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A Appendix

A.1 Proof of Proposition 1

Proof. Given a dataset X, pick an element x 2 X. We consider all possible ⌦ clusters X
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with M = ⌦ · J · K, J = (2|X!

L

| � 3)!!, and K = (2|X!

R

| � 3)!! for a full trellis. Thus, Z(X) of a cluster X can be
written recursively in terms of the partition function of the sub-clusters of X 5.

A.2 Proof of Theorem 3

Proof. We want to show that drawing samples of trees using Algorithm 3 gives samples from P (H|X). To do this,
we show that the probability of a tree can be re-written as the product of probabilities of sampling each split in
the structure. This then directly corresponds to the top-down sampling procedure in Algorithm 3.

Recall from Definition 2 we have:
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We can equivalently write this as:
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To understand why this can be written this way, observe that for internal nodes the Z(X
L
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be cancelled out by corresponding terms in the product for the children of X
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Recall that for the pair of siblings that are the children of the root, the 1
Z(X

L

[X

R

) term will not be cancelled out

and corresponds exactly to 1
Z(X) .

Next, we observe that Eq. 11 can be re-written in terms of Equation 3 which defines p(X
L
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Algorithm 3 applies Eq. 3 recursively in a top-down manner using a series of splits which have a probability that
directly corresponds to the product of terms in Eq. 13.

4The cluster trellis provides an exact solution conditioned on the fact that the domain of the linkage function is the set
of pairs of clusters, and not pairs of trees.

5Note that for each singleton x

i

, we have Z(x
i

) = 1.
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A.3 Proof of Lower Bound on Number of Trees

The number of trees on N leaves is given exactly by
Q
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= !(N), which gives us the bound on the number of trees to be !(NN !/2N�1), as desired.

Note that this is a loose lower-bound, and that it could be improved upon as follows: say a hierarchical clustering
is a caterpillar clustering is every internal node in the underlying tree has two children and the set associated with
one of those children as size one. There are n!/2 caterpillar clustering. To see this, note that the ith level (where
the root is level 1) of a caterpillar clustering has exactly one leaf for i = 2, . . . , n�1. There are n(n�1) . . . 3 = n!/2
choices for the corresponding singleton sets.

Note, however, that there is a closed form expression for the exact number of unordered hierarchies given by
a(N) = (2N � 3)!!, with n the number of singletons (see (Callan, 2009; Dale and Moon, 1993) for more details
and proof).

A.4 Correctness Proof of Marginal Algorithms

A.4.1 Sub-Hierarchy Marginal
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with |A(H
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A.4.2 Subset Marginal
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A.5 Proof of MAP Time Complexity

The MAP tree is computed for each node in the trellis, and due to the order of computation, at the time of
computation for node i, the MAP trees for all nodes in the subtrellis rooted at node i have already been computed.
Therefore, the MAP tree for a node with i elements can be computed in 2i steps (given the pre-computed
partition functions for each of the node’s descendants), since the number of nodes for the trellis rooted at node i
(with i elements) corresponds to the powerset of i. There are

�
n

i

�
nodes of size i, making the total computationP

N

i=1 2i
�
N

i

�
= 3N � 1.

A.6 Proof of Proposition 2

Proof. We proceed in a similar way as detailed in Appendix § A.1 , as follows. Given a dataset X, pick an
element x 2 X. We consider all possible ⌦ clusters X
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on the fact that the domain of the linkage function is the set of pairs of clusters, and not pairs of trees. Thus, we
can rewrite Eq. 20 grouping together all the hierarchies Hi that have the same clusters {X
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with M = ⌦ · J · K. Thus, �(H⇤(X)) of a cluster X can be written recursively in terms of the MAP values of the
sub-clusters of X 6.

6Note that for each singleton x

i

, we have �(H⇤(x
i

)) = 1.
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A.7 Proofs of Theorem 1 and Corollary 2

The partition function is computed for each node in the trellis, and due to the order of computation, at the time
of computation for node i, the partition functions for all nodes in the subtrellis rooted at node i have already
been computed. Therefore, the partition function for a node with i elements can be computed in 2i steps (given
the pre-computed partition functions for each of the node’s descendants), since the number of nodes for the trellis
rooted at node i (with i elements) corresponds to the powerset of i. There are

�
N

i

�
nodes of size i, making the

total computation
P

N

i=1 2i
�
N

i

�
= 3N � 1.

In Corollary 2 we state that Algorithm 1 is super-exponentially more e�cient than brute force methods that
consider every possible hierarchy. Their ratio is

r =
(2N � 3)!!

3N
=

1

2
p
⇡

✓
2

3

◆
N

�(N � 1/2) (22)

with � the gamma function. Thus, r presents a super-exponential growth in terms of N .

A.8 Jet Physics Background

It is natural to represent a jet and the particular clustering history that gave rise to it as a binary tree, where
the inner nodes represent each of the unstable particles and the leaves represent the jet constituents. This
representation connects jets physics with natural language processing (NLP) and biology, which is exciting and
was first suggested in (Louppe et al., 2019).

Jets are among the most common objects produced at the Large Hadron Collider (LHC) at CERN, and a great
amount of work has been done to develop techniques for a better treatment and understanding of them, from
both an experimental and theoretical point of view. In particular, determining the nature (type) of the initial
unstable particle (the root of the binary tree), and its children and grandchildren that gave rise to a specific jet is
essential in searches for new physics, as well as precision measurements of our current model of nature, i.e., the
Standard Model of particle physics. In this context, it becomes relevant and interesting to study algorithms to
cluster the jet constituents (leaves) into a binary tree and metrics to compare them. Being able to improve over
the current techniques that attempt to invert the showering process to reconstruct the ground truth-level tree
would assist in physics searches at the Large Hadron Collider.

There are software tools called parton showers, e.g., PYTHIA, Herwig, Sherpa, that encode a physics model
for the simulation of jets that are produced at the LHC. Current algorithms used by the physics community
to estimate the clustering history of a jet are domain-specific sequential recombination jet algorithms, called
generalized k

t

clustering algorithms (Cacciari et al., 2008), and they do not use these generative models. These
algorithms sequentially cluster the jet constituents by locally choosing the pairing of nodes that minimizes a
distance measure. Given a pair of nodes, this measure depends on the angular distance between their momentum
vector and the value of this vector in the transverse direction with respect to the collision axis between the
incoming beams of protons.

Currently, generative models that implement the parton shower in full physics simulations are implicit models,
i.e., they do not admit a tractable density. Extracting additional information that describes the features of the
latent process is relevant to study problems where we aim to unify generation and inference, e.g inverting the
generative model to estimate the clustering history of a jet. A schematic representation of this approach is shown
in Figure 9.

At present, it is very hard to access the joint likelihood in state-of-the-art parton shower generators in full physics
simulations. Also, typical implementations of parton showers involve sampling procedures that destroy the analytic
control of the joint likelihood. Thus, to aid in machine learning (ML) research for jet physics, a python package
for a toy generative model of a parton shower, called Ginkgo, was introduced in (Cranmer et al., 2019b). Ginkgo
has a tractable joint likelihood, and is as simple and easy to describe as possible but at the same time captures
the essential ingredients of parton shower generators in full physics simulations. Within the analogy between jets
and NLP, Ginkgo can be thought of as ground-truth parse trees with a known language model. A python package
with a pyro implementation of the model with few software dependencies is publicly available in (Cranmer et al.,
2019b).
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A.9 Counting Trees

We count the total number of hierarchies7. We implement a bottom-up approach and start by assigning a number
of trees N = 1 to to each cluster of one element. Then, given a parent cluster X

p

, we add the contribution N

i

p
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p
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i
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i
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Thus N

p

is the number of possible trees of the sub-branch whose root node is X

p

. We repeat the process until we
reach the cluster of all elements X.

A.10 Runtime Asymptotics Plots

See Figure 10 for a comparison of the number of trees vs the time complexity of the trellis algorithms for finding
the partition function, MAP, and marginal values.

A.11 Description of Computer Architecture and Experimental Runtime

When using a MacBook Pro with a 2.5 GHz Intel Core i5 processor with 8GB 1600 MHz DDR3 RAM to compute
the MAP for the genetics experiments using the PAM dataset, it takes approximately 15 minutes to complete
from start to finish (including data loading and result output). When using this same machine to compute that
MAP for Dasgupta cost on the given graph, it takes approximately 4 seconds to complete from start to finish
(including data loading and result output).

When using a MacBook Pro with a 2.3 GHz Intel Core i9 processor with 16GB 2400 MHz DDR4 RAM to compute
the MAP for the jet physics experiments it takes 5x10�2, 1.6 and 6.1 seconds to run the trellis on jets with 5, 9
and 10 leaves respectively.

A.12 Sparse Trellis

As mentioned in section 3.1, there are di↵erent mappings for the ordering of the leaves of the input trees when
building the sparse trellis, and the subset of hierarchies spanned by the trellis depends on this mapping. Specifically,
two sub-hierarchies identical under some ordering of the leaves would contribute the same vertices and edges to
the trellis. However, this could change by modifying the ordering, e.g. vertex {a, b} could turn into vertices {a, b}
and {a, d}. Thus, the hierarchies over which the sparse trellis spans depend on the ordering of the leaves of the
input trees that we use to build it. We show in Figure 11 the performance of the sparse trellis to calculate the
MAP values on a set of 100 Ginkgo jets with 9 leaves. Here we study the sparse trellises for more orderings of the
leaves of the input trees than the ones shown in Figure 7.

Next, in Figure 12 we show the number of vertices added to the sparse trellis vs their sparsity (number of trees
that they can realize over total possible number of trees). It is interesting to note that the sparsity depends not
only on the number of vertices but also on their location in the trellis as well as the edges. Thus, we see that for
the same number of vertices, there are di↵erent sparsity indices, depending on the building strategy.

7This gives a result matching exactly the formula (2N � 3)!!

Figure 9: Schematic representation of the tree structure of a sample jet generated with Ginkgo and the clustered
tree for some clustering algorithm. For a given algorithm, z labels the di↵erent variables that determine the latent structure
of the tree. The tree leaves x are labeled in red and the inner nodes in green.
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Figure 10: Comparison of the complexity of the cluster trellis (orange) and the number of trees (blue) vs the number
of elements of a dataset.
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Figure 11: Trellises MAP hierarchy log likelihood vs their sparsity. MAP hierarchy log likelihood values are
relative to the greedy algorithm. Each value corresponds to the mean over 100 trees of a test dataset. We show the
Simulator (Sim.) and the Beam Search (BS) trellises. We present the trellis obtained by ordering the leaves of the input
trees in three di↵erent ways. First, in increasing norm of their momentum vector ~p 2 R3 (p

T

), see the probabilistic model
description of section 4.2 for more details. Second, leaves ordered randomly (rand). Third, leaves ordered by how they are
accessed by traversing the trees (standard). Note that in this last case, we only show the Sim. trellis results as the BS
trellis spans over sparsity indices values of O(10�5) and has a worse performance. We add the values of the full trellis,
beam search and greedy algorithms. The BS trellis approaches the performance of the full one for a smaller sparsity index
than the Sim. Trellis.
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Figure 12: Trellises number of vertices vs their sparsity. We show the Simulator (Sim.) and the Beam Search (BS)
trellises. The leaves of the input trees are ordered in di↵erent ways, as explained in Figure 11. Sim. trellis saturates all the
vertices below a sparsity of ⇠ 0.1 but the performance in Figure 11 keeps increasing. The reason is that we keep adding
edges to existing vertices, thus realizing a greater number of trees.

Finally, in Figure 13 we show the MAP hierarchy log likelihood vs algorithms running time on a set of 100
Ginkgo jets with 9 leaves. Also, in both the Simulator (Sim.) and the Beam Search (BS) trellises the nodes have
to be initialized, which is done only once for each sparsity index and typically takes between 1 and 10 seconds
(depending on the sparsity).
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Figure 13: MAP hierarchy log likelihood vs algorithms running time on a set of 100 Ginkgo jets with 9 leaves.
Each value corresponds to the mean over 100 trees of a test dataset. The di↵erence between the sparse and exact trellises
running times is because the exact one is iterative over the nodes and the sparse one is recursive (this was done to optimize
memory requirements). We can see that the sparse trellis is faster for low sparsity while the running times are of the same
order of magnitude when the sparse trellises are close to saturate.
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