
Supplementary material for the paper:
“An Analysis of LIME for Text Data”

Organization of the supplementary material

In this supplementary material, we collect the proofs of all our theoretical results and additional experiments.
We study the covariance matrix in Section 1 and the responses in Section 2. The proof of our main results
can be found in Section 3. Combinatorial results needed for the approximation formulas obtained in the linear
case are collected in Section 4, while other technical results can be found in Section 5. Finally, we present some
additional experiments in Section 6.

Notation. First, let us quickly recall our notation. We consider x, z, π the generic random variables associated
to the sampling of new examples by LIME. To put it plainly, the new examples x1, . . . , xn are i.i.d. samples from
the random variable x. Also remember that we denote by S ⊆ {1, . . . , d} the random subset of indices removed
by LIME when creating new samples for a text with d distinct words. For any finite set R, we write #R the
cardinality of R. Recall that we denote by S the random set of indices deleted in the sampling. We write Es the
expectation conditionally to #S = s. Since we consider vectors belonging to Rd+1 with the zero-th coordinate
corresponding to an intercept, we will often start the numbering at 0 instead of 1. For any matrix M , we set
‖M‖F the Frobenius norm of M and ‖M‖op the operator norm of M .

1 The study of Σ

We begin by the study of the covariance matrix. We show in Section 1.1 how to compute Σ. We will see how
the α coefficients defined in the main paper appear. In Section 1.2, we show that it is possible to invert Σ in
closed-form: it can be written in function of cd and the σ coefficients. We show how Σ̂n concentrates around Σ
in Section 1.3. Finally, Section 1.4 is dedicated to the control of

∥∥Σ−1
∥∥
op

.

1.1 Computation of Σ

In this section, we derived a closed-form expression for Σ := E[Σ̂n] as a function of d and ν. Recall that we
defined Σ̂ = 1

nZ
>WZ. By definition of Z and W , we have

Σ̂ =


1
n

∑n
i=1 πi

1
n

∑n
i=1 πizi,1 · · · 1

n

∑n
i=1 πizi,d

1
n

∑n
i=1 πizi,1

1
n

∑n
i=1 πizi,1 · · · 1

n

∑n
i=1 πizi,1zi,d

...
...

. . .
...

1
n

∑n
i=1 πizi,d

1
n

∑n
i=1 πizi,1zi,d · · · 1

n

∑n
i=1 πizi,d

 ∈ R(d+1)×(d+1) .

Taking the expectation in the last display with respect to the sampling of new examples yields

Σ =


E [π] E [πz1] · · · E [πzd]
E [πz1] E [πz1] · · · E [πz1zd]

...
...

. . .
...

E [πzd] E [πz1zd] · · · E [πzd]

 ∈ R(d+1)×(d+1) . (13)

An important remark is that E [πzj ] does not depend on j. Indeed, there is no privileged index in the sampling
of S (the subset of removed indices). Thus we only have to look into E [πz1] (say). For the same reason, E [πzjzk]
does not depend on the 2-uple (j, k), and we can limit our investigations to E [πz1z2]. This is the reason why we
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Figure 8: The function ψ defined by Eq. (15) with bandwidth parameter ν = 0.25. In orange (resp. blue), one
can see the upper (resp. lower) bound given by Eq. (16).

defined α0 = E [π] and, for any 1 ≤ p ≤ d,

αp = E [π · z1 · · · zp] (14)

in the main paper. We recognize the definition of the αps in Eq. (13) and we write

Σj,k =


α0 if j = k = 0,

α1 if j = 0 and k > 0 or j > 0 and k = 0 or j = k > 0,

α2 otherwise.

As promised, we can be more explicit regarding the α coefficients. Recall that we defined the mapping

ψ : [0, 1] −→ R (15)

t 7−→ exp
(
−(1−

√
1− t)2/(2ν2)

)
.

It is a decreasing mapping (see Figure 8). With this notation in hand, we have the following expression for the
α coefficients (this is Proposition 1 in the paper):

Proposition 5 (Computation of the α coefficients). For any d ≥ 1, ν > 0, and p ≥ 0, it holds that

αp =
1

d

d∑
s=1

p−1∏
k=0

d− s− k
d− k

ψ
( s
d

)
.

In particular, the first three α coefficients can be written

α0 =
1

d

d∑
s=1

ψ
( s
d

)
, α1 =

1

d

d∑
s=1

(
1− s

d

)
ψ
( s
d

)
, and α2 =

1

d

d∑
s=1

(
1− s

d

)(
1− s

d− 1

)
ψ
( s
d

)
.

Proof. The idea of the proof is to use the law of total expectation with respect to the collection of events
{#S = s} for s ∈ {1, . . . , d}. Since P (#S = s) = 1

d for any 1 ≤ s ≤ d, all that is left to compute is the
expectation of πz1 · · · zp conditionally to #S = s. According to the remark in Section 2.3 of the main paper,
π = ψ(s/d) conditionally to {#S = s}. We can conclude since, according to Lemma 4,

Ps (w1 ∈ x, . . . , wp ∈ x) =
(d− s)(d− s− 1) · · · (d− s− p+ 1)

d(d− 1) · · · (d− p+ 1)
.

It is important to notice that, when ν → +∞, ψ(t) → 0 for any t ∈ (0, 1]. As a consequence, in the large
bandwidth regime, the ψ(s/d) weights are arbitrarily close to one. We demonstrate this effect in Figure 9. In
this situation, the α coefficients take a simpler form.

Corollary 1 (Large bandwidth approximation of α coefficients). For any 0 ≤ p ≤ d, it holds that

lim
ν→+∞

αp =
d− p

(p+ 1)d
.
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Figure 9: Behavior of the first α coefficients with respect to the bandwidth parameter ν. The red vertical lines
mark the default bandwidth choice (ν = 0.25). The green horizontal line denotes the limits for large d given by
Corollary 1.

We report these approximate values in Figure 9. In particular, when both ν and d are large, we can see that
αp ≈ 1/(p+ 1). Thus α0 ≈ 1, α1 ≈ 1

2 , and α2 ≈ 1
3 .

Proof. When ν → +∞, we have ψ(s/d)→ 1 and we can conclude directly by using Lemma 5.

Notice that we can be slightly more precise than Corollary 1. Indeed, ψ is decreasing on [0, 1], thus for any
t ∈ [0, 1], exp

(
−1/(2ν2)

)
≤ ψ(t) ≤ 1. Therefore we can present some efficient bounds for the α coefficients when

ν is large.

Corollary 2 (Bounds on the α coefficients). For any 0 ≤ p ≤ d, it holds that

d− p
(p+ 1)d

e
−1

2ν2 ≤ αp ≤
d− p

(p+ 1)d
.

One can further show that, for any 0 ≤ t ≤ 1,

exp

(
−t2

2ν2

)
≤ ψ(t) ≤ exp

(
−t2

8ν2

)
. (16)

Using Eq. (16) together with the series-integral comparison theorem would yield very accurate bounds for the α
coefficients and related quantities, but we will not follow that road.

1.2 Computation of Σ−1

In this section, we present a closed-form formula for the matrix inverse of Σ as a function of d and ν.

Proposition 6 (Computation of Σ−1). For any d ≥ 1 and ν > 0, recall
that we defined

cd = (d− 1)α0α2 − dα2
1 + α0α1 .

Assume that cd 6= 0 and α1 6= α2. Define σ0 := (d− 1)α2 + α1 and recall that
we set 

σ1 = −α1 ,

σ2 =
(d−2)α0α2−(d−1)α2

1+α0α1

α1−α2
,

σ3 =
α2

1−α0α2

α1−α2
.

Then it holds that

Σ−1 =
1

cd



σ0 σ1 σ1 · · · σ1
σ1 σ2 σ3 · · · σ3

σ1 σ3 σ2
. . .

...
...

...
. . .

. . . σ3
σ1 σ3 · · · σ3 σ2

 ∈ R(d+1)×(d+1) . (17)
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Figure 10: Evolution of the
normalization constant cd as
a function of the bandwidth
for d = 30. In red, the de-
fault bandwidth ν = 0.25,
in green the limit for large
bandwidth given by Corol-
lary 3.

We display the evolution of the σi/cd coefficients with respect to ν in Figure 11.
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Figure 11: Evolution of σi/cd as a function of ν for 1 ≤ i ≤ 4 for d = 30. In red the default value of the
bandwidth. In green the limits given by Corollary 3. We can see that the σ coefficients are close to these limit
values for the default bandwidth.

Proof. From Eq. (13), we can see that Σ is a block matrix. The result follows from the block matrix inversion
formula and one can check directly that Σ · Σ−1 = Id+1.

Our next result shows that the assumptions of Proposition 6 are satisfied: α1−α2 and cd are positive quantities.
In fact, we prove a slightly stronger statement which will be necessary to control the operator norm of Σ−1.

Proposition 7 (Σ is invertible). For any d ≥ 2,

α1 − α2 ≥
e

−1

2ν2

6
> 0 , and cd ≥

e
−2

ν2

40
> 0 .

Proof. By definition of the α coefficients (Eq. (14)), we have

α1 − α2 =
1

d

d∑
s=1

(
1− s

d

) s

d− 1
ψ
( s
d

)
.

Since e
−1

2ν2 ≤ ψ(t) ≤ 1 for any t ∈ [0, 1], we have

e
−1

2ν2 · 1

d

d∑
s=1

(
1− s

d

) s

d− 1
=
d+ 1

6d
· e

−1

2ν2 ≤ α1 − α2 ≤
d+ 1

6d
. (18)

The right-hand side of Eq. (18) yields the promised bound. Note that the same reasoning gives

d+ 1

2d
· e

−1

2ν2 ≤ α0 − α1 ≤
d+ 1

2d
. (19)

Let us now find a lower bound for cd. We first start by noticing that

cd = dα1(α0 − α1)− (d− 1)α0(α1 − α2) (20)

=

d∑
s=1

(
1− s

d

)
ψ
( s
d

)
· 1

d

d∑
s=1

s

d
ψ
( s
d

)
−

d∑
s=1

ψ
( s
d

)
· 1

d

d∑
s=1

(
1− s

d

)
ψ
( s
d

)

cd =
1

d

 d∑
s=1

ψ
( s
d

)
·
d∑
s=1

s2

d2
ψ
( s
d

)
−

(
d∑
s=1

s

d
ψ
( s
d

))2
 .

Therefore, by Cauchy-Schwarz inequality, cd ≥ 0. In fact, cd > 0 since the equality case in Cauchy-Schwarz is
attained for proportional summands, which is not the case here.

However, we need to improve this result if we want to control
∥∥Σ−1

∥∥
op

more precisely. To this extent, we use a

refinement of Cauchy-Schwarz inequality obtained by Filipovski (2019). Let us set, for any 1 ≤ s ≤ d,

as :=

√
ψ
( s
d

)
, bs :=

s

d

√
ψ
( s
d

)
, A :=

√√√√ d∑
s=1

a2s , and B :=

√√√√ d∑
s=1

b2s .
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With these notation,

cd =
1

d

A2B2 −

(
d∑
s=1

asbs

)2
 ,

and Cauchy-Schwarz yields A2B2 ≥
(∑d

s=1 asbs

)2
. Theorem 2.1 in Filipovski (2019) is a stronger result, namely

AB ≥
d∑
s=1

asbs +
1

4

d∑
s=1

(a2sB
2 − b2sA2)2

a4sB
4 + b4sA

4
asbs . (21)

Let us focus on this last term. Since all the terms are non-negative, we can lower bound by the term of order d,
that is,

1

4

d∑
s=1

(a2sB
2 − b2sA2)2

a4sB
4 + b4sA

4
asbs ≥

1

4

(b2dA
2 − a2dB2)2

b4dA
4 + a4dB

4
adbd =

1

4

(A2 −B2)2

A4 +B4
ψ(1) , (22)

since ad = bd =
√
ψ(1). On one side, we notice that

A2 −B2 =

d∑
s=1

(
1− s2

d2

)
ψ
( s
d

)
≥ exp

(
−1

2ν2

)
·
d∑
s=1

(
1− s2

d2

)
(for any t ∈ [0, 1], ψ(t) ≥ e−1/(2ν

2))

= exp

(
−1

2ν2

)
· 1

6

(
4d− 1

d
− 3

)
A2 −B2 ≥

3d · exp
( −1
2ν2

)
8

,

where we used d ≥ 2 in the last display. We deduce that (A2 −B2)2 ≥ 9d2e
−1

2ν2 /64. On the other side, it is clear
that A2 ≤ d, and

B2 ≤
d∑
s=1

s2

d2
=

(d+ 1)(2d+ 1)

6d
.

For any d ≥ 2, we have B2 ≤ 5d/8, and we deduce that A4 +B4 ≤ 89
64d

2. Therefore,

(A2 −B2)2

A4 +B4
≥ 9e

−1

ν2

89
.

Coming back to Eq. (22), we proved that

1

4

d∑
s=1

(a2sB
2 − b2sA2)2

a4sB
4 + b4sA

4
asbs ≥

9e
−3

2ν2

356
.

Plugging into Eq. (21) and taking the square, we deduce that

A2B2 ≥

(
d∑
s=1

asbs

)2

+ 2 ·
d∑
s=1

asbs ·
9e

−3

2ν2

356
+

81e
−3

ν2

126736
.

But
∑
asbs ≥ de

−1

2ν2 /2, therefore, ignoring the last term, we have

A2B2 −

(
d∑
s=1

asbs

)2

≥ 9de
−2

ν2

356
.

We conclude by noticing that 356/9 ≤ 40.
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Remark 1. We suspect that the correct lower bound for cd is actually of order d, but we did not manage to
prove it. Careful inspection of the proof shows that this d factor is lost when considering only the last term of
the summation in Eq. (21). It is however challenging to control the remaining terms, since B2 is roughly half of

A2 and s2

d2B
2 −A2 is close to 0 for some values of s.

We conclude this section by giving an approximation of Σ−1 for large bandwidth. This approximation will be
particularly useful in Section 3.1.

Corollary 3 (Large bandwidth approximation of Σ−1). For any d ≥ 2, when ν → +∞, we have

cd −→
d2 − 1

12d
,

and, as a consequence, 
σ0

cd
→ 2(2d−1)

d+1 = 4− 6
d +O

(
1
d2

)
σ1

cd
→ −6

d+1 = − 6
d +O

(
1
d2

)
σ2

cd
→ 6(d2−2d+3)

(d+1)(d−1) = 6− 12
d +O

(
1
d2

)
σ3

cd
→ −6(d−3)

(d+1)(d−1) = − 6
d +O

(
1
d2

)
.

(23)

Proof. The proof is straightforward from the definition of cd and the σ coefficients, and Corollary 1.

1.3 Concentration of Σ̂n

We now turn to the concentration of Σ̂n around Σ. More precisely, we show that Σ̂n is close to Σ in operator
norm, with high probability. Since the definition of Σ̂n is identical to the one in the Tabular LIME case, we can
use the proof machinery of Garreau and von Luxburg (2020b).

Proposition 8 (Concentration of Σ̂n). For any t ≥ 0,

P
(∥∥∥Σ̂n − Σ

∥∥∥
op
≥ t
)
≤ 4d · exp

(
−nt2

32d2

)
.

Proof. We can write Σ̂ = 1
n

∑
i πiZiZ

>
i . The summands are bounded i.i.d. random variables, thus we can apply

the matrix version of Hoeffding inequality. More precisely, the entries of Σ̂n belong to [0, 1] by construction, and
Corollary 2 guarantees that the entries of Σ also belong to [0, 1]. Therefore, if we set Mi := 1

nπiZiZ
>
i −Σ, then

the Mi satisfy the assumptions of Theorem 21 in Garreau and von Luxburg (2020b) and we can conclude since
1
n

∑
iMi = Σ̂n − Σ.

1.4 Control of
∥∥Σ−1

∥∥
op

We now turn to the control of
∥∥Σ−1

∥∥
op

. Essentially, our strategy is to bound the entries of Σ−1, and then to

derive an upper bound for
∥∥Σ−1

∥∥
op

by noticing that
∥∥Σ−1

∥∥
op
≤
∥∥Σ−1

∥∥
F

. Thus let us start by controlling the σ

coefficients in absolute value.

Lemma 1 (Control of the σ coefficients). Let d ≥ 2 and ν ≥ 1.66. Then it holds that

|σ0| ≤
d

3
, |σ1| ≤ 1 , |σ2| ≤

3d

2
e

1
2ν2 , and |σ3| ≤

3

2
e

1
2ν2 .

Proof. By its definition, we know that σ0 is positive. Moreover, from Corollary 2, we see that

σ0 = (d− 1)α2 + α1

≤ (d− 1)(d− 2)

3d
+
d− 1

2d

=
2d2 − 3d+ 3

6d
.
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One can check that for any d ≥ 2, we have 2d2 − 3d+ 3 ≤ 2d2, which concludes the proof of the first claim.

Since |σ1| = α1, the second claim is straightforward from Corollary 2.

Regarding σ2, we notice that

σ2 =
cd + α2

1 − α0α2

α1 − α2
.

Since α0 ≥ α1 ≥ α2, we have

−α1(α0 − α1) ≤ α2
1 − α0α2 ≤ α0(α1 − α2) .

Using Eqs. (18) and (19) in conjunction with Corollary 2, we find that
∣∣α2

1 − α0α2

∣∣ ≤ 1/4. Moreover, from
Eq. (20), we see that cd ≤ d/4. We deduce that

|σ2| ≤
(
d

4
+

1

4

)
· 6e

1
2ν2 ,

where we used the first statement of Proposition 7 to lower bound α1α2. The results follows, since d ≥ 2.

Finally, we write

|σ3| =
∣∣α2

1 − α0α2

∣∣
α1 − α2

≤ 1/4

d+1
6d · e

−1

2ν2

according to Proposition 7.

We now proceed to bound the operator norm of Σ−1.

Proposition 9 (Control of
∥∥Σ−1

∥∥
op

). For any d ≥ 2 and any ν > 0, it holds that

∥∥Σ−1
∥∥
op
≤ 70d3/2e

5
2ν2 .

Remark 2. We notice that the control obtained worsens as d → +∞ and ν → 0. We conjecture that the
dependency in d is not tight. For instance, showing that cd = Ω(d) (that is, improving Proposition 7) would
yield an upper bound of order d instead of d3/2. The discussion after Proposition 7 indicates that such an
improvement may be possible. Moreover, we see in experiments that the concentration of β̂n does not degrade
that much for large d (see, in particular, Figure 17 in Section 6.2), another sign that Proposition 9 could be
improved.

Proof. We will use the fact that
∥∥Σ−1

∥∥
op
≤
∥∥Σ−1

∥∥
F

. We first write

∥∥Σ−1
∥∥2
F

=
1

c2d

(
σ2
0 + 2dσ2

1 + dσ2
2 + (d2 − d)σ2

3

)
,

by definition of the σ coefficients. On one hand, using Lemma 1, we write

σ2
0 + 2dσ2

1 + dσ2
2 + (d2 − d)σ2

3 ≤
d2

9
+ 2d+ d · (3d/2)2e

1
ν2 + (d2 − d) · 9

4
e

1
ν2

≤ 3d3e
1
ν2 , (24)

where we used cd ≤ d and d ≥ 2 in the last display. On the other hand, a direct consequence of Proposition 7 is
that

1

c2d
≤ 1600e

4
ν2 . (25)

Putting together Eqs. (24) and (25), we obtain the claimed result, since
√

3 · 1600 ≤ 70.
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2 The study of Γf

We now turn to the study of the (weighted) responses. In Section 2.1, we obtain an explicit expression for
the average responses. We show how to obtain closed-form expressions in the case of indicator functions in
Section 2.2. In the case of a linear model, we have to resort to approximations that are detailed in Section 2.3.
Section 2.4 contains the concentration result for Γ̂n.

2.1 Computation of Γf

We start our study by giving an expression for Γf for any f under mild assumptions. Recall that we defined
Γ̂n = 1

nZ
>Wy, where y ∈ Rd+1 is the random vector defined coordinate-wise by yi = f(xi). From the definition

of Γ̂n, it is straightforward that

Γ̂n =


1
n

∑n
i=1 πif(φ(xi))

1
n

∑n
i=1 πizi,1f(φ(xi))

...
1
n

∑n
i=1 πizi,df(φ(xi))

 ∈ Rd+1 .

As a consequence, since we defined Γf = E[Γ̂n], it holds that

Γf =


E [πf(φ(x))]
E [πz1f(φ(x))]

...
E [πzdf(φ(x))]

 . (26)

Of course, Eq. (26) depends on the model f . These computations can be challenging. Nevertheless, it is possible
to obtain exact results in simple situations.

Constant model. As a warm up, let us show how to compute Γf when f is constant. Perhaps the simplest
model of all: f always returns the same value, whatever the value of φ(x) may be. By linearity of Γf (see
Section 3.2 of the main paper), it is sufficient to consider the case f = 1. From Eq. (26), we see that

Γfj =

{
E [π] if j = 0,

E [πzj ] otherwise.

We recognize the definitions of the α coefficients, and, more precisely, Γf0 = α0 and Γfj = α1 if j ≥ 1.

2.2 Indicator functions

Let us turn to a slightly more complicated class of models: indicator functions, or rather products of indicator
functions. As explained in the paper, these functions fall into our framework. We have the following result:

Proposition 10 (Computation of Γf , product of indicator functions). Set J ⊆ {1, . . . , d} a set of p
distinct indices. Define

f(φ(x)) :=
∏
j∈J

1φ(x)j>0 .

Then it holds that

Γf` =

{
αp if ` ∈ {0} ∪ J
αp+1 otherwise.

Proof. As noticed in the paper, f can be written as a product of zjs. Therefore, we only have to compute

E
[
π
∏
j∈J

zj

]
and E

[
πzk

∏
j∈J

zj

]
,

for any 1 ≤ k ≤ d. The first term is αp by definition. For the second term, we notice that if ` ∈ {0}∪J , then two
terms are identical in the product of binary features, and we recognize the definition of αp. In all other cases,
there are no cancellation and we recover the definition of αp+1.
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2.3 Linear model

We now consider a linear model, that is,

f(φ(x)) :=

d∑
j=1

λjφ(x)j , (27)

where λ1, . . . , λd are arbitrary fixed coefficients. In order to simplify the computations, we will consider that
ν → +∞ in this section. In that case, π

a.s.−→ 1. It is clear that f is bounded on SD−1, thus, by dominated
convergence,

Γf −→ Γ∞ :=


E [f(φ(x)]
E [z1f(φ(x)]

...
E [zdf(φ(x)]

 ∈ Rd+1 . (28)

By linearity of f 7→ Γf∞, it is sufficient to compute E [φ(x)j ] and E [zkφ(x)j ] for any 1 ≤ j, k ≤ d.

For any 1 ≤ j ≤ d, recall that we defined

ωk =
m2
jv

2
j∑d

k=1m
2
kv

2
k

,

and HS :=
∑
k∈S ωk, where S is the random subset of indices chosen by LIME. The motivation for the definition

of the random variable HS is the following proposition: it is possible to write the expected TF-IDF as an
expression depending on HS .

Proposition 11 (Expected normalized TF-IDF). Let wj be a fixed word of ξ. Then, it holds that

E [φ(x)j ] = E [zjφ(x)j ] =
d− 1

2d
· φ(ξ)j · E

[
1√

1−HS

∣∣∣∣S 63 j] , (29)

and, for any k 6= j,

E [zkφ(x)j ] =
d− 2

3d
· φ(ξ)j · E

[
1√

1−HS

∣∣∣∣S 63 j, k] . (30)

Proof. We start by proving Eq (29). Let us split the expectation depending on wj ∈ x. Since the term frequency
is 0 if wj /∈ x, we have

E [φ(x)j ] = E [φ(x)j |wj ∈ x]P (wj ∈ x) . (31)

Lemma 5 gives us the value of P (wj ∈ x). Let us focus on the TF-IDF term in Eq. (31). By definition, it is the
product of the term frequency and the inverse document frequency, normalized. Since the latter does not change
when words are removed from ξ, only the norm changes: we have to remove all terms indexed by S. For any
1 ≤ j ≤ d, let us set mj (resp. vj) the term frequency (resp. the inverse term frequency) of wj Conditionally to
{wj ∈ x},

φ(x)j =
mjvj√∑
k/∈Sm

2
kv

2
k

.

Let us factor out φ(ξ)j in the previous display. By definition of HS , we have

φ(x)j = φ(ξ)j ·
1√

1−
∑
k∈S

m2
kv

2
k

‖ϕ(ξ)‖2

= φ(ξ)j ·
1√

1−HS

.

Since {wj ∈ x} is equivalent to {j /∈ S} by construction, we can conclude. The proof of the second statement is
similar; one just has to condition with respect to {wj , wk ∈ x} instead, which is equivalent to {S 63 j, k}.

As a direct consequence of Proposition 11, we can derive Γf∞ = limν→+∞ Γf when f : x 7→ xj . Recall that we
set Ej = E

[
(1−HS)−1/2

∣∣S 63 j] and Ej,k = E
[
(1−HS)−1/2

∣∣S 63 j, k]. Then

(
Γf∞
)
k

=

{(
1
2 −

1
2d

)
· Ej · φ(ξ)j if k = 0 or k = j,(

1
3 −

2
3d

)
· Ej,k · φ(ξ)j otherwise.

(32)
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In practice, the expectation computations required to evaluate Ej and Ej,k are not tractable as soon as d is large.
Indeed, in that case, the law of HS is unknown and approximating the expectation by Monte-Carlo methods
requires is hard since one has to sum over all subsets and there are O

(
2d
)

subsets S such that S ⊆ {1, . . . , d}.
Therefore we resort to approximate expressions for these expected values computations.

We start by writing

E
[

1√
1−X

]
≈ 1√

1− E [X]
. (33)

All that is left to compute will be E [HS |S 63 j] and E [HS |S 63 j, k]. We see in Section 4 that after some
combinatoric considerations, it is possible to obtain these expected values as a function of ωj and ωk. More
precisely, Lemma 3 states that

E [HS |S 63 j] =
1− ωj

3
+O

(
1

d

)
and E [HS |S 63 j, k] =

1− ωj − ωk
4

+O
(

1

d

)
. (34)

When d is large and the ωks are small, using Eq. (33), we obtain the following approximations:

E [φ(x)j ] ≈
1

2
·
√

1

1− 1
3

· φ(ξ)j ≈ 0.61 · φ(ξ)j , (35)

and, for any k 6= j,

E [zkφ(x)j ] ≈
1

3
·
√

1

1− 1
4

· φ(ξ)j ≈ 0.38 · φ(ξ)j . (36)

For all practical purposes, we will use Eq. (35) and (36).

Remark 3. One could obtain better approximations than above in two ways. First, it is possible to take into
account the dependency in ωj and ωk in the expectation of HS . That is, plugging Eq. (34) into Eq. (33) instead
of the numerical values 1/3 and 1/4. This yields more accurate, but more complicated formulas. Without being
so precise, it is also possible to consider an arbitrary distribution for the ωks (for instance, assuming that the
term frequencies follow the Zipf’s law (Powers, 1998)). Second, since the mapping θ : x 7→ 1√

1−x is convex, by

Jensen’s inequality, we are always underestimating by considering θ(E [X]) instead of E [θ(X)]. Going further in
the Taylor expansion of θ is a way to fix this problem, namely using

E
[

1√
1−X

]
≈ 1√

1− E [X]
+

3Var (X)

8
√

1− E [X]
,

instead of Eq. (33). We found that it was not useful to do so from an experimental point of view: our
theoretical predictions match the experimental results while remaining simple enough.

2.4 Concentration of Γ̂n

We now show that Γ̂n is concentrated around Γf . Since the expression of Γ̂n is the same than in the tabular
case, and since f is bounded on the unit sphere SD−1, the same reasoning as in the proof of Proposition 24 in
Garreau and von Luxburg (2020b) can be applied.

Proposition 12 (Concentration of Γ̂n). Assume that f is bounded by M > 0 on SD−1. Then, for any t > 0,
it holds that

P
(
‖Γ̂n − Γf‖ ≥ t

)
≤ 4dexp

(
−nt2

32Md2

)
.

Proof. Recall that ‖φ(x)‖ = 1 almost surely. Since f is bounded by M on SD−1, it holds that |f(φ(x))| ≤ M
almost surely. We can then proceed as in the proof of Proposition 24 in Garreau and von Luxburg (2020b).

3 The study of βf

In this section, we study the interpretable coefficients. We start with the computation of βf in Section 3.1. In
Section 3.2, we show how β̂n concentrates around βf .
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3.1 Computation of βf

Recall that, for any model f , we have defined βf = Σ−1Γf . Directly multiplying the expressions found for Σ−1

(Eq. (17)) and Γf (Eq. (26)) obtained in the previous sections, we obtain the expression of βf in the general
case (this is Proposition 2 in the paper).

Proposition 13 (Computation of βf , general case). Assume that f is bounded on the unit sphere. Then

βf0 = c−1d

{
σ0E [πf(φ(x))] + σ1

d∑
k=1

E [πzkf(φ(x))]

}
, (37)

and, for any 1 ≤ j ≤ d,

βfj = c−1d

{
σ1E [πf(φ(x))] + σ2E [πzjf(φ(x))] + σ3

d∑
k=1
k 6=j

E [πzkf(φ(x))]

}
. (38)

This is Proposition 2 in the paper, with the additional expression of the intercept βf0 . Let us see how to obtain
an approximate, simple expression when both the bandwidth parameter and the size of the local dictionary are
large. When ν → +∞, using Corollary 3, we find that

βf0 −→
(
βf∞
)
0

:=
4d− 2

d+ 1
E [πf(φ(x))]− 6

d+ 1

d∑
k=1

E [πzkf(φ(x))] ,

and, for any 1 ≤ j ≤ d,

βfj −→
(
βf∞
)
j

:=
−6

d+ 1
E [πf(φ(x))] +

6(d2 − 2d+ 3)

d2 − 1
E [πzjf(φ(x))]− 6(d− 3)

d2 − 1

∑
k 6=j

E [πzkf(φ(x))] .

For large d, since f is bounded on SD−1, we find that

(
βf∞
)
0

= 4E [πf(φ(x))]− 6

d

d∑
k=1

E [πzkf(φ(x))] +O
(

1

d

)
,

and, for any 1 ≤ j ≤ d, (
βf∞
)
j

= 6E [πzjf(φ(x))]− 6

d

∑
k 6=j

E [πzkf(φ(x))] +O
(

1

d

)
.

Now, by definition of the interpretable features, for any 1 ≤ j ≤ d,

E [πzjf(φ(x))] = E [πzjf(φ(x))|wj ∈ x] · P (wj ∈ x) + E [πzjf(φ(x))|wj /∈ x] · P (wj /∈ x)

= E [πf(φ(x))|wj ∈ x] · d− 1

2d
+ 0 ,

where we used Lemma 5 in the last display. Therefore, we have the following approximations of the interpretable
coefficients: (

βf∞
)
0

= 2E [πf(φ(x))]− 3

d

∑
k

E [πf(φ(x))|wk ∈ x] +O
(

1

d

)
, (39)

and, for any 1 ≤ j ≤ d,(
βf∞
)
j

= 3E [πf(φ(x))|wj ∈ x]− 3

d

∑
k

E [πf(φ(x))|wk ∈ x] +O
(

1

d

)
. (40)

The last display is the approximation of Proposition 13 presented in the paper.

Remark 4. In Garreau and von Luxburg (2020b), it is noted that LIME for tabular data provably ignores

unused coordinates. In other words, if the model f does not depend on coordinate j, then the explanation βfj is
0. We could not prove such a statement in the case of text data, even for simplified expressions such as Eq. (40).

We now show how to compute βf in specific cases, thus returning to generic ν and d.
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Constant model. As a warm up exercise, let us assume that f is a constant, which we set to 1 without loss of
generality (by linearity). Recall that, in that case, Γf0 = α0 and Γfj = α1 for any 1 ≤ j ≤ d. From the definition
of cd and the σ coefficients (Proposition 6), we find that{

σ0α0 + dσ1α1 = cd ,

σ1α0 + σ2α1 + (d− 1)σ3α1 = 0 .

We deduce from Proposition 13 that βf0 = 1 and βfj = 0 for any 1 ≤ j ≤ d. This is conform to our intuition: if
the model is constant, then no word should receive nonzero weight in the explanation provided by Text LIME.

Indicator functions. We now turn to indicator functions, more precisely products of indicator functions. We
will prove the following (Proposition 3 in the paper):

Proposition 14 (Computation of βf , product of indicator functions). Let j ⊆ {1, . . . , d} be a set of p
distinct indices and set f(x) =

∏
j∈J 1xj>0. Then

βf0 = c−1d (σ0αp + pσ1αp + (d− p)σ1αp+1) ,

βfj = c−1d (σ1αp + σ2αp + (d− p)σ3αp+1 + (p− 1)σ3αp) if j ∈ J ,
βfj = c−1d (σ1αp + σ2αp+1 + (d− p− 1)σ3αp+1 + pσ3αp) otherwise .

Proof. The proof is straightforward from Proposition 10 and Proposition 13.

Linear model. In this last paragraph, we treat the linear case. As noted in Section 2.3, we have to resort
to approximate computations: in this paragraph, we assume that ν = +∞. We start with the simplest linear
function: all coefficients are zero except one (this is Proposition 4 in the paper).

Proposition 15 (Computation of βf , linear case). Let 1 ≤ j ≤ d and assume that f(φ(x)) = φ(x)j. Recall
that we set Ej = E

[
(1−HS)−1/2

∣∣S 63 j] and for any k 6= j, Ej,k = E
[
(1−HS)−1/2

∣∣S 63 j, k]. Then

(
βf∞
)
0

=

5Ej −
2

d

∑
k 6=j

Ej,k

φ(ξ)j +O
(

1

d

)

for any k 6= j, (
βf∞
)
k

=

2Ej,1 −
2

d

∑
` 6=k,j

Ej,`

φ(ξ)j +O
(

1

d

)
,

and (
βf∞
)
j

=

3Ej −
2

d

∑
k 6=j

Ej,k

φ(ξ)j +O
(

1

d

)
.

Proof. Straightforward from Eqs. (23) and (32).

Assuming that the ωk are small, we deduce from Eqs. (35) and (36) that Ej ≈ 1.22 and Ej,k ≈ 1.15. In particular,
they do not depend on j and k. Thus we can drastically simplify the statement of Proposition 15:

∀k 6= j,
(
βf∞
)
k
≈ 0 and

(
βf∞
)
j
≈ 1.36φ(ξ)j . (41)

We can now go back to our original goal: f(x) =
∑d
j=1 λjxj . By linearity, we deduce from Eq. (41) that

∀1 ≤ j ≤ d,
(
βf∞
)
j
≈ 1.36 · λj · φ(ξ)j . (42)

In other words, as noted in the paper, the explanation for a linear f is the TF-IDF of the word multiplied
by the coefficient of the linear model, up to a numerical constant and small error terms depending on d.
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3.2 Concentration of β̂

In this section, we state and prove our main result: the concentration of β̂n around βf with high probability
(this is Theorem 1 in the paper).

Theorem 2 (Concentration of β̂n). Suppose that f is bounded by M > 0 on SD−1. Let ε > 0 be a small
constant, at least smaller than M . Let η ∈ (0, 1). Then, for every

n ≥ max
{

29 · 704M2d9e
10
ν2 , 29 · 702Md5e

5
ν2

} log 8d
η

ε2
,

we have P
(
‖β̂n − βf‖ ≥ ε

)
≤ η.

Proof. We follow the proof scheme of Theorem 28 in Garreau and von Luxburg (2020b). The key point is to
notice that

‖β̂n − βf‖ ≤ 2
∥∥Σ−1

∥∥
op
‖Γ̂n − Γf‖+ 2

∥∥Σ−1
∥∥2
op

∥∥Γf
∥∥ ‖Σ̂n − Σ‖op , (43)

provided that ‖Σ−1(Σ̂n − Σ)‖op ≤ 0.32 (this is Lemma 27 in Garreau and von Luxburg (2020b). Therefore, in

order to show that ‖β̂n − βf‖ ≤ ε, it suffices to show that each term in Eq. (43) is smaller than ε/4 and that
‖Σ−1(Σ̂−Σ)‖op ≤ 0.32. The concentration results obtained in Section 1 and 2 guarantee that both ‖Σ̂−Σ‖op
and ‖Γ̂ − Γf‖ are small if n is large enough, with high probability. This, combined with the upper bound on
‖Σ−1‖op given by Proposition 9, concludes the proof.

Let us give a bit more details. We start with the control of ‖Σ−1(Σ̂n − Σ)‖op. Set t1 := (220d3/2e
5

2ν2 )−1 and
n1 := 32d2 log 8d

η /t
2
1. Then, according to Proposition 8, for any n ≥ n1,

P
(
‖Σ̂n − Σ‖op ≥ t1

)
≤ 4dexp

(
−nt21
32d2

)
≤ η

2
.

Since ‖Σ−1‖op ≤ 70d3/2e
5

2ν2 (according to Proposition 9), by sub-multiplicativity of the operator norm, it holds
that

‖Σ−1(Σ̂− Σ)‖op ≤ ‖Σ−1‖op‖Σ̂− Σ‖op ≤ 70/220 < 0.32 , (44)

with probability greater than 1− η/2.

Now let us set t2 := (4 · 702Md7/2e
5
ν2 )−1ε and n2 := 32d2 log 8d

η /t
2
2. According to Proposition 8, for any n ≥ n2,

it holds that

‖Σ̂n − Σ‖op ≤
ε

4Md1/2
· (702d3e5/ν

2

)−1 ,

with probability greater than η/2. Since ‖Γf‖ ≤M · d1/2 and ‖Σ−1‖2op ≤ 702d3e5/ν
2

,∥∥Σ−1
∥∥
op
‖Γ̂− Γf‖ ≤ ε

4

with probability grater than 1 − η/2. Notice that, since we assumed ε < M , t2 < t1, and thus Eq. (44) also
holds.

Finally, let us set t3 := ε/(4 · 70d3/2e
5

2ν2 ) and n3 := 32Md2 log 8d
η /t

2
3. According to Proposition 12, for any

n ≥ n3,

P
(
‖Γ̂n − Γf‖ ≥ t3

)
≤ 4dexp

(
−nt23

32Md2

)
≤ η

2
.

Since ‖Σ−1‖op ≤ 70d3/2e
5

2ν2 , we deduce that∥∥Σ−1
∥∥2
op

∥∥Γf
∥∥ ‖Σ̂n − Σ‖op ≤

ε

2
,

with probability greater than 1− η/2. We conclude by a union bound argument.
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4 Sums over subsets

In this section, independent from the rest, we collect technical facts about sums over subsets. More particularly,
we now consider arbitrary, fixed positive real numbers ω1, . . . , ωd such that

∑
k ωk = 1. We are interested in

subsets S of {1, . . . , d}. For any such S, we define HS :=
∑
k∈S ωk the sum of the ωk coefficients over S. Our

main goal in this section is to compute the expectation of HS conditionally to S not containing a given index
(or two given indices), which is the key quantity appearing in Proposition 15.

Lemma 2 (First order subset sums). Let 1 ≤ s ≤ d and 1 ≤ j, k ≤ d with j 6= k. Then

∑
#S=s
S 63j

HS =

(
d− 2

s− 1

)
(1− ωj) ,

and ∑
#S=s
S 63j,k

HS =

(
d− 3

s− 1

)
(1− ωj − ωk) .

Proof. The main idea of the proof is to rearrange the sum, summing over all indices and then counting how
many subsets satisfy the condition. That is,

∑
#S=s
S3j

HS =

d∑
k=1

ωk ·#{S s.t. j, k ∈ S}

=
∑
k 6=j

ωk ·
(
d− 2

s− 2

)
+ ωj ·

(
d− 1

s− 1

)

=

(
d− 2

s− 2

)
+

[(
d− 1

s− 1

)
−
(
d− 2

s− 2

)]
ωj .

We conclude by using the binomial identity(
d− 1

s− 1

)
−
(
d− 2

s− 2

)
=

(
d− 2

s− 1

)
.

Notice that, in the previous derivation, we had to split the sum to account for the case j = k. The proof of the
second formula is similar.

Let us turn to expectation computation that are important to derive approximation in Section 2.3. We now see
S and HS as random variables. We will denote by Es [·] the expectation conditionally to the event {#S = s}.
Lemma 3 (Expectation computation). Let j, k be distinct elements of {1, . . . , d}. Then

E [HS |S 63 j] =
(1− ωj)(d+ 1)

3(d− 1)
=

1− ωj
3

+O
(

1

d

)
, (45)

and

E [HS |S 63 j, k] =
(1− ωj − ωk)(d+ 1)

4(d− 2)
=

1− ωj − ωk
4

+O
(

1

d

)
(46)

Proof. By the law of total expectation, we know that

E [HS |S 63 j] =

d∑
s=1

Es [HS |S 63 j] · P (#S = s|S 63 j) .
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We first notice that, for any s < d,

P (#S = s|S 63 j) =
P (S 63 j|#S = s)P (#S = s)

P (j /∈ S)

=

(
d−1
s

)
/
(
d
s

)
· 1d

d−1
2d

P (#S = s|S 63 j) =
2(d− s)
d(d− 1)

.

According to Lemma 2, for any 1 ≤ s < d,∑
#S=s
S 63j

HS =

(
d− 2

s− 1

)
(1− ωj) .

Moreover, there are
(
d−1
s

)
such subsets. Since

(
d−1
s−1
)−1(d−2

s

)
= s

d−1 , we deduce that

Es [HS |S 63 j] =
s

d− 1
(1− ωj) .

Finally, we write

E [HS |S 63 j] =

d−1∑
s=1

s

d− 1
(1− ωj) ·

2(d− s)
d(d− 1)

= (1− ωj) ·
2

d(d− 1)2

d−1∑
s=1

s(d− s)

E [HS |S 63 j] =
(d+ 1)(1− ωj)

3(d− 1)
.

The second case is similar. One just has to note that

P (#S = s|S 63 j, k) =
P (S 63 j, k|#S = s)

P (j, k /∈ S)

=
3(d− s)(d− s− 1)

d(d− 1)(d− 2)
. (Lemma 5)

Then we can conclude since

d−2∑
s=1

s(d− s)(d− s− 1) =
(d− 2)(d− 1)d(d+ 1)

12
.

5 Technical results

In this section, we collect small probability computations that are ubiquitous in our derivations. We start with
the probability for a given word to be present in the new sample x, conditionally to #S = s.

Lemma 4 (Conditional probability to contain given words). Let w1, . . . , wp be p distinct words of D`.
Then, for any 1 ≤ s ≤ d,

Ps (w1 ∈ x, . . . , wp ∈ x) =
(d− s)(d− s− 1) · · · (d− s− p+ 1)

d(d− 1) · · · (d− p+ 1)
=

(d− s)!
(d− s− p)!

· (d− p)!
d!

.

In the proofs, we use extensively Lemma 4 for p = 1 and p = 2, that is,

Ps (wj ∈ x) =
d− s
d

and Ps (wj ∈ x,wk ∈ x) =
(d− s)(d− s− 1)

d(d− 1)
,

for any 1 ≤ j, k ≤ d with j 6= k.
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Proof. We prove the more general statement. Conditionally to #S = s, the choice of S is uniform among all
subsets of {1, . . . , d} of cardinality s. There are

(
d
s

)
such subsets, and only

(
d−p
s

)
of them do not contain the

indices corresponding to w1, . . . , wp.

We have the following result, without conditioning on the cardinality of S:

Lemma 5 (Probability to contain given words). Let w1, . . . , wp be p distinct words of D`. Then

P (w1, . . . , wp ∈ x) =
d− p

(p+ 1)d
.

Proof. By the law of total expectation,

P (w1, . . . , wp ∈ x) =
1

d

d∑
s=1

P (w1, . . . , wp ∈ x|s)

=
1

d

d∑
s=1

(d− s)!
(d− s− p)!

· (d− p)!
d!

,

where we used Lemma 4 in the last display. By the hockey-stick identity (Ross, 1997), we have

d∑
s=1

(
d− s
p

)
=

d−1∑
s=p

(
s

p

)
=

(
d

p+ 1

)
.

We deduce that
d∑
s=1

(d− s)!
(d− s− p)!

=
d!

(p+ 1) · (d− p− 1)!
. (47)

We deduce that

P (w1, . . . , wp ∈ x) =
1

d

(d− p)!
d!

d∑
s=1

(d− s)!
(d− s− p)!

=
1

d

(d− p)!
d!

d!

(p+ 1) · (d− p− 1)!
(by Eq. (47))

P (w1, . . . , wp ∈ x) =
d− p

(p+ 1)d
.

6 Additional experiments

In this section, we present additional experiments. We collect the experiments related to decision trees in
Section 6.1 and those related to linear models in Section 6.2.

Setting. All the experiments presented here and in the paper are done on Yelp reviews (the data are publicly
available at https://www.kaggle.com/omkarsabnis/yelp-reviews-dataset). For a given model f , the general
mechanism of our experiments is the following. For a given document ξ containing d distinct words, we set a
bandwidth parameter ν and a number of new samples n. Then we run LIME nexp times on ξ, with no feature
selection procedure (that is, all words belonging to the local dictionary receive an explanation). We want to
emphasize again that this is the only difference with the default implementation. Unless otherwise specified, the
parameters of LIME are chosen by default, that is, ν = 0.25 and n = 5000. The number of experiments nexp is
set to 100. The whisker boxes are obtained by collecting the empirical values of the nexp runs of LIME: they give
an indication as to the variability in explanations due to the sampling of new examples. Generally, we report a
subset of the interpretable coefficients, the other having near zero values.

Let us explain briefly how to read these whisker boxes: to each word corresponds a whisker box containing all
the nexp values of interpretable coefficients provided by LIME (β̂j in our notation). The horizontal dark lines
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Figure 12: Influence of the bandwidth on the explanation given for a small decision tree on a Yelp review
(n = 5000, nexp = 100, d = 29). Left panel: ν = 0.05, right panel: ν = 0.35. Our theoretical predictions remain
accurate for non-default bandwidths.

mark the quartiles of these values, and the horizontal blue line is the median. On top of these experimental
results, we report with red crosses the values predicted by our analysis (βfj in our notation).

The Python code for all experiments is available at https://github.com/dmardaoui/lime_text_theory. We
encourage the reader to try and run the experiments on other examples of the dataset and with other parameters.

6.1 Decision trees

In this section, we present additional experiments for small decision trees. We begin by investigating the influence
of ν and n on the quality of our theoretical predictions.

Influence of the bandwidth. Let us consider the same example ξ and decision tree as in the paper. In
particular, the model f is written as

1“food” + (1− 1“food”) · 1“about” · 1“Everything” .

We now consider non-default bandwidths, that is, bandwidths different than 0.25. We present in Figure 12 the
results of these experiments. In the left panel, we took a smaller bandwidth (ν = 0.05) and in the right panel
a larger bandwidth (ν = 0.35). We see that while the numerical value of the coefficients changes slightly, their
relative order is preserved. Moreover, our theoretical predictions remain accurate in that case, which is to be
expected since we did not resort to any approximation in this case. Interestingly, the empirical results for small
ν seem more spread out, as hinted by Theorem 2.

Influence of the number of samples. Keeping the same model and example to explain as above, we looked
into non-default number of samples n. We present in Figure 13 the results of these experiments. We took a very
small n in the left panel (n = 50 is two orders of magnitude smaller than the default n = 5000) and a larger n
in the right panel. As expected, when n is larger, the concentration around our theoretical predictions is even
better. To the opposite, for small n, we see that the explanations vary wildly. This is materialized by much
wider whisker boxes. Nevertheless, to our surprise, it seems that our theoretical predictions still contain some
relevant information in that case.

Influence of depth. Finally, we looked into more complex decision trees. The decision rule used in Figure 14
is given by

1“food” + (1− 1“food”)1“about”1“Everything” + 1“bad” + 1“bad”1“character” .

We see that increasing the depth of the tree is not a problem from a theoretical point of view. It is interesting
to see that words used in several nodes for the decision receive more weight (e.g., “bad” in this example).
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Figure 13: Influence of the number of perturbed samples on the explanation given for a small decision tree on a
Yelp review (ν = 0.25, nexp = 100, d = 29). Left panel: n = 50, right panel: n = 8000. Empirical values are less
likely to be close to the theoretical predictions for small n.
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Figure 14: Theory meets practice for a more complex decision tree (ν = 0.25, nexp = 100, n = 5000, d = 29).
Here we report all coefficients. The theory still holds for more complex trees.
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Figure 15: Influence of the bandwidth on the explanation for a linear model on a Yelp review (nexp = 100, n =
5000, d = 29). Left panel: ν = 0.05, right panel: ν = 0.35. The approximate theoretical values are less accurate
for smaller bandwidths.

6.2 Linear models

Let us conclude this section with additional experiments for linear models. As in the paper, we consider an
arbitrary linear model

f(φ(x)) =

d∑
j=1

λjφ(x)j .

In practice, the coefficients λj are drawn i.i.d. according to a Gaussian distribution.

Influence of the bandwidth. As in the previous section, we start by investigating the role of the bandwidth
in the accuracy of our theoretical predictions. We see in the right panel of Figure 15 that taking a larger
bandwidth does not change much neither the explanations nor the fit between our theoretical predictions and
the empirical results. This is expected, since our approximation (Eq. (42)) is based on the large bandwidth
approximation. However, the left panel of Figure 15 shows how this approximation becomes dubious when the
bandwidth is small. It is interesting to note that in that case, the theory seems to always overestimate the
empirical results, in absolute value. The large bandwidth approximation is definitely a culprit here, but it could
also be the regularization coming into play. Indeed, the discussion at the end of Section 2.4 in the paper that
lead us to ignore the regularization is no longer valid for a small ν. In that case, the πis can be quite small and
the first term in Eq. (5) of the paper is of order e−1/(2ν

2)n instead of n.

Influence of the number of samples. Now let us look at the influence of the number of perturbed samples.
As in the previous section, we look into very small values of n, e.g., n = 50. We see in the left panel of Figure 16
that, as expected, the variability of the explanations increases drastically. The theoretical predictions seem to
overestimate the empirical results in absolute value, which could again be due to the regularization beginning to
play a role for small n, since the discussion in Section 2.4 of the paper is only valid for large n.

Influence of d. To conclude this section, let us note that d does not seem to be a limiting factor in our analysis.
While Theorem 2 hints that the concentration phenomenon may worsen for large d, as noted before in Remark 2,
we have reason to suspect that it is not the case. All experiments presented on this section so far consider an
example whose local dictionary has size d = 29. In Figure 17 we present an experiment on an example that has
a local dictionary of size d = 52. We observed no visible change in the accuracy of our predictions.
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Figure 16: Influence of the number of perturbed samples on the explanation for a linear model on a Yelp review
(ν = 0.25, nexp = 100, d = 29). Left panel: n = 50, right panel: n = 8000. The empirical explanations are more
spread out for small values of n.
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Figure 17: Theory meets practice for an example with a larger vocabulary (ν = 0.25, nexp = 100, n = 5000, d =
537). Here we report only 50 interpretable coefficients. Our theoretical predictions seem to hold for larger local
dictionaries.


