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Abstract

We present a theoretical and algorithmic
study of the multiple-source domain adap-
tation problem in the common scenario where
the learner has access only to a limited amount
of labeled target data, but where the learner
has at their disposal a large amount of la-
beled data from multiple source domains. We
show that a new family of algorithms based on
model selection ideas benefits from very favor-
able guarantees in this scenario and discuss
some theoretical obstacles a↵ecting some alter-
native techniques. We also report the results
of several experiments with our algorithms
that demonstrate their practical e↵ectiveness.

1 Introduction

A common assumption in supervised learning is that
training and test distributions coincide. In practice,
however, this assumption often does not hold. This
is because the amount of labeled data available is too
modest to train an accurate model. Instead, the learner
must resort to using labeled samples from one or several
alternative source domains or distributions that are
expected to be close to the target domain. How can we
leverage the labeled data from these source domains
to come up with an accurate predictor for the target
domain? This is the challenge of the domain adaptation

problem that arises in a variety of di↵erent applications,
such as in natural language processing (Blitzer et al.,
2007; Dredze et al., 2007; Jiang and Zhai, 2007), speech
processing (Gauvain and Lee, 1994; Jelinek, 1997), and
computer vision (Leggetter and Woodland, 1995).

In practice, in addition to a relatively large number
of total labeled data from source domains, the learner
also has at their disposal a large amount of unlabeled
data from the target domain, but only little or no la-
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beled data from the target domain. Various scenarios
of adaptation can be distinguished, depending on pa-
rameters including the number of source domains, the
presence or absence of target labeled data, and access
to labeled source data or only to predictors trained on
each source domain.

The theoretical analysis of adaptation has been the
subject of several publications in the last decade or so.
The single-source adaptation problem was first studied
by Ben-David et al. (2007), as well as follow-up pub-
lications (Blitzer et al., 2008; Ben-David et al., 2010),
where the authors presented an analysis in terms of a
dA-distance, including VC-dimension learning bounds
for the zero-one loss. Later, Mansour et al. (2009c)
and Cortes and Mohri (2011, 2014) presented a gen-
eral analysis of single-source adaptation for arbitrary
loss functions, where they introduced the notion of
discrepancy, which they argued is the suitable diver-
gence measure in adaptation. The authors further
gave Rademacher complexity learning bounds in terms
of the discrepancy for arbitrary hypothesis sets and
loss functions, as well as pointwise learning bounds for
kernel-based hypothesis sets. The notion of discrepancy
coincides with the dA-distance in the special case of
the zero-one loss.

Mansour et al. (2009a,b) and Ho↵man et al. (2018);
Zhang et al. (2020) considered the multiple-source adap-

tation (MSA) scenario where the learner has access to
unlabeled samples and a trained predictor for each
source domain, with no access to source labeled data.
This approach has been further used in many applica-
tions such as object recognition (Ho↵man et al., 2012;
Gong et al., 2013a,b). Zhao et al. (2018) and Wen
et al. (2020) considered MSA with only unlabeled tar-
get data available and provided generalization bounds
for classification and regression.

There has been a very large recent literature dealing
with experimental studies of domain adaptation in
various tasks. Ganin et al. (2016) proposed to learn
features that cannot discriminate between source and
target domains. Tzeng et al. (2015) proposed a CNN
architecture to exploit unlabeled and sparsely labeled
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target domain data. Motiian et al. (2017b), Motiian
et al. (2017a) and Wang et al. (2019) proposed to train
maximally separated features via adversarial learning.
Saito et al. (2019) proposed to use a minmax entropy
method for domain adaptation. We further discuss
related previous work in Appendix A.

This paper presents a theoretical and algorithmic study
of MSA with limited target labeled data, a scenario
that is similar to the one examined by Konstantinov
and Lampert (2019), who considered the problem of
learning from multiple untrusted sources and a single
target domain. We propose a new family of algorithms
based on model selection ideas and show that they
benefit from very favorable guarantees in this scenario
and discuss some theoretical obstacles a↵ecting some
alternative techniques. We also report the results of sev-
eral experiments with our algorithms that demonstrate
their practical e↵ectiveness.

In Section 2, we introduce some definitions and nota-
tion and formulate our learning problem. In Section 3,
we provide some preliminary results. In Section 4, we
present and analyze our algorithmic solutions (Limited

target data MSA or LMSA algorithms) for the adapta-
tion problem considered, which we prove benefit from
near-optimal guarantees. In Section 5, we discuss some
theoretical obstacles a↵ecting some alternative tech-
niques. Finally, in Section 6, we report the results of
experiments with our LMSA algorithms and compare
them with several other techniques and baselines.

2 Preliminaries

In this section, we introduce the definitions and nota-
tion used in our analysis and discuss a natural baseline
and the formulation of the learning problem we study.

2.1 Definitions and notation

Let X denote the input space and Y the output space.
We focus on the multi-class classification problem where
Y is a finite set of classes, but much of our results can
be extended straightforwardly to regression and other
problems. The hypotheses we consider are of the form
h∶X → �Y, where �Y stands for the simplex over Y.
Thus, h(x) is a probability distribution over the classes
or categories that can be assigned to x ∈ X. We denote
byH a family of such hypotheses. We denote by ` a loss
function defined over �Y × Y and taking non-negative
values with upper bound M . The loss of h ∈ H for a
labeled sample (x, y) ∈ X×Y is given by `(h(x), y). We
denote by LD(h) the expected loss of a hypothesis h
with respect to a distribution D over X × Y:

LD(h) = E(x,y)∼D[`(h(x), y)],

and by hD its minimizer: hD = argminh∈HLD(h).

We denote by D0 the target domain distribution and by
D1, . . . ,Dp the p source domain distributions. During
training, we observe mk independent samples from
distribution Dk. We denote by D̂k the corresponding
empirical distribution. We also denote by m = ∑

p
k=1mk

the total number of samples observed. In practice, we
expect m to be significantly larger than m0 (m�m0).

It was shown by Mansour et al. (2009c) (see also Cortes
and Mohri (2011)) that the discrepancy is the appro-
priate divergence between distributions in adaptation.
The discrepancy takes into account the hypothesis set
and the loss function, both key components of the struc-
ture of the learning problem. Furthermore, it has been
shown that it can be estimated from finite samples and
upper bounded in terms of other divergences, such as
the total variation and the relative entropy. The dis-
crepancy also coincides with the dA-distance proposed
by Ben-David et al. (2007) in the special case of the
zero-one loss.

A finer notion of discrepancy, which we will refer to
as the label-discrepancy, was introduced by Mohri and
Muñoz Medina (2012) (see also (Kuznetsov and Mohri,
2015)), which is useful in contexts where some target
labeled data is available, as in our problem here. For
two distributions D and D

′ over X×Y and a hypothesis
set H, the label-discrepancy is defined as follows:

discH(D,D
′
) =max

h∈H �LD(h) −LD′(h)�.

This notion of discrepancy leads to tighter general-
ization bounds. When it is small, by definition, the
expected loss of any hypothesis in H with respect to a
source D is close to its expected loss with respect to
D
′. In the rest of the paper, we use label-discrepancy

and will refer to it simply by discrepancy.

2.2 Problem formulation

What is the best that one can achieve without data
from any source distribution? Suppose we train on the
target domain samples D̂0 alone, and obtain a model
h
D̂0

. By standard learning-theoretic tools (Mohri et al.,
2018), the generalization bound for this model can be
stated as follows: for simplicity let the loss be the zero-
one loss. With probability at least 1− �, the minimizer
of the empirical risk L

D̂0
(h) satisfies,

LD0(hD̂0
) ≤min

h∈H LD0(h)+O�

�

d

m0
+

�

log(1��)

m0
�, (1)

where d is the VC-dimension of the hypothesis class H.
For simplicity, we provided generalization bounds in
terms of VC-dimension. They can be easily extended to
bounds based on Rademacher complexity (Mohri et al.,
2018) or pseudo-dimension (Pollard, 2012) for general
losses. Finally, there exist distributions and hypotheses
where (1) is tight (Mohri et al., 2018, Theorem 3.23).
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Let �p be the set of probability distributions over [p].
In order to provide meaningful bounds and improve
upon (1), following (Mansour et al., 2009b; Ho↵man
et al., 2018), we assume that the target distribution
is close to some convex combination of sources in the
discrepancy measure, that is, we assume that there
is a � ∈ �p such that discH(D0,D�) is small, where
D� = ∑

p
k=1 �kDk.

With the above definitions, we can specify how good a
mixture weight � is. For a given �, a natural algorithm
is to combine samples from the empirical distributions
D̂k to obtain the mixed empirical distribution D� =

∑
p
k=1 �kD̂k, and minimize loss on D�. Let h

D�
be

the minimizer of this loss. A good � should lead to
h
D�

with the performance close to that of the optimal
estimator for D0. In other words, the goal is to find �

that minimizes

LD0(hD�
) −LD0(hD0).

The above term can be bounded by a uniform excess
risk bound as follows:

LD0(hD�
) −LD0(hD0)

≤ 2max
h∈H �LD�

(h) −LD�(h)� + 2discH(D0,D�). (2)

The derivation of (2) is given in Appendix B. Let the
uniform bound on the excess risk for a given � be

E(�) = 2max
h∈H �LD�

(h)−LD�(h)�+2discH(D0,D�), (3)

and �
∗ be the mixture weight that minimizes the above

uniform excess bound, i.e.

�
∗
= argmin

�∈�p

E(�).

Our goal is to come up with a model with error close
to E(�∗), without the knowledge of �

∗. If the tar-
get domain D0 is not exactly a convex combination
of the sources, then it is captured by the discrepancy
term discH(D0,D�∗) in the definition of E(�∗). Our
results degrade smoothly as discH(D0,D�∗) increases.
Furthermore, our results depend on E(�∗), which is
hypothesis-independent and an upper bound on the uni-
form excess risk bound. Replacing it with a hypothesis-
dependent upper bound is an interesting future direc-
tion. Before we review the existing algorithms, we
provide a bound on E(�∗).
3 Fixed target mixture

The adaptation problem we are considering can be
broken down into two parts: (i) finding the minimizing
mixture weight �∗; (ii) determining the hypothesis that
minimizes the loss over corresponding distribution D̂�∗ .
In this section, we discuss guarantees for (ii), for a

known mixture weight �
∗. This will later serve as

a reference for our analysis in the more general case.
More generally, we consider here guarantees for a fixed
mixture weight �.

Let m denote the empirical distribution of samples
(m1�m,m2�m, . . . ,mp�m). Skewness between distribu-

tions is defined as s(���m) = ∑
p
k=1 �2

k

mk
. Skewness is a

divergence and measures how far � and the empirical
distribution of samples m are. It naturally arises in the
generalization bounds of weighted mixtures. For exam-
ple, if � =m, then s(���m)

m =
1
m and the generalization

bound in Proposition 1 will be the same as the bound
for the uniform weighted model. If � = (1,0, . . . ,0),

then s(���m)
m =

1
m1

and the generalization bound will be
the same as the bound for training on a single domain.
Thus, skewness smoothly interpolates between the uni-
form weighted model and the single domain model. For
a fixed �, the following generalization bound of Mohri
et al. (2019) holds (see also Blitzer et al. (2008) in the
special case of the zero-one loss).

Proposition 1. Let � ∈�p. Then with probability at

least 1 − �, E(�) is bounded by

4M

�

s(���m)

m
⋅ �d log

em

d
+ log

1

�
� + 2discH(D0,D�).

Since m�m0, this guarantee is substantially stronger
than the bound given for a model trained on the target
data only (1).

4 Unknown target mixture

Here, we analyze the more realistic scenario where no
information about the target mixture weight is assumed.
Our objective is to come up with a hypothesis whose
excess risk guarantee is close to the one shown in the
known target mixture setting.

One natural idea to tackle this problem consists of first
determining the mixture weight � for which D� is the
closest to D0 for some divergence measure such as a
Bregman divergence B:

min
�∈�p

B(D̂0��D�),

But, as discussed in Appendix C.1, this approach is
subject to several issues resulting in poor theoretical
guarantees. An alternative consists of seeking � to
minimize the following objective function:

LD�(h) + discH(D0,D�).

However, this requires estimating both the expected
loss and the discrepancy terms and, as discussed in
Appendix C.2, in general, the guarantees for this tech-
nique are comparable to those of the straightforward
baseline of training on D̂0.
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Instead, we will describe a family of algorithms based
on a natural model selection idea, which we show ben-
efits from strong theoretical guarantees. Unlike the
straightforward baseline algorithm or other techniques
just discussed, the dominating term of the learning
bounds for our algorithms are in Õ(

�

p�m0), that is
the square-root of the ratio of the number of sources
and the number of target labeled samples and do not de-
pend on the complexity of the hypothesis set. This is in
contrast, for example, to the O(

�

d�m0) bound for the
straightforward baseline, where d is the VC-dimension.

We will show that the hypothesis hA returned by our
algorithm verifies the following inequality:

LD0(hA) ≤min
h∈H LD0(h) + E(�

∗
) + Õ �

�
p

m0
� .

We further show that the above additional penalty

of Õ �
�

p
m0
� is necessary, by showing an information-

theoretic lower bound. We show that for any algorithm
A, there exists a hypothesis class H and domains such
that E(�∗) = 0 and

LD0(hA) ≥min
h∈H LD0(h) +⌦�

�
p

m0
� .

These results characterize the penalty term for MSA
with limited target data up to log factors. We now
present our algorithms for the limited target data MSA

problems: LMSA, LMSA-Boost, and LMSA-Min-
max, as well as an information-theoretic lower bound.

4.1 LMSA algorithm

Since D0 ≈ ∑k �
∗
kDk, one approach inspired by model

selection consists of determining the hypothesis with
the minimal loss for each value of � and selecting among
them the hypothesis that performs best on D0. We
call this general algorithm (LMSA) (see Figure 1).

The algorithm takes as an input a subset ⇤ of �p,
which can be chosen to be a finite cover of �p. For each
element of ⇤, it finds the best estimator forD�, denoted
by h

D�
. LetH⇤ be the resulting set of hypotheses. The

algorithm then selects the best hypothesis out this set,
by using D̂0. The algorithm is relatively parameter-free
and straightforward to implement.

We now show that LMSA benefits from the following
favorable guarantee, when ⇤ is a finite cover of �p.

Theorem 1. Let ✏ ≤ 1. Let ⇤ be a minimal cover of

�p such that for each � ∈ �p, there exists a �✏ ∈ ⇤ such

that �� − �✏�1 ≤ ✏. Then, for any � > 0, with probability

at least 1− �, the hypothesis hm returned by LMSA(⇤)
satisfies the following inequality:

LD0(hm) −min
h∈H LD0(h) ≤ E(�

∗
) + 2✏M +

2M
�
p log p

�✏
√
m0

.

1. For any � ∈ ⇤, compute h
D�

defined by

h
D�
= argmin

h∈H L
D�
(h).

2. Define H⇤ = {hD�
∶ ∀� ∈ ⇤}.

3. Return hm defined by

hm = argmin
h∈H⇤

L
D̂0
(h).

Figure 1: Algorithm LMSA(⇤).

Proof. Since hm is the minimizer of L
D̂0
(h),

LD0(hm) − min
h∈H⇤

LD0(h) ≤ 2 max
h∈H⇤

�L
D̂0
(h) −LD0(h)�.

(4)
We now bound the number of elements in the cover
⇤. Consider the cover ⇤ given as follows. For each
coordinate k < p, the domain weight �k belongs to
the set {0, ✏�p,2✏�p, . . . ,1}, and (�✏)p is determined
by the fact that ∑k(�✏)k = 1. The cover has at most
(p�✏)

p−1 elements and for every �, there is a �✏ such
that ��−�✏�1 ≤ ✏. Hence, the size of the minimal cover
is at most (p�✏)p−1. Thus, by McDiarmid’s inequality
and the union bound, with probability at least 1 − �,
the following holds:

max
h∈H⇤

�L
D̂0
(h) −LD0(h)� ≤

M
�
p log p

�✏
√
m0

. (5)

Let h� denote hD� and h�̂ denote h
D�

. For any �,

min
h∈H⇤

LD0(h) −min
h∈H LD0(h)

(a)
≤ min

h∈H⇤

LD�(h) −min
h∈H LD�(h) + 2discH(D0,D�)

≤ LD�(h�̂✏
) −LD�(h�) + 2discH(D0,D�)

≤ LD�(h�̂✏
) −L

D�
(h�̂✏
) +L

D�
(h�̂✏
) −LD�(h�)

+ 2discH(D0,D�)

(b)
≤ LD�(h�̂✏

) −L
D�
(h�̂✏
) +L

D�
(h�) −LD�(h�)

+ 2✏M + 2discH(D0,D�)

(c)
≤ E(�) + 2✏M, (6)

(a) follows from the definition of discrepancy and (c)
follows from the definition of E(h). For (b), observe
that by the definition of h� and h�✏ ,

L
D�
(h�̂✏
) ≤ L

D�✏
(h�̂✏
) + ✏M ≤ L

D�✏
(h�̂) + ✏M

≤ L
D�
(h�̂) + 2✏M ≤ LD�

(h�) + 2✏M,

where the second inequality follows by observing that
h�̂✏

is the optimal estimator for L
D�✏

. The last in-

equality follows similarly. Combining equations (4),
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(5), and (6) and taking the minimum over � yields the
theorem.

Note that the guarantee for LMSA is closer to the
setting of a known mixture setting �

∗. The algorithm
finds a mixture weight �∗ that not only admits a small
discrepancy with respect to the distribution D0, but
also has a small skewness and thus generalizes better.
In particular, if there are multiple distributions that are
very close toD0, then it chooses the one that generalizes
better. Furthermore, if there is a �

∗ such that D0 =

∑
p
k=1 �∗kDk, then the algorithm chooses either �

∗ or
another � that is slightly worse in terms of discrepancy,
but generalizes substantially better.

Finally, the last term in Theorem 1,
2M
�

p log p
�✏√

m0
, is the

penalty for model selection and only depends on the
number of samples from D0 and is independent of �.
Note that for the guarantee of this algorithm to be
favorable than that of the local model (1), we need
p < d. This, however, is a fairly reasonable assumption
in practice since the number of domains in applications
is in the order of several hundreds, while the typical
number of model parameters can be significantly more
than several millions. Furthermore, by combining the
cover-based bound (5) with VC-dimension bounds, one
can reduce the penalty of model selection to the fol-

lowing: O �min�
M
�

p log p
�✏√

m0
,

�
d
m0
��. Let T denote the

time complexity of finding h
D�

for a given �. Then, the

overall time complexity of LMSA is �p✏ �
p−1

T . Thus,
the algorithm is e�cient for small values of p.

4.2 LMSA-Boost algorithm

In this section, we seek a more e�cient boosting-type
solution to the MSA problem that we call LMSA-
Boost. This consists of considering the family of base
predictors {h�∶� ∈ ⇤} and searching for an optimal
ensemble, where h� is the best hypothesis for the �-
weighted mixture of source domains. The problem is
therefore the following convex optimization in terms of
the mixture weights �:

min
↵

LD0��

�∈⇤
↵�h��, (7)

subject to ∑�∈⇤ ↵� = 1 and ↵� ≥ 0 for all �.

We first show that the solution of this optimization
problem benefits from a generalization guarantee simi-
lar to that of LMSA(⇤).

Proposition 2. Let ✏ ≤ 1 and ` be L Lipschitz. Let

⇤ be the ✏-cover defined in Theorem 1. Then, for any

� > 0, with probability at least 1 − �, the solution of (7)

hm satisfies the following inequality:

LD0(hm) −min
h∈H LD0(h)

≤ E(�
∗
) + 2✏M + 2L

�

�
��2p log p

✏

m0
+ 2M

�

�
�� log 1

�

m0
.

Proof. Let conv(H⇤) denote the convex hull of H⇤.
Then,

LD0(hm) −min
h∈H LD0(h)

= LD0(hm) − min
h∈conv(H⇤)LD0(h)

+ min
h∈conv(H⇤)LD0(h) −min

h∈H LD0(h).

By (6), for any �,

min
h∈conv(H⇤)LD0(h) −min

h∈H LD0(h)

≤ min
h∈H⇤

LD0(h) −min
h∈H LD0(h) ≤ E(�) + 2✏M.

We now show that

LD0(hm) − min
h∈conv(H⇤)LD0(h)

≤ 2L

�

�
��2p log p

✏

m0
+ 2M

�

�
�� log 1

�

m0
. (8)

Combining the above three equations yields the result.

To prove (8), observe that since LD0�∑�∈⇤ ↵�h�� is

convex, hm is the minimizer of L
D̂0
(h). Hence,

LD0(hm) − min
h∈conv(H⇤)LD0(h)

≤ 2 max
h∈conv(H⇤)�LD0(h) −LD̂0

(h)�.

By McDiarmid’s inequality, with probability at least
1 − �,

max
h∈conv(H⇤)�LD0(h) −LD̂0

(h)�

≤ E max
h∈conv(H⇤)�LD0(h) −LD̂0

(h)� +M

�

�
�� log 1

�

m0
,

By the definition of the Rademacher complexity,

E � max
h∈conv(H⇤)�LD0(h)−LD̂0

(h)�� ≤Rm0(conv(`(H⇤))).

Since the Rademacher complexity of a convex hull
coincides with that of the class,

Rm0(`(conv(H⇤))) ≤ LRm0(conv(H⇤))

= LRm0(H⇤) ≤ L

�

�
��2p log p

✏

m0
.

This completes the proof.
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Since the loss function is convex, (7) is convex in ↵�.
However, the number of predictors is (p�✏)p−1, which
can be potentially large. This scenario is very similar
to that of boosting where the number of base predictors
such as decision trees can be very large and where the
goal is to find a convex combination that performs
well. To tackle this problem, we can use randomized or
block-randomized coordinate decent (RCD) (Nesterov,
2012). The convergence guarantees follow from known
results on RCD (Nesterov, 2012).

Motivated by this, the algorithm proceeds as follows.
Let �t be the coordinate chosen at time t and ↵�t , h�t

be the corresponding mixture weight and the hypothesis
at time t. We propose to find ↵�t+1 and �

t+1 as follows.
The algorithm randomly selects s values of �, denoted
by S

t+1 and chooses the one that minimizes

(↵�t+1 ,�t+1
) = argmin

↵,�∈St+1 LD̂0
�

t

�

i=1
↵�ih�i + ↵h�� .

Furthermore, at each step, we renormalize ↵ so that
it sums to one. We refer to this algorithm as LMSA-
Boost. It is known that the above algorithm converges
to the global optimum (Nesterov, 2012).

In practice, for e�ciency purposes, we can use di↵erent
sampling schemes. Suppose, for example, that we have
a hierarchical clustering of ⇤. At each round, instead
of randomly sampling a set St with s values of �, we
could sample s values of �, one from each cluster and
find the � with the maximum decrease in loss. We can
then sample s values of �, one from each sub-cluster
of the chosen cluster. This process is repeated till the
reduction in loss is small, at which point we can choose
the corresponding � as �t+1. This algorithm is similar
to heuristics used for boosting with decision trees.

4.3 LMSA-Min-max algorithm

Theorem 1 shows algorithm LMSA(⇤) benefits from
favorable guarantees for finite covers. Here, we seek a
gradient-descent type solution that mimics LMSA and
is computationally e�cient. To that end, we extend this
result to the entire simplex �p. To extend the result
to the entire simplex, we need a continuity argument,
which states that if � and �

′ are close, then the optimal
hypothesis for convex combination � and the optimal
hypothesis for combination �

′ are close. This does hold,
in general, for non-convex loss functions. Hence, we
make an additional assumption that the loss function
` is strongly convex in the parameters of optimization.
The generalization bound uses the following lemma
proven in Appendix D.

Lemma 1. Let h� = argminL
D�
(h), and ` be a µ-

strongly convex function whose gradient norms are

bounded, �∇`(h(x), y))� ≤ G for all x, y. Then for

any distribution D0,

LD0(h�) −LD0(h�′) ≤
G
√
M

√
µ
⋅ �� − �

′
�
1�2
1 .

The following lemma provides a generalization guaran-
tee for LMSA(�p).

Lemma 2. Under the assumptions of Lemma 1, for

any � > 0, with probability at least 1 − �, the hypothe-

sis hm returned by LMSA(�p) satisfies the following

inequality:

LD0(hm) −min
h∈H LD0(h)

≤ E(�
∗
) +min

✏≥0
2M
�

p log pG2M
✏2µ�

√
m0

+ 2✏M.

Proof. The proof is similar to that of Theorem 1, thus
we only provide a sketch. Let ⇤ be the minimal cover
of �p in the `1 distance such that any two elements

of the cover have distance at most µ✏2

G2M . Such a cover

will have at most �pG
2M

µ✏2 �
p
elements. Hence, with

probability at least 1 − �,

LD0(hm) − min
h∈H�p

LD0(h)

(a)
≤ 2 max

h∈H�p

�LD0(h) −LD̂0
(h)�

(b)
≤ 2 max

h∈H⇤

�LD0(h) −LD̂0
(h)� + 2✏M

(c)
≤

2M
�

p log pG2M
2✏2µ�

√
m0

+ 2✏M, (9)

where (a) follows from (4), (b) follows from Lemma 1
and the properties of the cover, and (c) follows by the
McDiarmid’s inequality together with a union bound
over the above cover. By (6),

min
h∈H�p

LD0(h) −min
h∈H LD0(h) ≤ E(�). (10)

Combining (9) and (10) and taking the minimum over
� completes the proof.

In view of these results, we propose a gradient de-
scent based algorithm LMSA-Min-max for solving the
LMSA objective. The following is the corresponding
optimization problem:

min
h∈H,�∈�p

max
�≥0,h′∈HL

D̂0
(h) + � �L

D�
(h) −L

D�
(h
′
).�

(11)
The above algorithm can be viewed as a two-player
game, where the first player controls the hypothesis h
and the weights � and the second player controls the
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Lagrange multiplier � and the alternate hypothesis h′.
Here, the goal of the first player is to find the best
hypothesis that minimizes the best fitting model, while
the second player acts as a certifier who determines
if the model selected by the first player belongs to
H�p . We show that (11) returns the same solution as
LMSA(�p) for strictly convex functions.

Theorem 2. Assume that ` is strictly convex. Then,

the minimizer of (11) coincides with the output of

LMSA(�p).

Proof. If the function ` is strictly convex in h,

min
h∈H�p

L
D̂0
(h)

=min
h∈H L

D̂0
(h) +max

�≥0 �1h∉H�p

(a)
= min

h∈H L
D̂0
(h) +max

�≥0 � min
�∈�p

�L
D�
(h) −L

D�
(h�)�

(b)
= min

h∈H L
D̂0
(h) + min

�∈�p

max
�≥0 � �L

D�
(h) −L

D�
(h�)�

=min
h∈H min

�∈�p

max
�≥0 L

D̂0
(h) + � �L

D�
(h) −L

D�
(h�)�

=min
h∈H min

�∈�p

max
�≥0 max

h′∈HL
D̂0
(h) + � �L

D�
(h) −L

D�
(h
′
)� ,

where (a) follows from the fact that ` is strongly convex.
For (b) we break analysis into two cases. If h ∈ H�p ,

then both max�≥0 �min�∈�p �LD�
(h) −L

D�
(h�)� and

min�∈�p max�≥0 � �LD�
(h) −L

D�
(h�)� are zero. Sim-

ilarly, if h ∉ H�p , then both of these quantities are
infinite and can be achieved by � →∞. This completes
the proof.

While the objective in (11) is linear in � and convex in
H, it is not jointly convex in both � and H. Hence, the
convergence guarantees of the min-max mirror descent
algorithm (Nemirovski and Yudin, 1983) do not hold
directly. However, one can use the min-max mirror
descent algorithm or stochastic minmax mirror descent
algorithms (Juditsky et al., 2011; Namkoong and Duchi,
2016; Cotter et al., 2019; Mohri et al., 2019) to obtain
heuristic solutions.

To evaluate its usefulness, we first conducted exper-
iments on a synthetic regression example, where the
ground truth is known. Let X = Rd, Y = R, p = 4,
and d = 100. For each domain k, Dk(x) is distributed
N(0, Id�d) and y = w

t
kx +N(0, Id�

2
), where wk is dis-

tributed according to N(0, Id�d) independently. We set
�
2
= 0.01 and �

∗
= [0.7,0.1,0.1,0.1]. For each source

domain k, we use mk = 10000 examples and evaluate
the results of the algorithm as we vary m0, the number
of samples in the target domain. The results are pre-
sented in Table 1. Observe that the model trained only
on the target dataset is significantly worse compared to

Table 1: Test loss of various algorithms as a function
of m0. All losses are scaled by 1000. The loss when wk

and �
∗ are known is 4.47.

m0 L
D̂0

LMSA-Min-max
50 13.16 5.15
100 33.33 4.85
200 9.13 4.80
300 6.73 4.66
400 6.06 4.74

the loss when �
∗ is known. However, LMSA-Min-max

performs nearly as well as the known mixture algorithm
with as few as 100 samples.

4.4 Lower bound

The bounds of Theorem 1 and Lemma 2 contain a
model selection penalty of O(

�

p�m0 log(1�✏)). Using
an information-theoretic bound, we show that any algo-
rithm incurs a penalty of ⌦(

�

p�m0) for some problem
settings.

Theorem 3. For any algorithm A, there exists a set

of hypotheses H, a loss function `, and distributions

D0,D1,D2, . . . ,Dp, such that E(�
∗
) = 0 and the fol-

lowing holds. Given infinitely many samples from

D1,D2, . . . ,Dp and m0 samples from D0, the output

of the algorithm hA satisfies,

E[LD0(hA)] ≥min
h∈H LD0(h) + c ⋅

�
p

m0
,

where c is a constant and the expectation is over the

randomization in the algorithm and the samples.

We relegate the proof to Appendix E. In the proof,
we construct an example such that D0 is a convex
combination of source domains, but any algorithm will
incur an additional loss of at least c ⋅

�

p�m0.

5 Alternative techniques

Here, we briefly discuss some existing algorithms, in
particular the competitive algorithm of Konstantinov
and Lampert (2019), which we will compare with our
LMSA algorithms in experiments.

One natural approach to tackle the MSA problem we
are studying consists of using discrepancy to find �,
by assigning a higher weight �k to a source domain
k that is closer to the target distribution D0 (Wen
et al., 2020; Konstantinov and Lampert, 2019). This
approach therefore relies on the estimation of the pair-
wise discrepancies discH(Dk,D0) between each source
domain k and the target domain. Specifically, the al-
gorithm of Konstantinov and Lampert (2019) consists
of selecting � by minimizing the following objective:

p

�

k=1
�kdiscH(Dk,D0) + �

�

ms(���m),
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Figure 2: Illustration of the pairwise discrepancy ap-
proach.

for some regularization parameter �.

We argue that this approach can be sub-optimal in
various scenarios and that the estimation of the dis-
crepancies in general can lead to weaker guarantees.

To illustrate this, consider the case where the sam-
ple size is the same for all source domains and where
discH(D0,D1) = discH(D0,D2) = discH(D0,D3) > 0.
Then, for any value �, the weights assigned by the
algorithm coincide: �1 = �2 = �3, which is sub-optimal
for scenarios such as that of the following example.

Example 1. Let p = 3 and D0 =
D1+D2

2 , with

discH(D0,D1) = discH(D0,D2) = discH(D0,D3) > 0.
Furthermore let the number of samples from each

source domain be very large. In this case, observe

that �
∗
= (0.5,0.5,0). If we just use the pairwise dis-

crepancies between D0 and Dk to set �, then � would

satisfy �1 = �2 = �3 = 1�3, which is far from optimal.

The example is illustrated in Figure 2.

Since the convergence guarantees of this pro-
posed algorithm are based on pairwise discrepan-
cies, loosely speaking, the guarantees are tight in
our formulation when min� discH(D0,D�) is close to
min�∑k �kdiscH(D0,Dk). However, for examples sim-
ilar to above, such an algorithm would be sub-optimal.

Instead of computing pairwise discrepancies, one can
compute the discrepancy between D0 and D�, that
is discH(D0,D�), and choose � to minimize this dis-
crepancy. However, this further requires estimating the
discrepancy between the source and target domains and

the generalization bound varies as Õ �
�

d
m0
�, which

can again be weak or uninformative for small values of
m0. We further discuss this question in more detail in
Appendix C.2.

6 Experiments

We evaluated our algorithms and compared them to
several baselines on the digits recognition dataset and
the visual adaptation O�ce dataset (Saenko et al.,
2010). We first evaluated our algorithm on a stan-
dard digits MSA dataset composed of four domains:
MNIST (LeCun and Cortes, 2010), MNIST-M (Ganin
and Lempitsky, 2015), SVHN (Netzer et al., 2011), and
SynthDigits (Ganin and Lempitsky, 2015), by treating
one of MNIST, MNIST-M, SVHN, or SynthDigits as

Figure 3: Performance of LMSA as a function of the
target sample size m0.

the target domain, and the rest as source. We used
the same preprocessing and data split as (Zhao et al.,
2018), i.e., 20,000 labeled training samples for each
domain when used as a source. When a domain is used
as the target, we used the first 1280 examples from
the 20, 000. We also used the same convolution neural
network as the digit classification model in (Zhao et al.,
2018), with the exception that we used a regular ReLU
instead of leaky ReLU. Unlike (Zhao et al., 2018), we
trained the models using stochastic gradient descent
with a fixed learning rate without weight decay.

We used several baselines for comparison:

(i) best-single-source: best model trained only on one
of the sources;

(ii) combined-sources: model trained on dataset ob-
tained by concatenating all the sources;

(iii) target-only : model trained only on the limited
target data;

(iv) sources+target : models trained by combining
source and targets;

(v) sources + target (equal weight): models trained by
combining source and targets where all of them
get the same weight;

(vi) pairwise discrepancy : the pairwise discrepancy
approach of Konstantinov and Lampert (2019).

Baselines (ii), (iv), and (v) involve data concatenation.
For baseline (vi) and the proposed algorithms LMSA,
LMSA-Boost, LMSA-Min-max, we report the better
results of the following two approaches: one where all
1280 target samples are treated as D̂0 and one where
1024 random samples are treated as a separate new
source and 256 samples are used as samples from D̂0.

The results are presented in Table 2. Our LMSA al-
gorithms perform well compared to the baselines. We
note that LMSA-Min-max performed better using
all 1280 target samples as D̂0, whereas Konstantinov
and Lampert (2019), LMSA, and LMSA-Boost per-
formed better using 1024 target samples as a separate
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Table 2: Test accuracy of algorithms for di↵erent target domains. The instances where the proposed algorithm
performs better than all the baselines are highlighted. The standard deviations are calculated over ten runs.

algorithm MNIST MNIST-M SVHN SynthDigits
best-single-source 98.0(0.1) 56.0(0.7) 83.1(0.4) 86.1(0.4)
combined-sources 98.4(0.1) 67.2(0.4) 81.1(0.6) 87.2(0.1)
target-only 96.4(0.1) 86.3(0.5) 77.7(0.5) 88.5(0.2)
sources+target 98.6(0.1) 74.8(0.5) 85.4(0.3) 90.6(0.3)
sources+target (equal weight) 97.4(0.2) 77.8(0.6) 85.5(0.4) 89.8(0.3)
(Konstantinov and Lampert, 2019) 98.4(0.1) 84.6(0.5) 86.3(0.4) 90.5(0.4)
LMSA 98.5(0.1) 87.6(0.6) 86.2(0.4) 91.5(0.2)
LMSA-Boost 98.4(0.2) 88.1(0.4) 86.1(0.4) 91.4(0.3)
LMSA-Min-max 98.0(0.3) 89.5(0.4) 86.7(0.4) 91.7(0.3)

Table 3: Test accuracy of algorithms for di↵erent target domains for the O�ce dataset. The instances where the
proposed algorithm performs better than all the baselines are highlighted.

algorithm amazon dslr webcam
best-single-source 58.8(1.0) 98.7(0.6) 94.0(1.3)
combined-sources 62.0(0.7) 97.0(0.9) 91.9(1.3)
target-only 77.8(0.8) 96.4(0.8) 91.5(0.9)
sources+target 77.7(0.6) 98.8(0.6) 96.6(0.7)
sources+target (equal weight) 76.7(0.5) 99.4(0.5) 96.8(0.6)
LMSA 78.1(0.5) 99.5(0.4) 97.5(0.8)
LMSA-Boost 78.6(0.4) 99.5(0.5) 97.6(0.3)
LMSA-Min-max 77.7(0.7) 98.9(0.3) 97.0(0.5)

new source domain. As expected, the performance of
proposed algorithms is better than that of the unsu-
pervised domain adaptation algorithms of (Zhao et al.,
2018) (see Table 2 in their paper), due to the availability
of labeled target samples.

Figure 3 shows the performance of the LMSA as a
function of the number of target samples. Of the four
target domains, MNIST is the easiest domain and re-
quires very few target samples to achieve good accuracy,
and MNIST-M is the hardest and requires many target
samples to achieve good accuracy. We omit the curves
for LMSA-Boost and LMSA-Min-max because they
are similar.

In addition to the digit recognition task, we considered
the standard visual adaptation O�ce dataset (Saenko
et al., 2010), which has 3 domains: amazon, dslr, and
webcam. This dataset consists of 31 categories of ob-
jects commonly found in an o�ce environment. The
amazon domain consists of 2817 images, dslr 498, and
webcam 795, for a total of 4110 images. For source
domains, we used all available samples, and for target
domains, we used 20 samples per category for ama-
zon and 8 for both dslr and webcam. However, rather
than AlexNet, we used the ResNet50 (He et al., 2015)
architecture pre-trained on ImageNet.

Similar to the digits experiment, for baseline (vi)
and the proposed algorithms LMSA, LMSA-Boost,
LMSA-Min-max, we report the better results of the

following two approaches: one where all target samples
are treated as D̂0 and one where some percentage of
random samples are treated as a separate new source
and the remaining samples are treated as samples from
D̂0. For the latter approach, due to the limited size
of the O�ce dataset, we used cross validation with 5
di↵erent splits to determine what percentage of sam-
ples to treat as a separate new source. As discussed
in Appendix C.2, empirical estimates of the discrep-
ancy based on small samples are unreliable for small
datasets and large model classes. Our experiments
corroborated this theory. Since the O�ce dataset is
small and the ResNet50 architecture has many parame-
ters and our loss (log-loss) is unbounded, the empirical
pairwise discrepancy estimate was infinite. Hence, we
omit the results for the pairwise discrepancy approach
of (Konstantinov and Lampert, 2019). The results are
presented in Table 3. Our LMSA algorithms perform
well compared to the baselines.

7 Conclusion

We presented a theoretical and algorithmic study of
multiple-source domain adaptation with limited target
labeled data. The algorithms we presented benefit
from very favorable learning guarantees and further
perform well in our experiments, typically surpassing
other baselines. We hope that our analysis will serve
as a tool for further theoretical studies of this problem
and other related adaptation problems and algorithms.
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