbers and may suffer from round-off errors. We can
alleviate such round-off errors by converting the prod-
uct into summation in the logarithmic space (Kool
et al., 2020). In particular, recall the log-likelihood
can be written as

logP (S1 � · · · � SM ;w)

=

M−1∑
m=1

log

(∫ 1

u=0

∏
i∈Sm

(
1− uexp(wi−wRm+1)

)
du

)
.

Replacing the integrals with their numerical approxi-
mation, we have

logP (S1 � · · · � SM ;w)

'
M−1∑
m=1

log

(
T∑
t=1

∏
i∈Sm

(
1− u

exp(wi−wRm+1)
t

))
. (19)

We can rewrite Eq. (19) in the form of log-sum-exp as
follows

M−1∑
m=1

log

(
T∑
t=1

∏
i∈Sm

(
1− u

exp(wi−wRm+1)
t

))

=

M−1∑
m=1

log

(
T∑
t=1

exp

(
log

( ∏
i∈Sm

(
1− u

exp(wi−wRm+1)
t

))))

=

M−1∑
m=1

log

(
T∑
t=1

exp

(∑
i∈Sm

log

(
1− u

exp(wi−wRm+1)
t

)))
.

Note that both the inner log(1−x) operations and the
outer log-sum-exp operations have numerically stable
implementations thus the influence of the round-off er-
rors can be effectively reduced.

A.6 Supplemental Details for Simulation

We also provide additional simulation results with
N = 100, 1000, 10000 in Figure 3. The trend is similar
as what has been shown in Figure 1 in Section 4.1.

A.7 Supplemental Details for Experiments
on XML Datasets

We provide the summary statistics of the 4 XML clas-
sification datasets in Table 3. We also provide the
results of the nDCG-based metrics in Table 4. The
nDCG-based metrics are highly correlated with their
Precision-based counterparts. We further display in
Figure 4 that the proposed PL-Partition is not sensi-
tive in a wide range of the hyper-parameters T and
c.
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Figure 4: Sensitivity analysis over the hyper-parameters T and c of the proposed PL-Partition on the W-31K
dataset. In both plots, the x-axis is the hyper-parameter value, and the y-axis is the P@5 metric. As a reference,
we also plot the P@5 of the baseline RankNet, which is the black dashed constant line.

Table 3: Summary Statistics of the XML Classification Datasets

Dataset #Feature #Label #Train #Test Avg. #Sample per Label Avg. #Label per Sample

D-1K 500 983 12920 3185 311.61 19.03
E-4K 5000 3993 15539 3809 25.73 5.31
W-31K 101938 30938 14146 6616 8.52 18.64
D-200K 782585 205443 196606 100095 72.29 75.54

Table 4: nDCG@k and propensity-scored nDCG@k on the real-world XML datasets. Due to space limit, PL-
Partition, RankNet, and RankSVM are respectively renamed as PL-P, R-Net, and R-SVM. Bold numbers
indicate the best performance.

PL-P PL-LB R-Net R-SVM PL-P PL-LB R-Net R-SVM

D-1K nDCG@1 66.72 66.12 64.11 61.95 PSnDCG@1 33.22 30.36 32.02 31.03
nDCG@3 62.78 61.57 60.00 58.24 PSnDCG@3 36.01 33.26 34.34 33.29
nDCG@5 59.25 57.51 56.29 55.01 PSnDCG@5 37.58 34.55 35.77 34.87
nDCG@10 52.48 50.70 50.23 49.08 PSnDCG@10 39.48 36.09 37.43 36.52

E-4K nDCG@1 78.12 66.46 77.57 76.46 PSnDCG@1 41.93 34.55 42.81 42.71
nDCG@3 66.40 55.16 66.56 65.32 PSnDCG@3 47.61 38.18 49.83 49.87
nDCG@5 59.66 48.71 59.86 58.61 PSnDCG@5 50.51 39.19 52.98 52.50
nDCG@10 57.34 46.78 57.78 56.35 PSnDCG@10 50.76 39.19 53.33 52.72

W-31K nDCG@1 85.97 80.73 82.35 80.88 PSnDCG@1 13.01 9.24 12.90 12.55
nDCG@3 76.08 59.79 70.88 64.39 PSnDCG@3 14.41 8.72 14.07 13.32
nDCG@5 68.40 51.85 62.81 56.67 PSnDCG@5 15.98 9.25 15.31 14.33
nDCG@10 56.17 40.24 50.71 45.56 PSnDCG@10 18.98 10.22 17.99 16.46

D-200K nDCG@1 47.58 40.38 41.93 41.41 PSnDCG@1 8.72 6.79 7.06 7.13
nDCG@3 43.32 37.85 39.68 39.24 PSnDCG@3 9.98 8.27 8.67 8.70
nDCG@5 41.07 36.50 38.09 37.77 PSnDCG@5 10.98 9.27 9.79 9.79
nDCG@10 37.69 33.99 35.55 35.20 PSnDCG@10 12.51 10.83 11.39 11.42


