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A HSIC

The empirical HSIC using a Gaussian RBF kernel is written as ˆHSICKσ . According to Gretton et al. (2005),
given samples {Φ(Xi), Ti}ni=1, the empirical estimation of HSIC in Gaussian kernel Kσ reads

ˆHSICKσ =
1

n2

n∑
i,j=1

Kσ(Φ(Xi),Φ(Xj))Kσ(Ti, Tj)

+
1

n4

n∑
i,j,k,l=1

Kσ(Φ(Xi),Φ(Xj))Kσ(Tk, Tl)−
2

n3

n∑
i,j,k=1

Kσ(Φ(Xi),Φ(Xj))Kσ(Ti, Tk).

B Nonparametric Identifiability of Causal Effect

The nonparametric identifiability of expected causal response is guaranteed following Ogburn et al. (2017);
Forastiere et al. (2016). For the sake of simplicity, we assume that influences are only from the first-order
neighbors. To prove the identifiability, we introduce a variable Vi := SV,i(XNi ,TNi), where

SV,i : {0, 1}|Ni| ⊗ χ⊗|Ni| → Vi,

for i = 1, . . . , n, represents the aggregation of neighboring covariates and treatment assignments, e.g., the average
of neighboring treatments and the output of a GNN. Following reasonable assumptions are necessary for the
nonparametric identifiability.

Assumption 1.
(1) Given summary function SV,i, for i = 1, . . . , n, ∀TNi ,T′Ni , ∀XNi ,X

′
Ni , ∀TN−i ,T

′
N−i

, and ∀XN−i ,X
′
N−i

,

with SV,i(TNi ,XNi) = SV,i(T
′
Ni ,X

′
Ni), then it holds

Yi(Ti,TNi ,XNi ,TN−i ,XN−i) = Yi(Ti,T
′
Ni ,X

′
Ni ,T

′
N−i

,X′N−i
).

(2) Unconfoundedness assumption: Yi(ti, vi) ⊥ Ti, Vi|Xi, ∀ti ∈ {0, 1} and vi ∈ Vi, for i = 1, . . . , n.

Hence, the expected response of one unit under network inference can be identified as E[Yi(ti, vi)] = E[Yi|Ti =
ti, Vi = vi,Xi], ∀ti ∈ {0, 1}, and vi ∈ Vi, for i = 1, . . . , n. It is derived by

E[Yi|Ti = ti, Vi = vi,Xi]
Asm.(1)

= E[Yi(ti, vi)|Ti = ti, Vi = vi,Xi]

Asm.(2)
= E[Yi(ti, vi)|Xi].
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H1GH52 Do you get enough sleep? H1ED3 Have you skipped a grade?
H1ED5 Have you repeated a grade? H1ED7 Have you received an suspension?
H1HS1 Have you had a routine physical examination? H1HS3 Have you received psychological counseling?

H1WP17B Played a sport in the past 4 weeks? H1TO51 Is alcohol easily available in your home?
H1TO53 Is a gun easily available in your home? H1NB5 Do you feel safe in your neighborhood?
H1EE3 Did you work for pay in the last 4 weeks? PA57D Food stamps?
H1DA5 How often do you play sport? H1DA7 How do you hang out with friends?
H1ED11 Your grade in English or language arts? H1ED12 Your grade in mathematics?
H1ED13 Your grade in history or social studies? H1ED14 Your grade in science?
H1DS12 How often did you sell marijuana or other drugs − −

Table 1: Selected questions from the Wave1 data Harris and Udry (2018) that are used as feature vectors.

k = 5 k = 10√
MSE εPEHE

√
MSE εPEHE

GPS 0.279± 0.071 0.210± 0.043 0.281± 0.049 0.139± 0.052
GCN 0.212± 0.035 0.095± 0.055 0.211± 0.013 0.058± 0.036

GraphSAGE 0.200± 0.032 0.088± 0.054 0.199± 0.030 0.057± 0.039
1-GNN 0.214± 0.039 0.096± 0.062 0.203± 0.033 0.057± 0.040

Improve 28.3% 58.1% 29.2% 59.0%

Table 2: Evaluation metrics on under-treated synthetic data with p = 0.1, α = 0.5, and k = 5, 10. Improvements

are obtained by comparing with the GPS baseline. Both representation balancing ˆHSIC
Φ

and ˆHSIC
GNN

are
deployed in the GNN-based estimators for searching for the best performance.

C Synthetic Randomized Experiments on Wave1

On the in-school friendship network derived from the Wave1 questionnaire data, we conduct randomized
intervention experiments that simulate the improvement of performance after assigning a student to a tutoring or
support program. Recall that Yi(Ti = 0,G = ∅) indicates the overall performance of student i before assigning
it to a tutoring program or being influenced by peers. We select specific questions from the questionnaire and
regard the corresponding answers as the features of corresponding students. These feature vectors are further
used to construct a symmetrized k-NN similarity graph as the in-school friendship network. Questions related to
the potential performance of students are list in Table 1.

Using the answers of selected questions and their abbreviations, Yi(Ti = 0,G = ∅) is generated as follows

Yi(Ti = 0,G = ∅) := −Xi,H1GH52 + 2Xi,H1ED3 −Xi,H1ED5 − 2Xi,H1ED7

− 0.5(Xi,H1ED11 +Xi,H1ED12 +Xi,H1ED13 +Xi,H1ED14)

+ 0.5(Xi,H1DA5 +Xi,H1DA7)− 3Xi,H1DS12 + fN (Xi,H1HS1

+Xi,H1HS3 +Xi,H1WP17B +Xi,H1TO51 +Xi,H1TO53

+Xi,H1NB5 +Xi,H1EE3 +Xi,PA57D),

where fN (·) represents a 1-layer neural network with random coefficients.

The generating process of the individual treatment response also depends on the selected properties. For example,
by assigning a student who has repeated grade will probably improve this student’s performance. The treatment
effect is simulated as follows:

τ(Xi) := Xi,H1ED3 + 0.5(Xi,H1GH52 +Xi,H1ED5 +Xi,H1ED7)

+ 0.5(Xi,H1ED11 +Xi,H1ED12 +Xi,H1ED13 +Xi,H1ED14)

+Xi,H1DS12 + fN ,

where fN represents a nonlinear random function depending on the rest of variables. Furthermore, peer effect in
this synthetic experiment is generated by

δi(X,T,G) := α
1

|Ni|
∑
j∈Ni

Tjτ(Xj), (1)



where the decay parameter α characterizes the decay of influence. Eq. 1 means that the peer effect applied to the
node i is determined by individual treatment responses of its neighbors who are under treatment. Finally, the
outcome, e.g., the linear response G0, is simulated by

Yi = Yi(Ti = 0,G = ∅) + Tiτ(Xi) + δi(X,T,G) + εYi . (2)

k = 5 k = 10√
MSE εPEHE

√
MSE εPEHE

GPS 0.318± 0.010 0.409± 0.008 0.363± 0.087 0.491± 0.200
GCN 0.277± 0.007 0.051± 0.007 0.288± 0.063 0.087± 0.053

GraphSAGE 0.276± 0.024 0.050± 0.007 0.301± 0.054 0.083± 0.033
1-GNN 0.249± 0.006 0.054± 0.015 0.278± 0.056 0.076± 0.034

Improve 21.7% 87.8% 23.4% 84.5%

Table 3: Evaluation metrics on over-treated synthetic data with p = 0.7, α = 0.5, and k = 5, 10. Improvements

are obtained by comparing with the GPS baseline. Both representation balancing ˆHSIC
Φ

and ˆHSIC
GNN

are
deployed in the GNN-based estimators for searching for the best performance.

k = 5 k = 10√
MSE εPEHE

√
MSE εPEHE

GPS 0.329± 0.005 0.207± 0.015 0.294± 0.008 0.224± 0.071
GCN 0.269± 0.011 0.047± 0.006 0.215± 0.020 0.050± 0.012

GraphSAGE 0.279± 0.015 0.044± 0.003 0.223± 0.018 0.037± 0.011
1-GNN 0.268± 0.015 0.042± 0.005 0.214± 0.015 0.032± 0.007

Improve 18.5% 79.7% 27.2% 85.7%

Table 4: Evaluation metrics on balanced synthetic data with p = 0.5, α = 0.5, and k = 5, 10. Improvements

are obtained by comparing with the GPS baseline. Both representation balancing ˆHSIC
Φ

and ˆHSIC
GNN

are
deployed in the GNN-based estimators for searching for the best performance.

The benefit of using synthetic data is that we can modify the experiment settings. Three parameters control the
experimental settings: number of neighbors k, which determines the graph structure and density; the probability
p of assigning a node to treatment which controls the population imbalance between treatment and control groups;
the decay parameter α, which determines the intensity of peer effect. For the evaluation results reported in
the main text we generate the simulation data with parameters k = 10, p = 0.1, and α = 0.5. We report more
evaluations in Table 2, Table 3, and Table 4. One observation is that in the randomized experiment setting with
linear response, the GraphSAGE-based estimator is a good candidate for causal inference in an under-treated
population, while 1-GNN-based estimator is superior in a balanced- or over-treated population.

D Synthetic Randomized Experiments on Pokec

The motivation for using a real social network dataset is that the k-NN similarity graph can violate the power-law
degree distribution, as shown in Fig. 1. Consider hypothetical intervention experiments to the users of the Pokec
social network. After reading a personalized advertisement or getting influenced by social contacts, a user is
encouraged to purchase a new medicine. To simulate the individual buying behavior, we use profile features that
are related to the health condition of a user. Table 5 lists the related features used in semi-synthetic experiments.

features values features values
gender [0, 1] age [15, 16, · · · , 60]
height [140, 141, · · · , 200] weight [30, 31, · · · , 200]

completed level of education [0, 1, 2, 3] eyesight [0, 1]
relation to smoking [0, 1, 2, 3] relation to alcohol [0, 1, 2, 3]

relation to casual sex [0, 1, 2] − −

Table 5: Characteristics of users and corresponding ranges of values selected from the Pokec social network data.

We assume that a healthy person with good habits is self-motivated to purchase health medicine even without
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Figure 1: Number of nodes vs. node degree from the k-NN similarity graph of Wave1 with k = 10 (left), and
from the Pokec social network (right).

external influences. Hence, Yi(Ti = 0,G = ∅) is simulated as follows:

Yi(Ti = 0,G = ∅) := 0.2(1−Xi,gender) + 0.5Xi,age − 0.2Xi,weight + 0.5Xi,education

− 0.6(3−Xi,smoke) + 0.2Xi,sex − 0.6(3−Xi,alcohol) + ε,

where ε is a Gaussian random variable with mean 0.1. Suppose that new health medicine is advertised to offer
miraculous effects on weight loss, quit smoking, abstinence, etc. Then the individual treatment response can be
generated by

τ(Xi) := 0.8(1−Xi,gender) +Xi,age + 0.3Xi,weight + 0.5(1−Xi,eyesight)
0.5(Xi,education + 0.5) + 0.6Xi,smoke + 0.5Xi,alcohol + ε.

α = 0.1 α = 0.9√
MSE εPEHE

√
MSE εPEHE

GPS 0.263± 0.001 0.156± 0.017 0.595± 0.005 0.185± 0.005
GCN 0.230± 0.017 0.147± 0.031 0.573± 0.033 0.163± 0.005

GraphSAGE 0.227± 0.005 0.128± 0.015 0.569± 0.032 0.151± 0.011
1-GNN 0.231± 0.006 0.132± 0.014 0.571± 0.033 0.197± 0.020

Improve 13.5% 17.9% 4.4% 18.4%

Table 6: Evaluation metrics on under-treated Pokec social network with p = 0.1, α = 0.1, 0.9. Improvements

are obtained by comparing with the GPS baseline. Both representation balancing ˆHSIC
Φ

and ˆHSIC
GNN

are
deployed in the GNN-based estimators for searching for the best performance.

α = 0.1 α = 0.9√
MSE εPEHE

√
MSE εPEHE

GPS 0.404± 0.007 0.126± 0.004 1.438± 0.000 0.533± 0.015
GCN 0.247± 0.008 0.044± 0.003 1.426± 0.030 0.594± 0.039

GraphSAGE 0.240± 0.006 0.041± 0.001 1.417± 0.021 0.662± 0.061
1-GNN 0.233± 0.001 0.039± 0.002 1.390± 0.033 1.076± 0.094

Improve 42.3% 69.0% 3.3% −11.4%

Table 7: Evaluation metrics on over-treated Pokec social network with p = 0.7, α = 0.1, 0.9. Improvements

are obtained by comparing with the GPS baseline. Both representation balancing ˆHSIC
Φ

and ˆHSIC
GNN

are
deployed in the GNN-based estimators for searching for the best performance.

Since Pokec is a social network, in the semi-synthetic experiments, we also take into account long-range influences
to simulate opinion propagation in the social network. To be more specific, the spillover effect on one node not
only depends on the nearest neighboring nodes but also next-nearest neighboring nodes. Formally, it is defined as

δi(X,T,G) := α
1

|Ni|
∑
j∈Ni

Tjτ(Xj) + α2 1

|N (2)
i |

∑
k∈N (2)

i

Tkτ(Xk), (3)

where α is the decay factor and N (2)
i represents the next-nearest neighbors of i. Finally, the observed data in the

randomized experiments can be derived from Yi(Ti = 0,G = ∅), τ(Xi), and social network structure GPokec using



Eq. 3 and Eq. 2 for the linear response or Eq. 4 and Eq. 5 for nonlinear responses. The experiments reported in
the main text use the setting α = 0.5 and p = 0.1.

Since the network structure GPokec is given, we provide more experiment results in Table 6 and Table 7 to
understand the effect of decay parameter α. In particular, we consider regimes from negligible peer effects with
α = 0.1 to significant peer effects with α = 0.9. Since the covariates of neighboring units in the Pokec dataset have
strong cosine similarity, and the simulation generation process is relatively simple, GNN-based causal estimators
might overfit the superimposed causal effects and poorly recover the individual treatment effect. It is becoming
more evident if the peer effects are strong and the population is over-treated, where the GPS baseline can achieve
comparable results as other GNN-based estimators using only the information of exposure level (see Table 7).

Wave1
G1 G2√

MSE εPEHE
√
MSE εPEHE

DA GB 0.770± .017 0.379± .126 0.763± .047 0.248± .121
DA RF 1.047± .046 0.701± .029 0.977± .021 0.599± .193
DR GB 0.814± .058 0.392± .029 0.771± .014 0.401± .028
DR EN 1.063± .037 0.843± .005 0.886± .010 0.636± .173

GPS 0.236± .001 0.158± .031 0.262± .071 0.163± .063
GCN 0.192± .003 0.050± .007 0.201± .034 0.044± .026

GraphSAGE 0.191± .004 0.049± .003 0.198± .022 0.039± .018
1-GNN 0.207± .003 0.058± .006 0.188± .020 0.043± .024

Improve 19.1% 19.0% 28.2% 76.1%
Pokec

DA GB 0.988± .005 0.419± .046 1.189± .017 0.376± .033
DA RF 1.016± .024 1.075± .031 1.225± .009 1.016± .037
DR GB 0.943± .024 0.297± .057 1.173± .012 0.314± .020
DR EN 0.947± .023 0.181± .031 1.172± .013 0.282± .041

GPS 0.420± .006 0.212± .070 0.475± .004 0.220± .013
GCN 0.367± .005 0.162± .004 0.423± .017 0.183± .010

GraphSAGE 0.360± .000 0.146± .001 0.425± .018 0.167± .005
1-GNN 0.366± .013 0.151± .006 0.408± .009 0.158± .004

Improve 14.3% 19.3% 14.1% 28.2%

Table 8: Experimental results of randomized experiments on the Wave1 and Pokec dataset using nonlinear
response generation functions G1 and G2 with κ = 0.2. For Wave1, we set (node degree) k = 10, (decay

parameter) α = 0.5, and (treatment probability) p = 0.1. For Pokec, we set p = 0.1. ˆHSIC
Φ

and ˆHSIC
GNN

are deployed in the GNN-based estimators. ˆHSIC
Φ

and ˆHSIC
GNN

are deployed in the GNN-based estimators.
Improvements are obtained by comparing with the best baselines.

E Experimental Results of Nonlinear Causal Responses

To further investigate the superiority of the GNN-based causal estimators on nonlinear causal responses, we
consider the following nonlinear data generation function inspired by Section 4.2 of Toulis and Kao (2013),

G1 : Yi = Yi(Ti = 0,G = ∅) + Tiτ(Xi) + δi(X,T,G) + κδ2
i (X,T,G) + εYi , (4)

where κ characterizes the strength of nonlinear effects. In addition, a more complicated nonlinear response
generation function

G2 : Yi = Yi(Ti = 0,G = ∅) + Tiτ(Xi) + δi(X,T,G) +
κ

2
δ2
i (X,T,G) +

κ

2
τ(Xi)δi(X,T,G) + εYi (5)

is considered, where the quadratic terms signify the spillover effect depending on the individual treatment effect.

Table 8 reports the performance of GNN-based causal estimators on nonlinear causal effects prediction tasks.
Nonlinear responses are generated via G1 and G2 with κ = 0.2. For the

√
MSE metric, GNN-based estimators

outperform the best baseline GPS dramatically, showing the effectiveness of predicting nonlinear causal responses.
Moreover, a 19.0%(G1) and 76.1%(G2) performance improvement on the εPEHE metric with the Wave1 dataset
shows that setting an empty graph, i.e., G = ∅, in the GNN-based estimators is an appropriate approach for
extracting individual causal effect.
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Wave1
G1 G2√

MSE εPEHE
√
MSE εPEHE

DA GB 0.742± .083 0.210± .008 1.060± .047 0.400± .054
DA RF 1.007± .027 0.527± .141 1.243± .089 1.056± .222
DR GB 0.784± .019 0.352± .074 1.116± .106 0.633± .195
DR EN 0.882± .053 0.575± .015 1.258± .176 0.841± .293

GPS 0.280± .017 0.142± .032 0.289± .012 0.244± .066
GCN 0.224± .008 0.038± .003 0.237± .020 0.095± .010

GraphSAGE 0.214± .007 0.045± .002 0.231± .014 0.072± .003
1-GNN 0.216± .003 0.040± .001 0.250± .020 0.103± .015

Improve 23.6% 73.2% 20.1% 70.5%
Pokec

DA GB 1.342± .070 0.551± .026 2.095± .070 0.828± .282
DA RF 1.369± .060 1.015± .074 2.125± .080 1.389± .109
DR GB 1.324± .081 0.306± .011 2.038± .090 0.438± .005
DR EN 1.325± .078 0.336± .032 2.043± .089 0.338± .040

GPS 0.693± .058 0.450± .042 0.813± .068 0.375± .089
GCN 0.483± .010 0.193± .001 0.729± .007 0.242± .032

GraphSAGE 0.480± .009 0.198± .004 0.713± .017 0.217± .025
1-GNN 0.454± .003 0.159± .005 0.767± .023 0.218± .002

Improve 34.5% 48.0% 12.3% 35.8%

Table 9: Experimental results of randomized experiments on the Wave1 and Pokec datasets using nonlinear
response generation functions G1 and G2 with κ = 0.5. For Wave1, other parameters are set as (node degree)
k = 10, (decay parameter) α = 0.5, and (treatment probability) p = 0.1. For Pokec, we set the treatment

probability as p = 0.1 and the decay parameter as α = 0.5. Both representation balancing ˆHSIC
Φ

and ˆHSIC
GNN

are deployed in the GNN-based estimators for searching for the best performance. Improvements are obtained by
comparing with the best baseline.

Table 9 reports the performance of GNN-based causal estimators on the Wave1 and Pokec datasets using nonlinear
response models. Nonlinear responses are generated via G1 and G2 under κ = 0.5. For the

√
MSE metric,

GNN-based estimators outperform the best baseline by 23.6%(G1) and 20.1%(G2) on Wave1, and by 34.5%(G1)
and 12.3%(G2) on the Pokec dataset. Moreover, GNN-based causal estimators significantly outperform the best
baseline in the individual treatment effect recovery task. Especially, a 73.2%(G1) and a 70.5%(G2) improvement
on Wave1 are observed, and a 48.0%(G1) and a 35.8%(G2) improvement on Pokec. The significantly improved
metric εPEHE indicates that even in the regime with higher nonlinear causal effects, GNN-based causal estimators
can disentangle and extract individual treatment effects from strong interference.

F Additional Experiments for Intervention Policy Optimization

In addition to the policy optimization experiments on the Wave1 and Pokec simulation data under the treatment
capacity constraint pt = 0.3, in Table 10 we also report the intervention policy improvement under the treatment
capacity constraint with pt = 0.5.

Until now, we have only employed a simple neural network as the policy network with feature vectors as input.
For GNN-based methods, the policy learner can adjust its treatment rules according to the neighboring nodes’
features and responses through the GNN-based causal estimators. However, through baseline estimators, e.g.,
doubly-robust estimators, a simple policy network cannot access the neighboring features of a node. Therefore,
for a fair comparison, we employ another 1-GNN as the policy network, and the evaluations on the Wave1 dataset
are given in Table 11. The results further confirm that the accuracy of causal effect estimators is crucial for
intervention policy optimization on interconnected units.



Wave1 Pokec

∆Ŝ(π̂ptn ) ∆S(π̂ptn ) ∆Ŝ(π̂ptn ) ∆S(π̂ptn )
DA GB 0.636± 0.028 0.012± 0.025 0.479± 0.066 0.002± 0.055
DA RF 0.644± 0.027 0.016± 0.023 0.477± 0.049 0.008± 0.045
DR GB 0.761± 0.037 0.003± 0.031 0.712± 0.133 0.001± 0.089
DR EN 0.901± 0.150 0.006± 0.100 0.708± 0.093 0.001± 0.078

GPS 0.964± 0.091 0.018± 0.076 0.841± 0.072 0.007± 0.060
GCN 0.725± 0.015 0.544± 0.012 0.747± 0.041 0.566± 0.035

GraphSAGE 0.712± 0.031 0.532± 0.024 0.754± 0.099 0.559± 0.079
1-GNN 0.722± 0.052 0.546± 0.041 0.806± 0.031 0.586± 0.023

Table 10: Intervention policy improvements on the Wave1 and Pokec semi-synthetic datasets under treatment
capacity constraint with pt = 0.5. Note that only ∆S(π̂ptn ) reflects the genuine policy improvement.

Wave1

∆Ŝ(π̂ptn ) ∆S(π̂ptn )
DA GB 0.291± 0.031 0.004± 0.026
DA RF 0.310± 0.041 0.003± 0.032
DR GB 0.102± 0.057 0.002± 0.048
DR EN 0.360± 0.044 0.002± 0.037

GPS 0.278± 0.061 0.006± 0.051
GCN 0.279± 0.029 0.179± 0.026

GraphSAGE 0.268± 0.023 0.169± 0.019
1-GNN 0.310± 0.022 0.201± 0.016

Table 11: Intervention policy improvements on the Wave1 semi-synthetic dataset under treatment capacity
constraint with pt = 0.3. The policy network employed is another 1-GNN. Note that only ∆S(π̂ptn ) reflects the
real policy improvement.

G Experiment Settings

G.1 GNN-based Estimators in Causal Inference Experiments

For GNN-based estimators, we use Adam as a default optimizer with learning rate 0.001 and weight decay
0.0001. The number of total epochs is 20, 000; early stopping is employed by monitoring the loss on the validation
set every 2000 epochs. Hyperparameter κ in Lest for penalizing the distribution discrepancy is searched from
{0.001, 0.005, 0.1, 0.2} for the Wave1 and Pokec datasets, and from {0.1, 0.2, 0.5, 1.} for the Amazon dataset.
The feature map neural network Φ has hidden dimensions [64, 64] for the Wave1 and Pokec datasets, and
[256, 128, 128] for the Amazon dataset. GNNs have hidden dimensions [128, 32] for the Wave1 and Pokec datasets,
and [256, 128, 64] for the Amazon dataset. Outcome prediction networks h0 and h1 have hidden dimensions [64, 32]
for the Wave1 and Pokec datasets, and [256, 128, 64] for the Amazon dataset. ReLU is used as the activation
function between hidden layers. Dropout is also employed between hidden layers with dropout rate a 0.5.

G.2 Baseline Estimators in Causal Inference Experiments

For baseline models, learning rate of the DR EN model is searched from {0.001, 0.01, 0.1} with maximal iteration
10000. For the DA RF model, the number of estimators is searched from {5, 10, 20}, the maximal depth from
{5, 10, 20}, and the minimum number of samples at a leaf node from {5, 10, 20}. For the DR GB and DA GB
models, the number of estimators is searched from {10, 50}, and the maximal depth is searched from {5, 10}. In
our experiments, the training procedure of Domain Adaption estimators for causal inference under interference is



Manuscript under review by AISTATS 2021

given as below

µ̂0 = M1

(
Y 0
i ∼ [X0

i ;Gi],weights =
g(X0

i )

1− g(X0
i )

)
,

µ̂1 = M2

(
Y 1
i ∼ [X1

i ;Gi],weights =
1− g(X1

i )

g(X1
i )

)
,

D̂1
i = Y 1

i − µ̂0([X1
i , Gi]),

D̂0
i = µ̂1([X0

i ;Gi])− Y 0
i ,

τ̂ = M3(D̂0
i |D̂1

i ∼ X0
i |X1

i ),

where M1,M2,M3 are machine learning algorithms; Y 0
i ,X

0
i represent the outputs and covariates of units under

control in the training dataset, and Y 1
i ,X

1
i under treatment. To capture the interference, the exposure variable

Gi is concatenated to the covariates. g(Xi) is an estimation of Pr[Ti = 1|Xi] in the observational study using the
Amazon dataset, while it is the predefined treatment probability p in randomized experiments using the Wave1
and Pokec datasets. Similarly, the training procedure of Doubly Robust estimators for causal inference under
interference is given as

µ̂0 = M1(Y 0
i ∼ [X0

i ;Gi]),

µ̂1 = M2(Y 1
i ∼ [X1

i ;Gi]),

D̂1
i = µ̂1([Xi;Gi]) +

Yi − µ̂1([Xi;Gi])

g(Xi)
1{Ti = 1},

D̂0
i = µ̂0([Xi;Gi]) +

Yi − µ̂0([Xi;Gi])

1− g(Xi)
1{Ti = 0},

τ̂ = M3((D̂1
i − D̂0

i ) ∼ Xi),

where M1,M2,M3 are machine learning algorithms; g(Xi) is an estimation of Pr[Ti = 1|Xi] in the observational
study using the Amazon dataset, while it is the predefined treatment probability p in randomized experiments
using the Wave1 and Pokec datasets.

G.3 Intervention Policy Experiments

Causal estimators with the best performance will be saved and fixed for the subsequent intervention policy
improvement experiments on the same dataset. We use Adam as a default optimizer for the policy network with
a learning rate of 0.001. The policy network has hidden dimensions [64, 32] for the Wave1 and Pokec datasets,
and [128, 64, 64] for the Amazon dataset. ReLU is employed as the activation function between hidden layers,
and a sigmoid function is applied to the output. Treatment is then sampled from a Bernoulli distribution using
the output of the policy network as the probability. The Gumbel-softmax trick Jang et al. (2017) is employed
such that errors can be back-propagated. Hyperparameter γ in Lpol for enforcing the constraint is chosen from
{5, 50, 100, 200, 500}, such that the pre-defined constraint can be satisfied within the tolerance ±0.01. Besides, we
also penalize the distribution discrepancy under the new intervention policy given by the policy network, and the
hyperparameter for penalizing this term is chosen from {0.0, 0.0001, 0.001, 0.01, 0.1, 1}. The number of training
epochs is 2000, and each experiment is repeated 5 times.

H Error Bound of Causal Estimators

In this section we will give a heuristic explanation why the causal estimators are difficult to obtain under
interference. We briefly summarize the theoretical result of this section in the following claim.

Claim 1. GNN-based causal estimators restricted to a particular class for predicting the superimposed causal

effects have an error bound O(
√

D3
max lnDmax

n ), where Dmax := 1 + dmax + d2
max and dmax is the maximal node

degree in the graph.

The above claim indicates that an accurate and consistent causal estimator is difficult with large network effects.
Worse case is that the 1√

n
convergence rate, or sample dependency, becomes unreachable when dmax(n) depends on



the number of units, namely the maximal node degree increases with the number of nodes. The exact convergence
rate of causal estimators is impossible to derive since it depends on the topology of the network, and it beyond
the theoretical scope of this work. This claim will be used as one of the important assumptions for proving the
policy regret bounds.

In the following, we will first motivate GNN-based causal estimators and then prove Claim 1 step by step. First,
with abuse of notation, we consider the following linear model with deterministic outcome

µ?(Xi,X,T,G) = Tiτ?(Xi) + α1

∑
j∈Ni

Tjτ?(Xj) + α2

∑
k∈N (2)

i

Tkτ?(Xk) (6)

by setting Yi(Ti = 0) = 0, α = 1 and letting α1 = 1
|Ni| , α2 = 1

|N (2)
i |

, where τ? stands for the ground truth

individual treatment response which is bounded by ||τ?||∞ ≤M .

One motivation for employing localized graph convolution network, such as GraphSAGE, is that the surrogate
model of a 2-layer GraphSAGE can recover the linear model, especially, when T = 1. To be more specific,
consider the following form of a 2-layer GraphSAGE

X
(1)
i = ReLU (Xi +

∑
j∈Ni

XjW
(1))

X
(2)
i = ReLU (X

(1)
i +

∑
j∈Ni

X
(1)
j W(2))

= ReLU [ ReLU (Xi +
∑
j∈Ni

XjW
(1)) +

∑
j∈Ni

ReLU (Xj +
∑

k∈N (2)
i

XkW
(1))W(2)].

A prediction from it reads o(Xi) = X
(2)ᵀ
i v, where v is a vector mapping the second hidden layer to the outcome

prediction. In a surrogate model 1, where an identity mapping replaces the ReLU activation function, the model
returns the outcome prediction

osurrogate(Xi) = Xᵀ
i v +

∑
j∈Ni

(XjW
(1) + XjW

(2))ᵀv +
∑

k∈N (2)
i

(XkW
(1)W(2))ᵀv,

which correctly recovers the linear model and the simulation protocol of spillover effects when all units are
assigned to treatment. Moreover, according to the universal approximation properties of GNNs Scarselli et al.
(2008), µ? can be approximated. However, this claim cannot reflect an explicit dependence of estimation error on
the graph structure. Hence, motivated by the surrogate model and the universal approximation property, we
study the following class of functions derived from the universal GNN. Let T be a class of bounded functions
with envelop M <∞ and finite VC-dimension V C(T ) <∞, and let

MGNN := {τ1 + · · ·+ τDmax , τi ∈ T ∪ {0}, i = 1, . . . , Dmax, ||τ1 + · · ·+ τDmax ||∞ ≤ 3M}, (7)

where Dmax is related to the maximal degree of the graph, for a 2-layer GNN Dmax := 1 +dmax +d2
max. Function

from MGNN takes (Xi,Xj∈Ni ,Xk∈N (2)
i

)ni=1 as input 2 and returns outcome prediction. The maximal subscript

Dmax serves as a padding, to fit it, the function class T is extended to T ∪ {0}. As an example, one can find a
function µGNN ∈MGNN which approximates µ?(Xi,X,T,G) as

µGNN (Xi,X,T,G) = τ0(Xi) +
∑
j∈Ni

τj(Xj) +
∑

k∈N (2)
i

τk(Xk),

where τ0, τj , τk ∈ T , for j ∈ Ni, k ∈ N (2)
i . In other words, there exists a function in the class MGNN which, for

every node in the network, only uses the representations of this node, this node’s neighbors, and this node’s 2-hop
neighbors, similar to the surrogate model. Assumptions used in this section are summarized in Assumption 2.

1The surrogate models of graph convolutional networks are first studied in Zügner et al. (2018) for designing adversarial
attacks on GNNs and finding robust nodes.

2Note that, treatment assignments can be combined with the covariates and fed into the function. In the experiments,
we fed TiXi into the GNNs, meaning that only covariates of treated units are non-zero.
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Assumption 2.
(A1) Outcome simulation under interference follows the protocol given in Eq. 6 with ||µ?||∞ ≤ 3M due to the
requirement ||τ?||∞ ≤M .
(A2) Outcome prediction model is drawn from MGNN defined in Eq. 7.
(A3) There are no isolated nodes in the network 3.

Define the best approximation realized by the class MGNN as

µ̃GNN := argminµ∈MGNN
||µ− µ?||∞,

and the approximation error

εGNN := ||µ̃GNN − µ?||∞. (8)

Moreover, define the optimal empirical estimator as

µ̂GNN := argminµ∈MGNN

n∑
i=1

`(µ(Xi,X,T,G), Yi).

Since both µ̃GNN and µ̂GNN belong to the same class MGNN , it is easy to see

En[`(µ̃GNN (Xi), Yi)] ≥ En[`(µ̂GNN (Xi), Yi)],

where we write µ̃GNN (Xi) and µ̂GNN (Xi) for the sake of simplicity.

We can decompose the approximation error of the empirical causal estimator using the following fact

E[`(µ̂GNN (Xi), Yi)− `(µ?(Xi), Yi)]

= EEYi [µ̂2
GNN (Xi)− 2Yiµ̂GNN (Xi) + 2Yiµ?(Xi)− µ2

?(Xi)]

= E[µ̂2
GNN (Xi)− 2µ?(Xi)µ̂GNN (Xi) + µ2

?(Xi)]

= E[(µ̂GNN (Xi)− µ?(Xi))
2].

It then yields

E[(µ̂GNN (Xi)− µ?(Xi))
2] = E[`(µ̂GNN (Xi), Yi)− `(µ?(Xi), Yi)]

≤ E[`(µ̂GNN (Xi), Yi)− `(µ?(Xi), Yi)]

− En[`(µ̂GNN (Xi), Yi)] + En[`(µ̃GNN (Xi), Yi)]

= (E− En)[`(µ̂GNN (Xi), Yi)− `(µ?(Xi), Yi)]︸ ︷︷ ︸
(I)

+ En[`(µ̃GNN (Xi), Yi)− `(µ?(Xi), Yi)]︸ ︷︷ ︸
(II)

.

The second term (II) can be bounded by applying the Bernstein inequality. The following inequality holds with
probability at least 1− e−γ

(II) ≤ E[`(µ̃GNN (Xi), Yi)− `(µ?(Xi), Yi)] +

√
2C2

` ||µ̃GNN − µ?||2∞γ
n

+
2C`||µ̃GNN − µ?||∞γ

3n

= E[(µ̃GNN (Xi)− µ?(Xi))
2] +

√
2C2

` ε
2
GNNγ

n
+

2C`εGNNγ

3n

≤ ε2GNN + εGNN

√
2C2

` γ

n
+

4C`Mγ

n
(9)

3This assumption will be used later



using the facts ||`(µ̃GNN (Xi), Yi)− `(µ?(Xi), Yi)||∞ ≤ C`||µ̃GNN − µ?||∞ and εGNN := ||µ̃GNN − µ?||∞ ≤ 6M
where C` represents the finite Lipschitz constant of loss function.

Furthermore, the first term (I), the maximal deviation between empirical and true means, can be bounded using
the standard symmetrization method (see Theorem 2.1 in Bartlett et al. (2005)). Consider a class of functions F ,
for any f ∈ F , assume that ||f ||∞ ≤ F and V[f ] ≤ V . Then for every γ > 0, with probability at least 1− e−γ

sup
f∈F

(E[f ]− En[f ]) ≤ inf
α>0

(
2(1 + α)RnF +

√
2V γ

n
+ 2F (

1

3
+

1

α
)
γ

n

)
,

where RnF indicates the Rademacher complexity of F . Hence, it gives

(I) ≤ 4Rn{`(µ)− `(µ?) : µ ∈MGNN}+ 6

√
2C2

`M
2γ

n
+

16C`Mγ

n
(10)

by setting α = 1 and using ||`(µ(Xi), Yi) − `(µ?(Xi), Yi)||∞ ≤ C`||µ − µ?||∞ ≤ 6C`M , V[`(µ(Xi), Yi) −
`(µ?(Xi), Yi)] ≤ E[(`(µ(Xi), Yi)− `(µ?(Xi), Yi))

2] ≤ 36C2
`M

2 for any µ ∈ MGNN . Moreover, the Rademacher
complexity term is defined as

Rn{`(µ)− `(µ?) : µ ∈MGNN}

:= Eσ

[
sup

µ∈MGNN

| 1
n

n∑
i=1

σi(`(µ(Xi), Yi)− `(µ?(Xi), Yi))|

∣∣∣∣∣X,T,G
]

≤ C`Eσ

[
sup

µ∈MGNN

| 1
n

n∑
i=1

σi(µ(Xi)− µ?(Xi))|

∣∣∣∣∣X,T,G
]

︸ ︷︷ ︸
(#)

, (11)

where {σi}ni=1 are Rademacher random variables. Before using the covering number arguments to further bound
the Rademacher complexity term we introduce the following lemmas.

Lemma 1 (Theorem 29.6 in Devroye et al. (2013)). Let F1, . . . ,Fk be classes of real functions on Rd. For n
arbitrary fixed points zn1 = (z1, . . . , zn) in Rd, define the sets F1(zn1 ), . . . ,Fk(zn1 ) by Fj(zn1 ) = {fj(z1), . . . , fj(zn) :
fj ∈ Fj}, j = 1 . . . , k. Also introduce F = {f1 + · · ·+ fk : fj ∈ Fj , j = 1, . . . , k}. Then for every ε > 0 and zn1 ,

N1(ε,F(zn1 )) ≤
k∏
j=1

N1(ε/k,Fj(zn1 )). (12)

Lemma 2. Let F1, . . . ,Fk be classes of bounded real functions on Rd with envelop F and finite VC-dimension
v < ∞, for 3 ≤ k ≤ K. Also introduce F = {f1 + · · · + fk, fj ∈ Fj , j = 1, . . . , k} and let F(zn1 ) =
{f(z1), . . . , f(zn), f ∈ F} for arbitrary fixed points zn1 in Rd. Then we have the following bound

Eσ[sup
f∈F
| 1
n

n∑
i=1

σif(zi)|] ≤ CF

√
kv ln k

n
, (13)

where CF is a constant which depends only on the envelop.

Proof. According to the Theorem 5.22 in Wainwright (2019), the Rademacher complexity term is bounded as

Eσ[sup
f∈F
| 1
n

n∑
i=1

σif(zi)|] ≤
32√
n

∫ 2F

0

√
lnN1(ε,F(zn1 )) dε︸ ︷︷ ︸

(?)

.

Using Lemma 1 and N1(ε,F) ≤ N2(ε,F), it gives

(?) ≤ 32√
n

∫ 2F

0

√√√√ k∑
j=1

lnN2(ε/k,Fj(zn1 )).
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Moreover, a uniform entropy bound for the covering number is given by the Theorem 2.6.7 in Van Der Vaart and
Wellner (1996). A small modification gives

N2(ε,Fj(zn1 )) ≤ C(v + 1)(16e)(v+1)(k/ε)2v, j = 1, . . . , k,

where C is a universal constant. Furthermore, following the same technique used by Eq. A.6 in Kitagawa and
Tetenov (2018), we obtain

(?) ≤ 32√
n

√
k

∫ 2F

0

√
lnC + ln(v + 1) + (v + 1) ln(16e) + 2v ln k − 2v ln ε dε

(1)

≤ 32√
n

√
kv

∫ 2F

0

√
lnC + ln 2 + ln(16e) + 2 ln k − 2 ln ε dε

(2)

≤ 32√
n

√
kv ln k

∫ 2F

0

√
lnC + ln 2 + ln(16e) + 2− 2 ln ε/ lnK dε := CF

√
kv ln k

n
,

where (1) uses the fact that usually v is large enough and (2) is due to the condition 3 ≤ k ≤ K.

Now, we can further bound the term Rn{`(µ)− `(µ?) : µ ∈MGNN} after Eq. 11. Note that

(#) = C`Eσ

[
sup

f∈MGNN

∣∣∣∣∣ 1n
n∑
i=1

σi[(τ0(Xi)− Tiτ?(Xi)) +
∑
j∈Ni

(τj(Xj)− Tjτ?(Xj))

+
∑

k∈N (2)
i

(τk(Xk)− Tkτ?(Xk))]

∣∣∣∣∣
]
. (14)

Define a new constant for each node Di := 1 + |Ni|+ |N (2)
i |, i = 1, . . . , n. According to (A3) in Assumption 2, we

have Di ≥ 3. Also introduce a new class of function Ω := {T ± τ?}. Note that class Ω has the same VC-dimension
as T , i.e., V C(Ω) = V C(T ), and ||ω||∞ ≤ 2M for any ω ∈ Ω. Recall the definition of Dmax := 1 + dmax + d2

max.
By decomposing the node subscript i into groups with the same Di, Eq. 14 can be further written as

(#) = C`Eσ

[
sup

f∈MGNN

∣∣∣∣∣ 1n
n∑
i=1

σi

Di∑
l=1

ωl(Xi,X,T,G)

∣∣∣∣∣
]

ωl ∈ Ω

= C`Eσ

[
sup

f∈MGNN

∣∣∣∣∣
Dmax∑
k=3

1

n

∑
i:Di=k

σi

k∑
l=1

ωl(Xi,X,T,G)

∣∣∣∣∣
]

(1)

≤ C`

Dmax∑
k=3

Eσ

[
sup

f∈MGNN

∣∣∣∣∣ 1n ∑
i:Di=k

σi

k∑
l=1

ωl(Xi,X,T,G)

∣∣∣∣∣
]

(2)

≤ C`CF

Dmax∑
k=3

1

n

√
|i : Di = k|kV C(T ) ln k ≤ C`CF

Dmax∑
k=3

√
kV C(T ) ln k

n

≤ C`CF

√
D3
maxV C(T ) lnDmax

n
,

where (1) uses the triangle inequality and (2) uses Lemma 2. Hence, the (I) term is bounded by

(I) ≤ 4C`CF

√
D3
maxV C(T ) lnDmax

n
+ 6

√
2C2

`M
2γ

n
+

16C`Mγ

n
.

By combining (I) and (II) we have the following theorem.

Theorem 1. Suppose Assumption 2 holds. Let µ̂GNN be the optimal causal estimator obtained by minimizing
an empirical loss function using the data {Xi,X,T,G}ni=1. Suppose that the loss function has a finite Lipschitz



constant C` and µ̂GNN is restricted to MGNN , Then with probability at least 1− 2e−γ , the causal estimator under
interference has an error bound

E[(µ̂GNN (Xi)− µ?(Xi))
2] ≤ 4C`CF

√
D3
maxV C(T ) lnDmax

n
+ 6

√
2C2

`M
2γ

n

+ εGNN

√
2C2

` γ

n
+

20C`Mγ

n
+ ε2GNN , (15)

where εGNN is defined in Eq. 8.

Keeping only the leading term with Dmax, under network interference, the causal estimator has an error bound

O(
√

D3
max lnDmax

n ). It indicates that an accurate causal estimator is difficult to obtain under large network

interference. Recall that the prediction outcome from the GNN causal estimator is actually the superposition of
individual treatment effect and spillover effect. Hence, it is expected that, similarly, the individual treatment
effect becomes more and more difficult to recover under more substantial network interference. This intuitive
expectation can be observed in the following experimental results in Table 12. We observe that the error of
individual treatment effect estimator increases from k = 1 to k = 4.

k = 1 k = 2 k = 4
GraphSAGE 0.048 0.129 0.152

Table 12: εPEHE on the semi-synthetic Wave1 data with p = 0.1, α = 0.5, and k = 1, 2, 4. To fit the theoretical
analysis, exposure level is not fed into the model.

I Policy Regret Bound

In this section, we provide a regret bound for the intervention policy that employs GNN-based causal estimators.
The policy regret bound is first summarized in the following theorem.

Theorem 2. By Assumption 3, for any small ε > 0, the policy regret is bounded by R(π̂n) ≤ 2
(
ατ
nζτ

+ αδ
nζδ

)
+ 2ε

with probability at least

1−N
(

Π,
ε

4(2M1 + 2M2 + L)

)
exp

(
− nε2

32(d2
max + 1)(M1 +M2)2

)
where N

(
Π, ε

4(2M1+2M2+L)

)
indicates the covering number 4 on the functional class Π with radius ε

4(2M1+2M2+L) ,

and dmax is the maximal node degree in the graph G.

Suppose that the policy functional class Π is finite and its capacity is bounded by |Π|. According to Theorem 2,
with probability at least 1− δ, the policy regret is bounded by

R(π̂n) ≤ 2
( ατ
nζτ

+
αδ
nζδ

)
+ 8(M1 +M2)

√
2(d2

max + 1)

n
log
|Π|
δ

≈ 2
( ατ
nζτ

+
αδ
nζδ

)
+ 8dmax(M1 +M2)

√
2

n
log
|Π|
δ

It indicates that optimal policies are more difficult to find in a dense graph even under weak interactions between
neighboring nodes.

Throughout the estimation of policy regret, we maintain the following assumptions.

Assumption 3.
(BO) Bounded treatment and spillover effects: There exist 0 < M1,M2 <∞ such that the individual treatment
effect satisfies |τi| ≤M1 and the spillover effect satisfies ∀π ∈ Π, |δi(π)| ≤M2.
(WI) Weak independence assumption: For any node indices i and j, the weak independence assumption assumes

4The covering number characterizes the capacity of a functional class. Definition is provided in the Appendix I
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that Xi⊥Xj if Aij = 0, or @k with Aik = Akj = 1.
(LIP) Lipschitz continuity of the spillover effect w.r.t. policy: Given two treatment policies π1 and π2, for any
node i the spillover effect satisfies |δi(π1)− δi(π2)| ≤ L||π1 − π2||∞, where the Lipschitz constant satisfies L > 0
and ||π1 − π2||∞ := supX∈χ |π1(X)− π2(X)|.
(ES) Uniformly consistency: after fitting experimental or observational data on G, individual treatment effect
estimator satisfies

1

n

n∑
i=1

|τi − τ̂i| <
ατ
nζτ

,

and spillover estimator satisfies

∀π ∈ Π,
1

n

n∑
i=1

|δi(π)− δ̂i(π)| < αδ
nζδ

(16)

where ατ > 0 and αδ > 0 are scaling factors that characterize the errors of estimators. ζτ and ζδ control the
convergence rate of estimators for individual treatment effect and spillover effect, respectively, which satisfy
0 < ζτ , ζδ < 1.

Before proving Theorem 2 step by step, we first discuss the plausibility of Assumption 3. Notice that the (ES)
assumption requires consistent estimators of the individual treatment effect and the spillover effect, which is the
fundamental problem of causal inference with interference. In our GNN-based model, these empirical errors are
particularly difficult to estimate due to the lack of proper theoretical tools for understanding GNNs. To grasp how
these GNN-based causal estimators are influenced by the network structure and network effect, in Appendix H,
we have studied a particular class of GNNs, which is inspired by the surrogate model of nonlinear graph neural
networks and derived Claim 1. Claim 1 indicates that the 1√

n
error bound of GNN-based causal estimators might

be unreachable when dmax(n) depends on the number of units. Therefore, in the (ES) assumption, we assume the
coefficients ζτ and ζδ to characterize the convergence rates, which is line with the assumption made in Athey and
Wager (2017) (see Assumption 2 of Athey and Wager (2017)).

Besides, (LIP) assumes that the change of received spillover effect is bounded after modifying the treatment
assignments of one unit’s neighbors. This assumption is plausible, at least, in the synthetic experiments. For
instance, consider the spillover effect in the simulated experiments generated by δi(π) = α 1

|Ni|
∑
j∈Ni π(Xj)τ(Xj)

(see Eq. 1), then we can see

|δi(π1)− δi(π2)| ≤ α 1

|Ni|
∑
j∈Ni

M1|π1(Xj)− π2(Xj)| ≤ αM1||π1 − π2||∞.

Hence, in this example L = αM1.

The underlying difficulty of estimating the intervention policy regret is the networked setting. Weak independence
assumption (WI) allows us to use hypergraph-based method and derive concentration inequalities for the networked
random variables. We will use hypergraph techniques, instead of chromatic number arguments, to give a tighter
bound of policy regrets. Another advantage is that the weak independence (WI) assumption can be relaxed
to support longer dependencies on the network. However, by relaxing (WI), the power of dmax in the regret
bound needs to be modified correspondingly. For example, if we assume a next-nearest neighbors dependency of

covariates, i.e., Xi ⊥ Xj for j 6∈ i ∪Ni ∪N (2)
i , then the term d2

max in Theorem 2 needs to be modified to d4
max.

This change remains the same for the policy regret bound under capacity constraint, which will be provided in
Theorem 4.

The flow of the proof for Theorem 2 can be summarized as: Under (WI) and (BO), we use concentration
inequalities of networked random variables defined on a hypergraph, which is derived from graph G to bound the
convergence rate. Besides, using the Lipschitz assumption (LIP) enables us to estimate the covering number of
the policy functional class Π.

Concentration inequalities on partly dependent random variables are first given in Janson (2004). Later, Wang
et al. (2017) provides tighter concentration inequalities using hypergraph and weak dependence assumption. A
hypergraph is a generalization of graph in which a hyperedge groups a number of vertices in the graph. For
instance, consider a graph with n vertices, and let N = {v1, v2, . . . , vn} represent the set of vertices. Hyperedges
set Eh = {eh,1, eh,2 · · · , eh,m} represents instances joining a number of vertices. In the following, let Gh = (N , Eh)
denote a hypergraph.



Definition 1 (Definition 1 in Wang et al. (2017)). Given a hypergraph Gh, we call {ξi}ni=1 Gh-networked random
variables if there exist functions fi : χ⊗|eh,i| → R such that ξi = fi({Xv|v ∈ eh,i}), where {Xv|v ∈ eh,i} represents
the set of covariates of the vertices in the hyperedge eh,i.

Furthermore, we have the following concentration inequality.

Theorem 3 (Corollary 7 in Wang et al. (2017)). Let {ξi}ni=1 be Gh-networked random variables with mean
E[ξi] = µ, and satisfying a < ξi < b, ∀i ∈ {1, 2, . . . , n}. Then for all ε > 0,

Pr

(∣∣∣∣∣ 1n
n∑
i=1

ξi − µ

∣∣∣∣∣ ≥ ε
)
≤ exp

(
− nε2

2ωGh(b− a)2

)
, (17)

where ωGh := maxv∈N |{eh : v ∈ eh}| represents the maximal degree of Gh.

Recall the following definitions of utility functions Sτ,δn (π), Ŝτ,δn (π), and S(π)

S(π) := E[(2π(Xi)− 1)(τi + δi(π))]

Sτ,δn (π) :=
1

n

n∑
i=1

(2π(Xi)− 1)(τi + δi(π))

Ŝτ,δn (π) :=
1

n

n∑
i=1

(2π(Xi)− 1)(τ̂i + δ̂i(π)),

where the policy π function has output in [0, 1]. An optimal empirical policy is obtained via π̂n ∈ argmaxπ∈ΠŜ
τ,δ
n (π).

Note that in the definition of S(π) we still keep the subindex i to emphasize the dependence of spillover effect on
neighboring nodes. Next we provide several lemmas related to the utility functions.

Lemma 3. Let S(π) := Sτ,δn (π)−S(π), for any π1, π2 ∈ Π, where the policy class in contained in [0, 1], according
to the assumptions (BO) and (LIP) we have

|S(π1)− S(π2)| ≤ 2(2M1 + 2M2 + L)||π1 − π2||∞

Proof. First note that |S(π1)− S(π2)| ≤ |S(π1)− S(π2)|+ |Sτ,δn (π1)− Sτ,δn (π2)|, and we have

|S(π1)− S(π2)| = |
∫
χ

(2π1(Xi)− 1)(τi + δi(π1))− (2π2(Xi)− 1)(τi + δi(π2)) dXi|

≤
∫
χ

2|τi|||π1 − π2||∞ + |(2π1(Xi)− 1)(δi(π2) + L||π1 − π2||∞)− (2π2(Xi)− 1)δi(π2)| dXi

=

∫
χ

2|τi|||π1 − π2||∞ + |2(π1(Xi)− π2(Xi))δi(π2) + L(2π1(Xi)− 1)||π1 − π2||∞| dXi

≤ (2|τi|+ 2|δi(π2)|+ L)||π1 − π2||∞
≤ (2M1 + 2M2 + L)||π1 − π2||∞.

Similarly, we have |Sτ,δn (π1)− Sτ,δn (π2)| ≤ (2M1 + 2M2 + L)||π1 − π2||∞.

Using the concentration inequality in Theorem 3 we can obtain the convergence rate of the worst-case utility
regret. We also use a capacity measure of the policy functional class Π, namely the covering number, to prove the
convergence rate, which is defined in the following.

Definition 2 (Definition 3.1 in Cucker and Zhou (2007)). Let Π be a metric space and ε > 0, the covering
number N (Π, ε) is defined as the minimal l ∈ N such that there exist l disks in Π with radius ε covering Π.

Lemma 4. Under Assumption 3, for any {Xi}ni=1 ∈ χ⊗n and ε > 0, it satisfies

Pr

(
sup
π∈Π
|Sτ,δn (π)− S(π)| ≤ ε

)
≥ 1−N

(
Π,

ε

4(2M1 + 2M2 + L)

)
exp

(
− nε2

32(d2
max + 1)(M1 +M2)2

)
, (18)
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where N
(

Π, ε
4(2M1+2M2+L)

)
represents the covering number on the policy functional class Π with radius

ε
4(2M1+2M2+L) .

Proof. According to the assumption (BO), the summands are bounded as |(2π(Xi)− 1)(τi + δi(π))| ≤M1 +M2,
∀i ∈ {1, . . . , n}. Given the graph G = (N , E) and its corresponding adjacency matrix A, using the weak
independence assumption (WI) a dependence hypergraph can be defined as Gh = (N , Eh), where a hyperedge
eh,i ∈ Eh is defined as eh,i := {vi} ∪ {vj |j ∈ Ni} ∪ {vk|∃j : Aij = 1 ∧Ajk = 1}. Therefore, the maximal degree of
the hypergraph Gh satisfies ωGh ≤ d2

max + 1, where dmax indicates the maximal vertex degree of the graph G. Via
Theorem 3, we have

Pr
(
|Sτ,δn (π)− S(π)| ≥ ε

)
≤ exp

(
− nε2

8(d2
max + 1)(M1 +M2)2

)
, ∀π ∈ Π. (19)

Let l = N
(

Π, ε
2(2M1+2M2+L)

)
denote the covering number. Consider policies πj , with j ∈ {1, . . . , l} located in

the center of disks Dj with radius ε
2(2M1+2M2+L) which cover the policy functional class Π. Recall the definition

S(π) := Sτ,δn (π)− S(π), by Lemma 3, for any πj and π ∈ Dj , we have

|S(π)− S(πj)| ≤ 2(2M1 + 2M2 + L)
ε

2(2M1 + 2M2 + L)
= ε.

Then ∀π ∈ Dj , supπ∈Dj S(π) ≥ 2ε⇒ S(πj) ≥ ε, which indicates

Pr( sup
π∈Dj

S(π) ≥ 2ε) ≤ Pr(S(πj) ≥ ε) ≤ exp

(
− nε2

8(d2
max + 1)(M1 +M2)2

)
.

Since Π = D1 ∪ · · · ∪Dl, it is easy to see

Pr

(
sup
π∈Π
S(π) ≥ 2ε

)
≤

l∑
j=1

Pr

(
sup
π∈Dj

S(π) ≥ 2ε

)

≤ N
(

Π,
ε

2(2M1 + 2M2 + L)

)
exp

(
− nε2

8(d2
max + 1)(M1 +M2)2

)
.

Upper bound for the probability Pr (supπ∈Π S(π) ≤ −2ε) can be derived in the same way. The statement becomes
valid by replacing ε by ε

2 .

Finally, we prove the policy regret bound in Theorem 2 as follows.

Proof. Consider an arbitrary policy π̃ ∈ Π, we have the following utility difference

S(π̃)− S(π̂n) = Sτ,δn (π̃)− Sτ,δn (π̃) + Sτ,δn (π̂n)− Sτ,δn (π̂n)

+ S(π̃)− S(π̂n) + Ŝτ,δn (π̂n)− Ŝτ,δn (π̂n)

≤ Sτ,δn (π̃)− Ŝτ,δn (π̃)− Sτ,δn (π̂n) + Ŝτ,δn (π̂n)︸ ︷︷ ︸
(1)

+ S(π̃)− Sτ,δn (π̃) + Sτ,δn (π̂n)− S(π̂n)︸ ︷︷ ︸
(2)

.



Using ∀π ∈ Π, π ∈ [0, 1] and assumption (ES) the term (?) can be bounded as

(1) =
1

n

n∑
i=1

2(τi − τ̂i)(π̃(Xi)− π̂n(Xi))

+
1

n

n∑
i=1

(2π̃(Xi)− 1)(δi(π̃)− δ̂i(π̃))− 1

n

n∑
i=1

(2π̂n(Xi)− 1)(δi(π̂n)− δ̂i(π̂n))

≤ 1

n

n∑
i=1

2|τi − τ̂i|+
1

n

n∑
i=1

|δi(π̃)− δ̂i(π̃)|+ 1

n

n∑
i=1

|δi(π̂n)− δ̂i(π̂n)|

≤ 2
( ατ
nζτ

+
αδ
nζδ

)
.

Furthermore, (2) ≤ |Sτ,δn (π̃)− S(π̃)|+ |Sτ,δn (π̂n)− S(π̂n)| ≤ 2 supπ∈Π |Sτ,δn (π)− S(π)|. In summary,

R(π̂n) := sup
π̃∈Π

(S(π̃)− S(π̂n)) ≤ 2
( ατ
nζτ

+
αδ
nζδ

)
+ 2ε,

with probability at least 1−N
(

Π, ε
4(2M1+2M2+L)

)
exp

(
− nε2

32(d2max+1)(M1+M2)2

)
via Lemma 4.

J Capacity-constrained Policy Regret

In this section, we provide an additional policy regret bound under capacity constraint.

Theorem 4. By Assumption 3, for any small ε > 0, the policy regret under the capacity constraint pt is

bounded by R(π̂ptn ) ≤ 2
(
ατ
nζτ

+ αδ
nζδ

)
+ 2ε with probability at least 1 − N exp

(
− nε2

32(d2max+1)(M1+M2)2

)
, where

N := N
(

Π, ε
8[(M1+M2+L)+ 1

pt
(M1+M2)]

)
indicates the covering number on the functional class Π with radius

ε
8[(M1+M2+L)+ 1

pt
(M1+M2)]

, and dmax is the maximal node degree in the graph G.

This capacity-constrained policy regret bound indicates that if, in the constraint, pt is small, then the optimal
capacity-constrained policy will be challenging to find. Increasing the treatment probability can not guarantee
the improvement of the group’s interest due to the non-linear network effect. Therefore, finding the balance
between optimal treatment probability, treatment assignment, and group’s welfare is a provocative question in
social science.

Before proving Theorem 4, let us first review the definition of utility function A(π) following Section 2 of Athey
and Wager (2017). The benefit of deploying the intervention policy π compared to assigning everyone in control
group is defined as

V (π) := E[Yi(Ti = 1)π(Xi) + Yi(Ti = 0)(1− π(Xi))]− E[Yi(Ti = 0)] = E[π(Xi)τ(Xi)],

and the utility function equals

A(π) := 2V (π)− E[τ(Xi)] = E[(2π(Xi)− 1)τ(Xi)].

In the following, let us consider policy learning under treatment constraint pt, and we will introduce a capacity-
constrained utility function under network interference. If the distribution of covariates Pχ is known, and let
Pχ(π) denote the treatment rule on the covariates space, then a capacity-constrained welfare gain relative to
treating no one is defined as (see also Section 4.1 of Kitagawa and Tetenov (2017))

Vpt(π) := E[[Yi(Ti = 1) min{1, pt
Pχ(π)

}+ Yi(Ti = 0)(1−min{1, pt
Pχ(π)

})]π(Xi)

+ Yi(Ti = 0)(1− π(Xi))]− E[Yi(Ti = 0)]

= min{1, pt
Pχ(π)

}E[π(Xi)τ(Xi))],
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and the corresponding capacity-constrained utility function equals

Apt(π) := 2Vpt(π)− E[τ(Xi)] = E[(2 min{1, pt
Pχ(π)

}π(Xi)− 1)τ(Xi))].

Similarly, the capacity-constrained utility function under interference for interconnected units reads

Spt(π) := E[(2 min{1, pt
Pχ(π)

}π(Xi)− 1)(τi + δi(π))].

Moreover, the empirical version of Spt(π) reads

Sτ,δn,pt(π) :=
1

n

n∑
i=1

(2 min{1, pt
Pχ(π)

}π(Xi)− 1)(τi + δi(π)).

The empirical estimation of Spt(π) with causal estimators being plugged in reads

Ŝτ,δn,pt(π) :=
1

n

n∑
i=1

(2 min{1, pt
Pχ(π)

}π(Xi)− 1)(τ̂i + δ̂i(π)),

an corresponding optimal capacity-constrained policy is obtained via 5

π̂ptn ∈ argmaxπ∈ΠŜ
τ,δ
n,pt(π).

Moreover, let πpt? denote the best possible intervention policy from the functional class Π with respect to
the utility Spt(π), namely πpt? ∈ argmaxπ∈ΠSpt(π). The capacity-constrained policy regret is defined as
R(π̂ptn ) := Spt(π

pt?)− Spt(π̂ptn ). Before estimating the capacity-constrained intervention policy regret we derive
the following inequality similar to Lemma 3.

Lemma 5. Let Spt(π) := Sτ,δn,pt(π) − Spt(π), for any π1, π2 ∈ Π, where the policy class in contained in [0, 1],
according to the assumptions (BO) and (LIP) we have

|Spt(π1)− Spt(π2)| ≤ 4[(M1 +M2 + L) +
1

pt
(M1 +M2)]||π1 − π2||∞. (20)

Proof. Note that |Spt(π1)− Spt(π2)| ≤ |Spt(π1)− Spt(π2)|+ |Sτ,δn,pt(π1)− Sτ,δn,pt(π2)|. We first rewrite Spt(π) as

Spt(π) = min{1, pt
Pχ(π)

}E[(2π(Xi)− 1)(τi + δi(π))] + (min{1, pt
Pχ(π)

} − 1)E[τi + δi(π)].

Recall the definition of S(π), and define T (π) := E[τi + δi(π)], we have

|Spt(π1)− Spt(π2)| = |min{1, pt
Pχ(π1)

}S(π1)−min{1, pt
Pχ(π2)

}S(π2)

+ (min{1, pt
Pχ(π1)

} − 1)T (π1)− (min{1, pt
Pχ(π2)

} − 1)T (π2)|

≤ |min{1, pt
Pχ(π1)

}||S(π1)− S(π2)|

+ |S(π2)||min{1, pt
Pχ(π1)

} −min{1, pt
Pχ(π2)

}|

+ |min{1, pt
Pχ(π1)

} − 1||T (π1)− T (π2)|

+ |T (π2)||min{1, pt
Pχ(π1)

} −min{1, pt
Pχ(π2)

}|

≤ |S(π1)− S(π2)|+ |T (π1)− T (π2)|

+ (|S(π2)|+ |T (π2)|)|min{1, pt
Pχ(π1)

} −min{1, pt
Pχ(π2)

}|.

5This optimal capacity-constrained policy is, in principle, equivalent to the one obtained by minimizing the loss

function Lpol(π) := −Ŝτ,δn (π) + γ( 1
n

∑n
i=1 π(Xi)− pt), since, in practice, treatment capacity constraint can be satisfied via

Lagrangian multiplier.



Using the following bounds

|S(π1)− S(π2)| ≤ (2M1 + 2M2 + L)||π1 − π2||∞,
|T (π1)− T (π2)| ≤ L||π1 − π2||∞,
|S(π2)| ≤M1 +M2,

|T (π2)| ≤M1 +M2,

|min{1, pt
Pχ(π1)

} −min{1, pt
Pχ(π2)

}| = | pt
max{pt,Pχ(π1)}

− pt
max{pt,Pχ(π2)}

|

≤ 1

pt
|Pχ(π1)− Pχ(π2)| ≤ 1

pt
||π1 − π2||∞,

yields |Spt(π1)− Spt(π2)| ≤ 2[(M1 +M2 + L) + 1
pt

(M1 +M2)]||π1 − π2||∞. Similarly, we also have |Sτ,δn,pt(π1)−
Sτ,δn,pt(π2)| ≤ 2[(M1 +M2 + L) + 1

pt
(M1 +M2)]||π1 − π2||∞.

In the same sense as Lemma 4, using Lemma 5 we obtain the following bound for the policy functional class
under a capacity constraint pt.

Lemma 6. Under Assumption 3, for any {Xi}ni=1 ∈ χ⊗n and ε > 0, it satisfies

Pr

(
sup
π∈Π
|Sτ,δn,pt(π)− Spt(π)| ≤ ε

)
≥ 1−N exp

(
− nε2

32(d2
max + 1)(M1 +M2)2

)
,

where N := N
(

Π, ε
8[(M1+M2+L)+ 1

pt
(M1+M2)]

)
represents the covering number on the policy functional class Π

with radius ε
8[(M1+M2+L)+ 1

pt
(M1+M2)]

.

Finally, we can derive the capacity-constrained policy regret bound as follows.

Proof. Consider an arbitrary policy π̃ ∈ Π, we have the following utility difference

Spt(π̃)− Spt(π̂ptn ) ≤ Sτ,δn,pt(π̃)− Ŝτ,δn,pt(π̃)− Sτ,δn,pt(π̂
pt
n ) + Ŝτ,δn,pt(π̂

pt
n )︸ ︷︷ ︸

(1)

Spt(π̃)− Sτ,δn,pt(π̃) + Sτ,δn,pt(π̂
pt
n )− Spt(π̂ptn )︸ ︷︷ ︸

(2)

.

Using the fact that ∀π ∈ Π, |2π(Xi) min{1, pt
Pχ(π)} − 1| ≤ 1, it is easy to see (1) ≤ 2

(
ατ
nζτ

+ αδ
nζδ

)
. Furthermore,

(2) ≤ |Sτ,δn,pt(π̃)− Spt(π̃)|+ |Sτ,δn,pt(π̂
pt
n )− Spt(π̂ptn )| ≤ 2 sup

π∈Π
|Sτ,δn,pt(π)− Spt(π)|.

In summary, via Lemma 6 it yields the statement.
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