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Supplementary material: A Theory of Multiple-Source Adaptation with
Limited Target Labeled Data

A Related on domain adaptation

As stated in the introduction, various scenarios of adaptation can be distinguished depending on parameters
such as the number of source domains available, the presence or absence of target labeled data, and access to
labeled source data or only to predictors trained on each source domain. Single source domain adaptation has
been studied in several papers including (Kifer et al., 2004; Ben-David et al., 2010; Mansour et al., 2009c).

Several algorithms have been proposed for multiple-source adaptation. Khosla et al. (2012); Blanchard et al.
(2011) proposed to combine all the source data and train a single model. Duan et al. (2009, 2012) used unlabeled
target data to obtain a regularizer. Domain adaptation via adversarial learning was studied by Pei et al. (2018);
Zhao et al. (2018). Crammer et al. (2008) considered learning models for each source domain, using close-by data
of other domains. Gong et al. (2012) ranked multiple source domains by how well they can adapt to a target
domain. Other solutions to multiple-source domain adaptation include, clustering (Liu et al., 2016), learning
domain-invariant features (Gong et al., 2013a), learning intermediate representations (Jhuo et al., 2012), subspace
alignment techniques (Fernando et al., 2013), attributes detection (Gan et al., 2016), using a linear combination of
pre-trained classifiers (Yang et al., 2007), using multitask auto-encoders (Ghifary et al., 2015), causal approaches
(Sun et al., 2011), two-state weighting approaches (Sun et al., 2011), moments alignment techniques (Peng et al.,
2019) and domain-invariant component analysis (Muandet et al., 2013).

B Proof of equation (2)

By the definition of discrepancy,

LD0(hD�
) ≤ LD�(hD�

) + discH(D�,D0).

Similarly,

LD0(hD0) = LD0(hD0) −LD�(hD0) +LD�(hD0)
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≥ LD�(hD�) − discH(D�,D0)

Combining the above two equations yields
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Next observe that, by rearranging terms,
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However, by the definition of h
D�
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Hence,
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where the last inequality follows by taking the supremum. Combining the above equations yields the proof.
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C Previous work

C.1 Bregman divergence based non-negative matrix factorization

A natural algorithm is a two step process, where we first identify the optimal � by minimizing

min
�∈�p

B(D̂0��D�),

where B is a suitable Bregman divergence. We can then use � to minimize the weighted loss. However, this
approach has both practical and theoretical issues. On the practical side, if X is a continuous space, then the
empirical distribution D� would be a point mass distribution over observed points and would never converge to
the true distribution D�. To overcome this, we need to first use D� to estimate the distribution D� via kernel
density estimation or other methods and then use the estimate instead of D�. Even if we use these methods and
find �, it is likely that we would overfit as the generalization of the algorithm depends on the covering number
of {D� ∶ � ∈ �p}, which in general can be much larger than that of the class of hypotheses H. Hence such an
algorithm would not incur generalization loss of E(�∗). One can try to reduce the generalization error by using a
discrepancy based approach, which we discuss in the next section.

C.2 A convex combination discrepancy-based algorithm

Since pairwise discrepancies would result in identifying a sub-optimal �, instead of just considering the pairwise
discrepancies, one can consider the discrepancy between D0 and any D�. Since

LD0(h) ≤ min
�∈�p

LD�(h) + discH(D0,D�),

and the learner has more data from D� than from D0, a natural algorithm is to minimize LD�(h)+discH(D0,D�).
However, note that this requires estimating both the discrepancy discH(D0,D�) and the expected loss over LD�(h).
In order to account for both terms, we propose to minimize the upper bound on min�∈�p LD�(h)+discH(D0,D�),

min
�

L
D�
(h) +C✏(�), (12)

where C✏(�) is given by,
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for some constant c. We first show that L
D�
(h) +C✏(�) is an upper bound on LD0(h).

Lemma 3. With probability at least 1 − 2�, for all h ∈H and � ∈�p,

�LD0(h) −LD�
(h)� ≤ C✏(�).

Proof. By (2) and Proposition 1, with probability at least 1 − �,
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Hence, by the union bound over an ✏-`1 cover of �p yields, with probability ≥ 1 − �, for all � ∈�p,
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With probability at least 1 − �, discrepancy can be estimated as

�discH(D0,D�) − discH(D̂0,D�)� ≤ ✏M +
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for some constant c > 0. Combining the above equations yields, with probability at least 1 − 2�,

max
�
�LD0(h) −LD�

(h)� ≤ C✏(�).
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Let hR be the solution to (12), we now give a generalization bound for the above algorithm.

Lemma 4. With probability at least 1 − 2�, the solution hR for (12) satisfies

LD0(hR) ≤min
h∈H LD0(h) + 2min

�
C✏(�).

Proof. By Lemma 3, with probability at least 1 − 2�,

min
�∈�p

�LD0(h) −LD�
(h)� ≤ min

�∈�p

C✏(�).

Let hR be the output of the algorithm and hD0 be the minimizer of LD0(h).
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�
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where the last inequality follows from the fact that hR is the minimizer of (12).

The above bound is comparable to the model trained on only target data as C✏(�) contains O �
�

d
m0
�, which

can be large for a small values of m0. This bound can be improved on certain favorable cases when D0 =Dk for
some known k. In this case if we use the same set of samples for D̂0 and D̂k, then the bound can be improved to

O �

�
d(1−�k)√

m0
�, which in favorable cases such that �k is large, yields a better bound than the target-only model.

D Proof of Lemma 1

By the strong convexity of `,

L
D�
(h�′) −LD�

(h�) ≥ ∇LD�
(h�) ⋅ (h�′ − h�) +

µ

2
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2

=
µ

2
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2
,

where the equality follows from the definition of h�. Similarly, since the function ` is bounded by M

L
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Combining the above equations,

µ�h�′ − h��
2
≤M�� − �

′
�1.

Hence for any distribution D0,

�LD0(h�′) −LD0(h�)� ≤ �∇LD0(h�) ⋅ (h�′ − h�)�

≤ �∇LD0(hD) ⋅ (h�′ − h�)�

= G�h�′ − h��

=
G
√
M

√
µ
⋅ �� − �

′
�
1�2
1 .
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E Proof of Theorem 3

Let p be a multiple of four. Let X = {1,2, . . . , p�2} and Y = {0,1}. For all k ≤ p�2, and x ∈ X , let Dk(x) =
2
p . For

every even k, let Dk(1��k�2�) = 1 and for every odd k, Dk(1��k�2�) = 0. For remaining x and k, let Dk(1�x) =
1
2 .

Let H be the set of all mappings from X → Y and the loss function be zero-one loss. Let D0 = D� for some �.
Hence, the optimal estimator h∗ is

h
∗
�(1�x) = 1�2x>�2x−1 .

Given infinitely number of samples from each Dk, the learner knows the distributions Dk. Hence, roughly speaking
the algorithm has to find if �2x > �2x−1 for each x.

Let ✏ = 1
100 ⋅

�
p
m0

. We restrict � ∈ ⇤, where ⇤ is defined as follows. Let ⇤ be the set of all distributions such that

for each � ∈ ⇤ and x,

�2x + �2x−1 = 2

p
,

and �2x ∈ {
1+✏
p ,

1−✏
p }. Note that �⇤� = 2

p�4. For x ≤ p�4, let sx = {2x, 2x−1}. Let msx be the number of occurrences
of elements from sx. Given msx , m2x and m2x−1 are random variables from Binomial distribution with parameters
msx and �2x

�2x+�2x−1 . This reduces the problem of learning the best classifier into testing p�2 Bernoulli distributions
and we can use standard tools from information theory such as Fano’s inequality (Cover and Thomas, 2012) to
provide a lower bound. We provide a proof sketch.

Since ∑
p�4
x=1msx = m0, there are at least p�8 values of sx for which msx ≤ 8m0�p. Consider one such sx, where

msx ≤ 8m0�p. For that x, given msx samples from sx, by Fano’s inequality, with probability at least 1�4, any
algorithm cannot di↵erentiate between �2x > �2x−1 and �2x < �2x−1. Thus, with probability at least 1�4, any
algorithm incorrectly finds the wrong hypothesis for h, and hence,

E[L(h)�x ∈ sx] ≥ E[L(h∗�)�x ∈ sx] + c ��2x − �2x−1�
�2x + �2x−1 ≥ E[L(h

∗
�)�x ∈ sx] + c✏,

for some constant c. Averaging over all symbols x, yields

E[L(h)] =�
sx

D�(sx)E[L(h)�x ∈ sx]
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2

p
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