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Abstract

Text data are increasingly handled in an au-
tomated fashion by machine learning algo-
rithms. But the models handling these data
are not always well-understood due to their
complexity and are more and more often re-
ferred to as “black-boxes.” Interpretability
methods aim to explain how these models op-
erate. Among them, LIME has become one
of the most popular in recent years. However,
it comes without theoretical guarantees: even
for simple models, we are not sure that LIME
behaves accurately. In this paper, we provide
a first theoretical analysis of LIME for text
data. As a consequence of our theoretical
findings, we show that LIME indeed provides
meaningful explanations for simple models,
namely decision trees and linear models.

1 Introduction

Natural language processing has progressed at an ac-
celerated pace in the last decade. This time period saw
the second coming of artificial neural networks, em-
bodied by the apparition of recurrent neural networks
(RNNs) and more particularly long short-term mem-
ory networks (LSTMs). These new architectures, in
conjunction with large, publicly available datasets and
efficient optimization techniques, have allowed com-
puters to compete with and sometime even beat hu-
mans on specific tasks.

More recently, the paradigm has shifted from recurrent
neural networks to transformers networks (Vaswani
et al., 2017). Instead of training models specifically
for a task, large language models are trained on su-
persized datasets. For instance, Webtext2 contains
the text data associated to 45 millions links (Radford
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Explaining a prediction with LIME
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Figure 1: Explaining the prediction of a random forest
classifier on a Yelp review. Left panel: the document
to explain. The words deemed important for the pre-
diction are highlighted, in orange (positive influence)
and blue (negative influence). Right panel: values of
the largest 6 interpretable coefficients, ranked by ab-
solute value.

et al., 2019). The growth in complexity of these mod-
els seems to know no limit, especially with regards
to their number of parameters. For instance, BERT
(Devlin et al., 2018) has roughly 340 millions of pa-
rameters, a meager number compared to more recent
models such as GTP-2 (Radford et al., 2019, 1.5 bil-
lions) and GPT-3 (Brown et al., 2020, 175 billions).

Faced with such giants, it is becoming more and more
challenging to understand how particular predictions
are made. Yet, interpretability of these algorithms is
an urgent need. This is especially true in some ap-
plications such as healthcare, where natural language
processing is used for instance to obtain summaries
of patients records (Spyns, 1996). In such cases, we
do not want to deploy in the wild an algorithm mak-
ing near perfect predictions on the test set but for the
wrong reasons: the consequences could be tragic.

In this context, a flourishing literature proposing in-
terpretability methods emerged. We refer to the sur-
vey papers of Guidotti et al. (2018) and Adadi and
Berrada (2018) for an overview, and to Danilevsky
et al. (2020) for a focus on natural language process-
ing. With the notable exception of SHAP (Lundberg
and Lee, 2017), these methods do not come with any
guarantees. Namely, given a simple model already in-
terpretable to some extent, we cannot be sure that
these methods provide meaningful explanations. For
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instance, explaining a model that is based on the pres-
ence of a given word should return an explanation that
gives high weight to this word. Without such guaran-
tees, using these methods on the tremendously more
complex models aforementioned seems like a risky bet.

In this paper, we focus on one of the most popu-
lar interpretability method: Local Interpretable Model-
agnostic Explanations Ribeiro et al. (2016, LIME),
and more precisely its implementation for text data.
LIME’s process to explain the prediction of a model f
for an example ξ can be summarized as follows:

(i). from a corpus of documents C, create a TF-IDF
transformer φ embedding documents into RD;

(ii). create n perturbed documents x1, . . . , xn by delet-
ing words at random in ξ;

(iii). for each new example, get the prediction of the
model yi := f(φ(xi));

(iv). train a (weighted) linear surrogate model with
inputs the absence / presence of words and re-
sponses the yis.

The user is then given the coefficients of the surrogate
model (or rather a subset of the coefficients, corre-
sponding to the largest ones) as depicted in Figure 1.
We call these coefficients the interpretable coefficients.

The model-agnostic approach of LIME has contributed
greatly to its popularity: one does not need to know
the precise architecture of f in order to get explana-
tions, it is sufficient to be able to query f a large num-
ber of times. The explanations provided by the user
are also very intuitive, making it easy to check that a
model is behaving in the appropriate way (or not!) on
a particular example.

Contributions. In this paper, we present the first
theoretical analysis of LIME for text data. In detail,

• we show that, when the number of perturbed
samples is large, the interpretable coefficients
concentrate with high probability around a
fixed vector β that depends only on the model,
the example to explain, and hyperparameters of
the method;

• we provide an explicit expression of β, from
which we gain interesting insights on LIME. In
particular, the explanations provided are lin-
ear in f ;

• for simple decision trees, we go further into
the computations. We show that LIME prov-
ably provides meaningful explanations, giv-
ing large coefficients to words that are pivotal for
the prediction;

• for linear models, we come to the same conclu-
sion by showing that the interpretable coefficient
associate to a given word is approximately equal
to the product of the coefficient in the lin-
ear model and the TF-IDF transform of the
word in the example.

We want to emphasize that all our results apply to
the default implementation of LIME for text data1

(as of October 12, 2020), with the only caveat that
we do not consider any feature selection procedure
in our analysis. All our theoretical claims are sup-
ported by numerical experiments, the code thereof can
be found at https://github.com/dmardaoui/lime_

text_theory.

Related work. The closest related work to the
present paper is Garreau and von Luxburg (2020a),
in which the authors provided a theoretical analysis of
a variant of LIME in the case of tabular data (that
is, unstructured data belonging to RN ) when f is lin-
ear. This line of work was later extended by the same
authors (Garreau and von Luxburg, 2020b), this time
in a setting very close to the default implementation
and for other classes of models (in particular partition-
based classifiers such as CART trees and kernel regres-
sors built on the Gaussian kernel). While uncovering
a number of good properties of LIME, these analyses
also exposed some weaknesses of LIME, notably can-
cellation of interpretable features for some choices of
hyperparameters.

The present work is quite similar in spirit, however we
are concerned with text data. The LIME algorithm op-
erates quite differently in this case. In particular, the
input data goes first through a TF-IDF transform (a
non-linear transformation) and there is no discretiza-
tion step since interpretable features are readily avail-
able (the words of the document). Therefore both the
analysis and our conclusions are quite different, as it
will become clear in the rest of the paper.

2 LIME for text data

In this section, we lay out the general operation of
LIME for text data and introduce our notation in the
process. From now on, we consider a model f and look
at its prediction for a fixed example ξ belonging to a
corpus C of size N , which is built on a dictionary D
of size D. We let ‖·‖ denote the Euclidean norm, and
SD−1 the unit sphere of RD.

Before getting started, let us note that LIME is usu-
ally used in the classification setting: f takes values
in {0, 1} (say), and f(φ(ξ)) represents the class at-

1https://github.com/marcotcr/lime
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tributed to ξ by f . However, behind the scenes, LIME
requires f to be a real-valued function. In the case
of classification, this function is the probability of be-
longing to a certain class according to the model. In
other words, the regression version of LIME is used,
and this is the setting that we consider in this paper.
We now detail each step of the algorithm.

2.1 TF-IDF transform

LIME works with a vector representation of the doc-
uments. The TF-IDF transform (Luhn, 1957; Jones,
1972) is a popular way to obtain such a representa-
tion. The idea underlying the TF-IDF is quite simple:
to any document, associate a vector of size D. If we set
w1, . . . , wD to be our dictionary, the jth component of
this vector represents the importance of word wj . It is
given by the product of two terms: the term frequency
(TF, how frequent the word is in the document), and
the inverse term frequency (IDF, how rare the word
is in our corpus). Intuitively, the TF-IDF of a docu-
ment has a high value for a given word if this word is
frequent in the document and, at the same time, not
so frequent in the corpus. In this way, common words
such as “the” do not receive high weight.

Formally, let us fix δ ∈ C. For each word wj ∈ D,
we set mj the number of times wj appears in δ. We
also set vj := log N+1

Nj+1 + 1, where Nj is the number

of documents in C containing wj . When presented
with C, we can pre-compute all the vjs and at run
time we only need to count the number of occurrences
of wj in δ. We can now define the normalized TF-IDF:

Definition 1 (Normalized TF-IDF). We define the
normalized TF-IDF of δ as the vector φ(δ) ∈ RD de-
fined coordinate-wise by

∀1 ≤ j ≤ D, φ(δ)j :=
mjvj√∑D
j=1m

2
jv

2
j

. (1)

In particular, ‖φ(δ)‖ = 1, where ‖·‖ is the Euclidean
norm.

Note that there are many different ways to define the
TF and IDF terms, as well as normalization choices.
We restrict ourselves to the version used in the de-
fault implementation of LIME, with the understand-
ing that different implementation choices would not
change drastically our analysis. For instance, normal-
izing by the `1 norm instead of the `2 norm would lead
to slightly different computations in Proposition 4.

Finally, note that this transformation step does not
take place for tabular data, since the data already be-
long to RD in this case.

ξ=

I  love  their
menu!      The
garlic  mashed
potatoes    is
amazing!   The
greek salad is
perfect.      

d=15
         their
menu!         
garlic        
              
amazing!      
greek         
       .      

s1=8

...

I  love  their
menu!      The
garlic  mashed
potatoes      
amazing!   The
greek salad   
perfect.      

sn=1

Figure 2: The sampling scheme of LIME for text data.
To the left, the document to explain ξ, which contains
d = 15 distinct words. The new samples x1, . . . , xn
are obtained by removing si random words from ξ (in
blue). In the nth sample, one word is removed, yield-
ing two deletions in the original document.

2.2 Sampling

Let us now fix a given document ξ and describe the
sampling procedure of LIME. Essentially, the idea is
to sample new documents similar to ξ in order to see
how f varies in a neighborhood of ξ.

More precisely, let us denote by d the number of
distinct words in ξ and set D` := {w1, . . . , wd} the
local dictionary. For each new sample, LIME first
draws uniformly at random in {1, . . . , d} a number si
of words to remove from ξ. Subsequently, a subset
Si ⊆ {1, . . . , d} of size si is drawn uniformly at ran-
dom: all the words with indices contained in Si are
removed from ξ. Note that the multiplicity of re-
movals is independent from si: if the word “good”
appears 10 times in ξ and its index belongs to S, then
all the instances of “good” are removed from ξ (see
Figure 2). This process is repeated n times, yielding n
new samples x1, . . . , xn. With these new documents
come n new binary vectors z1, . . . , zn ∈ {0, 1}d, mark-
ing the absence or presence of a word in xi. Namely,
zi,j = 1 if wj belongs to xi and 0 otherwise. We call the
zis the interpretable features. Note that we will write
1 := (1, . . . , 1)> for the binary feature associated to ξ:
all the words are present.

Already we see a difficulty appearing in our analysis:
when removing words from ξ at random, φ(ξ) is modi-
fied in a non-trivial manner. In particular, the denom-
inator of Eq. (1) can change drastically if many words
are removed.

In the case of tabular data, the interpretable features
are obtained in a completely different fashion, by dis-
cretizing the dataset.

2.3 Weights

Let us start by defining the cosine distance:

Definition 2 (Cosine distance). For any u, v ∈ Rd,
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we define

dcos(u, v) := 1− u · v
‖u‖ · ‖v‖

. (2)

Intuitively, the cosine distance between u and v is
small if the angle between u and v is small. Each new
sample xi receives a positive weight πi, defined by

πi := exp

(
−dcos(1, zi)2

2ν2

)
, (3)

where ν is a positive bandwidth parameter. The intu-
ition behind these weights is that xi can be far away
from ξ if many words are removed (in the most ex-
treme case, s = d, all the words from ξ are removed).
In that case, zi has mostly 0 components, and is far
away from 1.

Note that the cosine distance in Eq. (3) is actually mul-
tiplied by 100 in the current implementation of LIME.
Thus there is the following correspondence between
our notation and the code convention: νLIME = 100ν.
For instance, the default choice of bandwidth, νLIME =
25, corresponds to ν = 0.25.

We now make the following important remark: the
weights only depends on the number of dele-
tions. Indeed, conditionally to Si having exactly s el-
ements, we have zi ·1 = d−s and ‖zi‖ =

√
d− s. Since

‖1‖ =
√
d, using Eq. (3), we deduce that πi = ψ(s/d),

where we defined the mapping

ψ : [0, 1] −→ R (4)

t 7−→ exp

(
−(1−

√
1− t)2

2ν2

)
.

We can see in Figure 3 how the weights are given to
observations: when s is small, then ψ(s/d) ≈ 1 and
when s ≈ d, ψ(s/d) which is a small quantity depend-
ing on ν. Note that the complicated dependency of the
weights in s brings additional difficulty in our analy-
sis, and that we will sometimes restrict ourselves to
the large bandwidth regime (that is, ν → +∞). In
that case, πi ≈ 1 for any 1 ≤ i ≤ n.

Euclidean distance between the interpretable features
is used instead of the cosine distance in the tabular
data version of the algorithm.

2.4 Surrogate model

The next step is to train a surrogate model on the in-
terpretable features z1, . . . , zn, trying to approximate
the responses yi := f(φ(xi)). In the default implemen-
tation of LIME, this model is linear and is obtained by
weighted ridge regression (Hoerl and Kennard, 1970).
Formally, LIME outputs

β̂λn ∈ arg min
β∈Rd+1

{ n∑
i=1

πi(yi − β>zi)2 + λ ‖β‖2
}
, (5)

50 100 150 200
s

0.0
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Evolution of the weights
ν= 0.15
ν= 0.25
ν= 0.35

Figure 3: Weights as a function of the number of dele-
tions for different bandwidth parameters (ν = 0.25 is
default). LIME gives more weights to documents with
few deletions (s/d ≈ 0 means that ψ(s/d) ≈ 1 regard-
less of the bandwidth).

where λ > 0 is a regularization parameter. We call
the components of β̂λn the interpretable coefficients, the
0th coordinate in our notation is by convention the in-
tercept. Note that some feature selection mechanism
is often used in practice, limiting the number of in-
terpretable features in output from LIME. We do not
consider such mechanism in our analysis.

We now make a fundamental observation. In its de-
fault implementation, LIME uses the default setting
of sklearn for the regularization parameter, that is,
λ = 1. Hence the first term in Eq. (5) is roughly of
order n and the second term of order d. Since we ex-
periment in the large n regime (n = 5000 is default)
and with documents that have a few dozen distinct
words, n� d. To put it plainly, we can consider that
λ = 0 in our analysis and still recover meaningful re-
sults. We will denote by β̂n the solution of Eq. (5)
with λ = 0, that is, ordinary least-squares.

We conclude this presentation of LIME by noting that
the main free parameter of the method is the band-
width ν. As far as we know, there is no principled
way of choosing ν. The default choice, ν = 0.25, does
not seem satisfactory in many respects. In particu-
lar, other choices of bandwidth can lead to different
values for interpretable coefficients. In the most ex-
treme cases, they can even change sign, see Figure 4.
This phenomenon was also noted for tabular data in
Garreau and von Luxburg (2020b).

3 Main results

Without further ado, let us present our main result.
For clarity’s sake, we split it in two parts: Section 3.1
contains the concentration of β̂n around βf whereas
Section 3.2 presents the exact expression of βf .
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Figure 4: In this experiment, we plot the interpretable
coefficient associated to the word “came” as a func-
tion of the bandwidth parameter. The red vertical line
marks the default bandwidth choice (ν = 25). We can
see that LIME gives a negative influence for ν ≈ 0.1
and a positive one for ν > 0.2.

3.1 Concentration of β̂n

When the number of new samples n is large, we expect
LIME to stabilize and the explanations not to vary too
much. The next result supports this intuition.

Theorem 1 (Concentration of β̂n). Suppose that
the model f is bounded by a positive constant M on
SD−1. Recall that we let d denote the number of dis-
tinct words of ξ, the example to explain. Let 0 < ε <
M and η ∈ (0, 1). Then, there exist a vector βf ∈ Rd
such that, for every

n & max
{
M2d9e

10
ν2 ,Md5e

5
ν2

} log 8d
η

ε2
,

we have P
(
‖β̂n − βf‖ ≥ ε

)
≤ η.

We refer to the supplementary material for a complete
statement (we omitted numerical constants here for
clarity) and a detailed proof. In essence, Theorem 1
tells us that we can focus on βf in order to under-
stand how LIME operates, provided that n is large
enough. The main limitation of Theorem 1 is the de-
pendency of n in d and ν. The control that we achieve
on ‖β̂n−β‖ becomes quite poor for large d or small ν:
we would then need n to be unreasonably large in order
to witness concentration.

We notice that Theorem 1 is very similar in its form
to Theorem 1 in Garreau and von Luxburg (2020b)
except that (i) the dimension is replaced by the num-
ber of distinct words in the document to explain, and
(ii) there is no discretization parameter in our case.
The differences with the analysis in the tabular data
framework will be more visible in the next section.

3.2 Expression of βf

Our next result shows that we can derive an explicit
expression for βf . Before stating our result, we need
to introduce more notation. From now on, we set x a
random variable such that x1, . . . , xn are i.i.d. copies
of x. Similarly, π corresponds to the draw of the πis
and z to that of the zis.

Definition 3 (α coefficients). Define α0 := E [π]
and, for any 1 ≤ p ≤ d,

αp := E [π · z1 · · · zp] . (6)

Intuitively, when ν is large, αp corresponds to the
probability that p distinct words are present in x. The
sampling process of LIME is such that αp does not de-
pend on the exact set of indices considered. In fact, αp
only depends on d and ν. We show in the supple-
mentary material that it is possible to compute the α
coefficients in closed-form as a function of d and ν:

Proposition 1 (Computation of the α coeffi-
cients). Let 0 ≤ p ≤ d. For any d ≥ 1 and ν > 0, it
holds that

αp =
1

d

d∑
s=1

p−1∏
k=0

d− s− k
d− k

ψ
( s
d

)
.

From these coefficients, we form the normalization
constant

cd := (d− 1)α0α2 − dα2
1 + α0α1 . (7)

We will also need the following.

Definition 4 (σ coefficients). For any d ≥ 1 and
ν > 0, define

σ1 := −α1 ,

σ2 :=
(d−2)α0α2−(d−1)α2

1+α0α1

α1−α2
,

σ3 :=
α2

1−α0α2

α1−α2
.

(8)

With these notation in hand, we have:

Proposition 2 (Expression of βf). Under the as-
sumptions of Theorem 1, we have cd > 0 and, for any
1 ≤ j ≤ d,

βfj = c−1d

{
σ1E [πf(φ(x))] + σ2E [πzjf(φ(x))] (9)

+ σ3

d∑
k=1
k 6=j

E [πzkf(φ(x))]

}
.

We also have an expression for the intercept which
can be found in the supplementary material, as well
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as the proof of Proposition 2. At first glance, Eq. (9)
is quite similar to Eq. (6) in Garreau and von Luxburg

(2020b), which gives the expression of βfj in the tabular
data case. The main difference is the TF-IDF trans-
form in the expectation, personified by φ, and the ad-
ditional terms (there is no σ3 factor in the tabular data
case). In addition, the expression of the σ coefficients
is much more complicated than in the tabular data
case. We now present some immediate consequences
of Proposition 2.

Linearity of explanations. Perhaps the most
striking feature of Eq. (9) is that it is linear in f .
More precisely, the mapping f 7→ βf is linear in f : for
any given two functions f and g, we have

βf+g = βf + βg .

Therefore, because of Theorem 1, the explanations β̂n
obtained for a finite sample of new examples are also
approximately linear in the model to explain. We illus-
trate this phenomenon in Figure 5. This is remarkable:
many models used in machine learning can be written
as a linear combination of smaller models (e.g., gen-
eralized linear models, kernel regressors, decision trees
and random forests). In order to understand the ex-
planations provided by these complicated models, one
can try and understand the explanations for the ele-
mentary elements of the models first.

Large bandwidth. It can be difficult to get a good
sense of the values taken by the σ coefficients, and
therefore of β. Let us see how Proposition 2 simplifies
in the large bandwidth regime and what insights we
can gain. We denote by β∞ the limit of β when ν →
+∞. When ν → +∞, we prove in the supplementary
material that, for any 1 ≤ j ≤ d, up to O (1/d) terms
and a numerical constant, the j-th coordinate of β∞
is then approximately equal to

(
βf∞
)
j
≈E [f(φ(x))|wj ∈ x]− 1

d

∑
k 6=j

E [f(φ(x))|wk ∈ x] .

Intuitively, the interpretable coefficient associated to
the word wj is high if the expected value of the
model when word wj is present is significantly
higher than the typical expected value when
other words are present. We think that this is
reasonable: if the model predicts much higher val-
ues when wj belongs to the example, it surely means
that wj being present is important for the prediction.
Of course, this is far from the full picture, since (i) this
reasoning is only valid for large bandwidth, and (ii) in

practice, we are concerned with β̂n which may be not
so close to βf for small n.

Ev
er

yt
hi

ng

Ha
ve

n I It

Th
e

ab
ou

t al
l

ba
d

ch
ar

ac
te

r

cr
am

pe
d

fo
od

words

-0.10

-0.08

-0.05

-0.02

0.00

0.02

0.05

0.08

0.10
Model 1
Model 2
Model 1 + Model 2

Linearity of explanations

Figure 5: The explanations given by LIME for the sum
of two models (here two random forests regressors) are
the sum of the explanations for each model, up to noise
coming from the sampling procedure.

3.3 Sketch of the proof

We conclude this section with a brief sketch of the
proof of Theorem 1, the full proof can be found in the
supplementary material.

Since we set λ = 0 in Eq. (5), β̂n is the solution of
a weighted least-squares problem. Denote by W ∈
Rn×n the diagonal matrix such that Wi,i = πi, and
set Z ∈ {0, 1}n×(d+1) the matrix such that its ith line
is (1, z>i ). Then the solution of Eq. (5) is given by

β̂n =
(
Z>WZ

)−1
Z>Wy ,

where we defined y ∈ Rn such that yi = f(φ(xi))
for all 1 ≤ i ≤ n. Let us set Σ̂n := 1

nZ
>WZ and

Γ̂fn := 1
nZ
>Wy. By the law of large numbers, we

know that both Σ̂n and Γ̂fn converge in probability
towards their population counterparts Σ := E[Σ̂n] and
Γf := E[Γ̂n]. Therefore, provided that Σ is invertible,

β̂n is close to βf := Σ−1Γf with high probability.

As we have seen in Section 2, the main differences
with respect to the tabular data implementation are (i)
the interpretable features, and (ii) the TF-IDF trans-
form. The first point lead to a completely different
Σ than the one obtained in Garreau and von Luxburg
(2020b). In particular, it has no zero coefficients, lead-
ing to more complicated expression for βf and addi-
tional challenges when controlling

∥∥Σ−1
∥∥
op

. The sec-

ond point is quite challenging since, as noted in Sec-
tion 2.1, the TF-IDF transform of a document
changes radically when deleting words at ran-
dom in the document. This is the main reason why
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we have to resort to approximations when dealing with
linear models.

4 Expression of βf for simple models

In this section, we see how to specialize Proposition 2
to simple models f . Recall that our main goal in doing
so is to investigate whether it makes sense or not to use
LIME in these cases. We will focus on two classes of
models: decision trees (Section 4.1) and linear models
(Section 4.2).

4.1 Decision trees

In this section we focus on simple decision trees built
on the presence or absence of given words. For in-
stance, let us look at the model returning 1 if the word
“food” is present, or if “about” and “everything” are
present in the document. Ideally, LIME would give
high positive weights to “food,” “about,” and “every-
thing,” if they are present in the document to explain,
and small weight to all other words.

We first notice that such simple decision trees can be
written as sums of products of the binary features. In-
deed, recall that we defined zj = 1wj∈x. For instance,
suppose that the first three words of our dictionary are
“food,” “about,” and “everything.” Then the model
from the previous paragraph can be written

g(x) = z1 + (1− z1) · z2 · z3 . (10)

Now it is clear that the zjs can be written as function
of the TF-IDF transform of a word, since wj ∈ x if,
and only if, φ(x)j > 0. Therefore this class of models
falls into our framework and we can use Theorem 1
and Proposition 2 in order to gain insight on the ex-
planations provided by LIME. For instance, Eq. (10)
can be written as f(φ(x)) with, for any ζ ∈ RD,

f(ζ) := 1ζ1>0 + (1− 1ζ1>0) · 1ζ2>0 · 1ζ3>0 .

By linearity, it is sufficient to know how to compute βf

when f is a product of indicator functions.

We now make an important remark: since the new ex-
ample x1, . . . , xn are created by deleting words at ran-
dom from the text ξ, x only contains words that
are already present in ξ. Therefore, without loss of
generality, we can restrict ourselves to the local dictio-
nary (the distinct words of ξ). Indeed, for any word w
not already in ξ, 1w∈x = 0 almost surely. As before,
we denote by D` the local dictionary associated to ξ,
and we denote its elements by w1, . . . , wd. We can
compute in closed-form the interpretable coefficients
for a product of indicator functions:

Proposition 3 (Computation of βf , product of
indicator functions). Let J ⊆ {1, . . . , d} be a set
of p distinct indices and set f(x) =

∏
j∈J 1xj>0. Then,

for any j ∈ J ,

βfj =c−1d
[
σ1αp + σ2αp + (d−p)σ3αp+1 + (p−1)σ3αp

]
and, for any j ∈ {1, . . . , d} \ J ,

βfj =c−1d
[
σ1αp + σ2αp+1 + (d−p−1)σ3αp+1 + pσ3αp

]
.

In particular, when p = 0, Proposition 3 simplifies
greatly and we find that 1 ≤ k ≤ d, βfk = 1k=j . It
is already a reassuring result: when the model is just
indicating if a given word is present, the explanation
given by LIME is one for this word and zero for
all the other words.

It is slightly more complicated to see what happens
when p ≥ 1. To this extent, let us set j ∈ J and
k /∈ J . Then it follows readily from Proposition 14
that

βfj − β
f
k = c−1d (σ2 + σ3)(αp − αp+1) .

Since αp ≈ 1/(p + 1) and σ2 + σ3 ≈ 6, we deduce

that βfj � βfk . Moreover, from Definition 3 and 4 one

can show that βfk = O (1/d) when ν is large. Thus
Proposition 14 tells us that LIME gives large pos-
itive coefficients to words that are in the sup-
port of f and small coefficients to all the other
words. This is a satisfying property.

Together with the linearity property, Proposition 14
allows us to compute βf for any decision tree that
can be written as in Eq. (10). We give an example of
our theoretical predictions in Figure 6. As predicted,
the words that are pivotal in the prediction
have high interpretable coefficients, whereas
the other words receive near-zero coefficients.
It is interesting to notice that words that are near the
root of the tree receive a greater weight. We present
additional experiments in the supplementary material.

4.2 Linear models

We now focus on linear models, that is, for any docu-
ment x,

f(φ(x)) :=

d∑
j=1

λjφ(x)j , (11)

where λ1, . . . , λd are arbitrary fixed coefficients. We
have to resort to approximate computations in this
case: from now on, we assume that ν = +∞. We
start with the simplest linear function: all coefficients
are zero except one, that is, λk = 1 if k = j and 0
otherwise in Eq. (11), for a fixed index j. We need to
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Figure 6: Theory vs practice for the tree defined by
Eq. (10). The black whisker boxes correspond to 100
runs of LIME with default settings (n = 5000 new
examples and ν = 0.25) whereas the red crosses corre-
spond to the theoretical predictions given by our anal-
ysis. The example to explain is a Yelp review with
d = 35 distinct words.

introduce additional notation before stating or result.
For any 1 ≤ j ≤ d, define

ωk :=
m2
jv

2
j∑d

`=1m
2
`v

2
`

,

where the mks and vks were defined in Section 2.1.
For any J that is a strict subset of {1, . . . , d}, define
HS :=

∑
j∈J ωj . Recall that S denotes the random

subset of indices chosen by LIME in the sampling step
(see Section 2.2). Define Ej = E

[
(1−HS)−1/2

∣∣S 63 j]
and for any k 6= j, Ej,k = E

[
(1−HS)−1/2

∣∣S 63 j, k].
Then we have the following:

Proposition 4 (Computation of βf , linear case).
Let 1 ≤ j ≤ d and assume that f(φ(x)) = φ(x)j.
Then, for any 1 ≤ k ≤ d such that k 6= j,

(
βf∞
)
k

=

[
2Ej,1 −

2

d

∑
6̀=k,j

Ej,`

]
φ(ξ)j +O

(
1

d

)
,

and (
βf∞
)
j

=

[
3Ej −

2

d

∑
k 6=j

Ej,k

]
φ(ξ)j +O

(
1

d

)
.

Proposition 4 is proved in the supplementary mate-
rial. The main difficulty is to compute the expected
value of φ(x)j : this is the reason for the Ej terms, for
which we find an approximate expression as a function
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Figure 7: Theory vs practice for an arbitrary linear
model. The black whisker boxes correspond to 100
runs of LIME with default settings (n = 5000 and ν =
0.25). The red crosses correspond to our theoretical
predictions: βj ≈ 1.36λjφ(ξ)j . Here d = 29.

of the ωks. Assuming that the ωk are small, we can
further this approximation and show that Ej ≈ 1.22
and Ej,k ≈ 1.15. In particular, these expressions
do not depend on j and k. Thus we can drastically
simplify the statement of Proposition 4: for any k 6= j,(
βf∞
)
k
≈ 0 and

(
βf∞
)
j
≈ 1.36φ(ξ)j . We can now go

back to our original goal, Eq. (11). By linearity, we
deduce that

∀1 ≤ j ≤ d,
(
βf∞
)
j
≈ 1.36 · λj · φ(ξ)j . (12)

In other words, up to a numerical constant and small
error terms depending on d, the explanation for a
linear f is the TF-IDF value of the word mul-
tiplied by the coefficient of the linear model.
We believe that this behavior is desirable for an in-
terpretability method: large coefficients in the linear
model should intuitively be associated to large inter-
pretable coefficients. But at the same time the TF-IDF
of the term is taken into account.

We observe a very good match between theory and
practice (see Figure 7). Surprisingly, this is the case
even though we assume that ν is large in our deriva-
tions, whereas ν is chosen by default in all our experi-
ments. We present experiments with other bandwidths
in the supplementary.

5 Conclusion

In this work we proposed the first theoretical analy-
sis of LIME for text data. In particular, we provided
a closed-form expression for the interpretable coeffi-
cients when the number of perturbed samples is large.
Leveraging this expression, we exhibited some desir-
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able behavior of LIME such as the linearity with re-
spect to the model. In specific cases (simple decision
trees and linear models), we derived more precise ex-
pression, showing that LIME outputs meaningful ex-
planations in these cases.

As future work, we want to tackle more complex mod-
els. More precisely, we think that it is possible to ob-
tained approximate statements in the spirit of Eq. (12)
for models that are not linear.
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