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Abstract

We propose an improved estimator for the
multi-task averaging problem, whose goal is
the joint estimation of the means of mul-
tiple distributions using separate, indepen-
dent data sets. The naive approach is to
take the empirical mean of each data set
individually, whereas the proposed method
exploits similarities between tasks, without
any related information being known in ad-
vance. First, for each data set, similar or
neighboring means are determined from the
data by multiple testing. Then each naive
estimator is shrunk towards the local aver-
age of its neighbors. We prove theoretically
that this approach provides a reduction in
mean squared error. This improvement can
be significant when the dimension of the in-
put space is large; demonstrating a “blessing
of dimensionality” phenomenon. An applica-
tion of this approach is the estimation of mul-
tiple kernel mean embeddings, which plays an
important role in many modern applications.
The theoretical results are verified on artifi-
cial and real world data.

1 INTRODUCTION

The estimation of means from i.i.d. data is arguably
one of the oldest and most classical problems in statis-
tics. In this work we consider the problem of esti-
mating multiple means µ1, . . . , µB of probability dis-
tributions P1, . . . ,PB , over a common space X = Rd
(or possibly a real Hilbert space H). We assume that
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for each individual distribution Pi, we observe an i.i.d.

data set X
(i)
• of size Ni, and that these data sets have

been collected independently from each other.

In the rest of the paper, we will call each such data set

X
(i)
• a bag. Mathematically, our model is thus{
X

(i)
• := (X

(i)
k )1≤k≤Ni

i.i.d.∼ Pi, 1 ≤ i ≤ B;

(X
(1)
• , . . . , X

(B)
• ) independent,

(1)

where P1, . . . ,PB are square integrable distributions
on Rd which we call tasks, and our goal is the estima-
tion of their means

µi := EX∼Pi
[X] ∈ Rd, 1 ≤ i ≤ B. (2)

Given an estimate µ̂i of µi, we will be interested in
its squared error ‖µ̂i − µi‖2, and aim at controlling
it either with high probability or on average (mean
squared error, MSE):

MSE(i, µ̂i) := E
[
‖µ̂i − µi‖2

]
;

this error can be considered either individually for each
task Pi or averaged over all tasks.

This problem is also known as multi-task averaging
(MTA) (Feldman et al., 2014), an instance of the
multi-task learning (MTL) problem1. Prior work on
MTL showed that learning multiple tasks jointly yields
better performance compared to individual single task
solutions (Caruana, 1997; Evgeniou et al., 2005; Feld-
man et al., 2014). We adapt the idea of joint esti-
mation to the multi-task averaging problem and show
that we can take advantage of some unknown struc-
ture in the set of tasks to improve estimation. The
natural baseline for comparison is the naive estimator
(NE) given by the simple empirical mean:

µ̂NE
i :=

1

Ni

Ni∑
k=1

X
(i)
k ; MSE(i, µ̂NE

i ) =
1

Ni
Tr Σi, (3)

1or multiple instance learning problem
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where Σi is the covariance matrix of Pi.

Our motivation for considering this setting is the grow-
ing number of large databases taking the above form,
where independent bags, corresponding to different
but conceptually similar distributions, are available;
for example, one can think of i as an index for a
large number of individuals, for each of which a num-
ber of observations (assumed to be sampled from an
individual-specific distribution) have been collected,
say medical records, or online activity by some gov-
ernmental or corporate spying device.

While estimating means in such databases is of interest
of its own, a particularly important motivation to con-
sider this setting is that of Kernel Mean Embedding
(KME), a technique enjoying sustained attention in
the statistical and machine learning community since
its introduction in the seminal paper of Smola et al.
(2007); see Muandet et al. (2017) for an overview. The
KME methodology is used in a large number of appli-
cations, e.g. two sample testing (Gretton et al., 2012),
goodness-of-fit (Chwialkowski et al., 2016), multiple
instance or distributional learning for both supervised
(Muandet et al., 2012; Szabó et al., 2016) as well as
unsupervised learning (Jegelka et al., 2009), to name
just a few.

The core principle of KME is to represent the distri-
bution PZ of a random variable Z via the mean of
X = φ(Z), where φ is a rich enough feature map-
ping from the input space Z to a (reproducing kernel)
Hilbert space H. In practice, it is assumed that we
have an i.i.d. bag (Zk)1≤k≤N from P, which is used to
estimate its KME. Here we are interested again in the
situation where a large number of independent bags
from different distributions are available, and we want
to estimate their KMEs jointly. This is, therefore, an
instance of the model (1), once we set X := H and

X
(i)
k := φ(Z

(i)
k ).

1.1 Relation to Previous Work

The fact that the naive estimator (3) can be improved
upon when multiple, real-valued means are to be es-
timated simultaneously, has a long history in mathe-
matical statistics. More precisely, let us introduce the
following isotropic Gaussian setting:

Pi = N (µi, Id); Ni = N, 1 ≤ i ≤ B, (GI)

on which we will come back in the sequel.

As shown in Stein (1956), for B = 1 with d ≥ 3
the naive estimator is inadmissible, i.e. there exists
a strictly better estimator, with a lower MSE for any
true mean vector µ1. An explicit example of a better
estimator is given by the celebrated James-Stein esti-
mator (JSE) (James and Stein, 1961), which shrinks

adaptively the naive estimator towards 0, or more gen-
erally, towards an a priori fixed vector ν0.

The MTA problem was introduced by Feldman et al.
(2014), who proposed an approach which regularizes
the estimation such that similar tasks shall have sim-
ilar means as well. In practice, however, they either
assume the pairwise task similarities to be known or
set them to a constant value across tasks2, which is un-
realistic in many applications. In addition to our own
approach, we will also introduce a variation of theirs,
suitable for the KME framework, that estimates the
task similarity from the data. Mart́ınez-Rego and Pon-
til (2013) proposed a method based on spectral clus-
tering of the tasks and apply Feldman et al. (2014)’s
method separately on each cluster, but without theo-
retical analysis.

Variations of the JSE can be shown to yield possible
improvements over the NE in more general situations
as well (see Fathi et al., 2020 for recent results in non-
Gaussian settings). This has also been exploited for
KME in Muandet et al. (2016), where a Stein-type
estimator in kernel space was shown to generally im-
prove over naive KME estimation. To the best of our
knowledge, no shrinkage estimator for KME explicitly
designed for or taking advantage of the MTA setting
exists.

In the remainder of this work we proceed as follows.
Section 2 introduces the basic idea of the approach
and starts with a general discussion. We will expose
in Section 3 a theoretical analysis proving that the pre-
sented method improves upon the naive estimation in
terms of squared error, possibly by a large factor. The
general theoretical results will be discussed explicitly
for the Gaussian setting (Sec. 3.3), the bounded set-
ting (Sec. 3.4) and in the KME framework (Sec. 3.5).
The approach is then tested on artificial and real world
data in Section 4. The supplemental material (referred
to with the suffix S-) contains detailed proofs of the re-
sults, details on the different methods compared in the
experiments, and additional experimental results.

2 METHOD

The basic idea of our approach is to improve the esti-
mation of a mean of a task by basing its estimation not
on its own bag alone, but concatenating the samples
from all bags it is sufficiently similar to. Since in most
practical applications task similarity is not known, we
will propose a statistical test that assesses task relat-
edness based on the given data.

2Feldman et al. (2014) mention only in a footnote of
their Section 5.1 the possibility of fully estimating the task
similarities from the data, but didn’t pursue this further.
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2.1 Overview of the Approach

In the remainder of the paper we will use the nota-
tion [[n]] := {1, . . . , n}. For convenience of exposition,
assume the (GI) setting. In this case, the naive es-
timators all have the same MSE, σ2 := d/N . Fix a
particular task (reindexed i = 0) with mean µ0 that
we wish to estimate, and assume for now we are given
the side information that for some constant τ > 0,
it holds ∆2

0i := ‖µ0 − µi‖2 ≤ τσ2 for some “neighbor
tasks” i ∈ [[V ]] (a subset of the larger set of B tasks
within range τσ2 to µ0, reindexed for convenience).
Consider the estimator µ̃0 obtained by a simple aver-
age of neighbor naive estimators, µ̃0 = 1

V+1

∑V
i=0 µ̂

NE
i .

We can bound via usual bias-variance decomposition,
independence of the bags and convexity of the squared
norm:

MSE(0, µ̃0) =

∥∥∥∥ 1

V + 1

V∑
i=1

(µ0 − µi)
∥∥∥∥2

+
σ2

V + 1

≤ σ2 (1 + V τ)

V + 1
. (4)

Thus, the above bound guarantees that µ̃0 improves
over µ̂NE

0 whenever τ < 1, and leads to a relative im-
provement of order max(τ, V −1).

In practice, we don’t have any prior side information
on the configuration of the means. A simple idea is,
therefore, to estimate the quantities ∆2

0i from the data

by an estimator ∆̂2
0i and select only those bags for

which ∆̂2
0i ≤ τ̃σ2. This is in a nutshell the principle of

our proposed method.

The deceptive simplicity of the above idea might be
met with some deserved skepticism. One might ex-
pect that the typical estimation error of ∆̂2

0i would be
of the same order as the MSE of the naive estimators.
Consequently, we could at best guarantee with high
probability a bound of ∆2

0i . σ2 for the estimated
neighbor tasks, i.e. τ ≈ 1, which does not lead to any
substantial theoretical improvement when using (4).
The reason why the above criticism is pessimistic, even
in the worst case, is the role of the dimension d. From
high-dimensional statistics, it is known that the rate
of testing for ∆2

0i = 0, i.e. the minimum ρ2 such that
a statistical test can detect ∆2

0i ≥ ρ2 with probabil-
ity close to 1, is faster than the rate of estimation,
ρ2 '

√
d/N = σ2/

√
d (see e.g. Baraud, 2002; Blan-

chard et al., 2018). Thus, we can reliably determine
neighbor tasks with τ ≈ 1/

√
d. Based on (4), we can

hope again for an improvement of order up toO(1/
√
d)

over NE, which is significant even for a moderately
large dimension. In the rest of the paper, we develop
the idea sketched here more precisely and illustrate its
consequences on KME by numerical experiments. The
message we want to convey is that the curse of higher

dimensional data with its effect on MSE can be to a
limit mitigated by a relative blessing because we can
take advantage of neighboring tasks more efficiently.

2.2 Proposed Approach

Denote σ2
i = MSE(i, µ̂NE

i ), i ∈ [[B]]. Introduce the
following notation: ∆ij := ‖µi − µj‖. In general, our
approach assumes that we have at hand a family of
tests (Tij)1≤i,j≤B for the null hypotheses H0

ij : ∆2
ij >

τσ2
i against the alternatives H1

ij : ∆2
ij ≤ τ ′σ2

i , for 0 ≤
τ ′ < τ . The exact form of the tests will be discussed
later for specific settings.

We denote the set of detected neighbors of task i ∈ [[B]]
as Vi := {j : Tij = 1, j ∈ [[B]]}; we can safely assume
Tii = 1 so that that i ∈ Vi always holds and |Vi| ≥ 1.
We will also denote V ∗i = Vi\{i}. For γ ∈ [0, 1], define
the modified estimator

µ̃i := γµ̂NE
i +

(1− γ)

|Vi|
∑
j∈Vi

µ̂NE
j , (5)

which can be interpreted as a local shrinkage estimator
pulling the naive estimator towards the simple average
of its neighbors.

3 THEORETICAL RESULTS

Introduce the notation

σ2 := max
i∈[[B]]

MSE(i, µ̂NE
i ) = max

i∈[[B]]
(Tr(Σi)/Ni). (6)

Define further

G(τ) :=
{

(i, j) ∈ [[B]]2 : ∆2
ij ≤ τσ2

}
;

G(τ) :=
{

(i, j) ∈ [[B]]2 : ∆2
ij ≥ τσ2

}
,

and the two following events:

A(τ) :=
{

max
(i,j)∈G(τ)

Tij = 1
}

;

B(τ ′) :=
{

min
(i,j)∈G(τ ′)

Tij = 0
}

;

so P[A(τ)] is the collective false positive rate of the
tests (or family-wise error rate) while P[B(τ ′)] is the
collective false negative rate to detect ∆2

ij ≤ τ ′σ2

(family-wise type II error rate).

3.1 A General Result under Independence of
Estimators and Tests

We start with a result assuming that the tests
(Tij)(i,j)∈[[B]]2 and the estimators (µ̂NE

i )i∈[[B]] are inde-
pendent. This can be achieved, for instance, by split-
ting the original samples of each bag into two subsets.
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Theorem 3.1. Assume model (1) holds as well as (2),
and that (6) holds. Furthermore, assume that there ex-
ists a family of tests (Tij)(i,j)∈[[B]]2 that is independent

of (X
(i)
• )i∈[[B]]. For a fixed constant τ > 0, consider

the family of estimators (µ̃i)i∈[[B]] defined by (5) with
respective parameters

γi :=
τ |V ∗i |

(1 + τ)|V ∗i |+ 1
. (7)

Then, conditionally to the event Ac(τ), it holds

∀i ∈ [[B]] : MSE(i, µ̃i) ≤
(

τ |V ∗i |+ 1

(1 + τ)|V ∗i |+ 1

)
σ2. (8)

Let N denote the covering number of the set of means
{µj , j ∈ [[B]]} by balls of radius

√
τ ′σ/2. Then, condi-

tionally to the events Ac(τ) and Bc(τ ′) (for τ ′ < τ),
it holds

1

B

B∑
i=1

MSE(i, µ̃i) ≤
(

τ

τ + 1
+
N
B

1

(τ + 1)

)
σ2. (9)

The proof can be found in the Supplemental S-1. In a
nutshell, conditional to the favorable event Ac(τ), and
because the tests are independent of the estimators,
we can use the argument leading to (4), extended to
take into account the shrinkage factor γ, and optimize
the value of γ to obtain (7), (8). If Bc(τ ′) is satisfied
as well, we can deduce (9) directly from (8).

Discussion. The above bounds are in terms of σ2,
the maximum of the naive MSEs over bags, defined
in (6). This implies a relevant comparison to the (indi-
vidual or averaged) naive MSEs only if those are of the
same order across tasks, i.e. mini∈[[B]] MSE(i, µ̂NE

i ) ≥
λmaxi∈[[B]](Tr(Σi)/Ni) for some λ close to 1. Signifi-
cant departures from such an homogeneous situation
will require to take into account more carefully indi-
vidual task-wise MSEs.

The factor in the individual MSE bound (8) is strictly
less than 1 as soon as |Vi| > 1. As the number of
neighbors |Vi| grows, the factor is larger than but ap-
proaches τ/(1+τ). Therefore, there is a general trade-
off between τ and the number of neighbors in a neigh-
borhood of radius

√
τσ. Nevertheless, in order to aim

at possibly significant improvement over naive estima-
tion, a small value of τ should be taken.

The factor in the averaged MSE bound (9) is also al-
ways smaller than 1 (as expected from the individual
MSE bound). It has a nice interpretation in terms of
the ratio N/B: if N � B, the improvement factor will
be very close to τ/(1 + τ). Thus, we collectively can
improve over the naive estimation wrt MSE as soon as
the set of means has a small covering number (at scale

√
τ ′σ/2) in comparison to its cardinality. This condi-

tion can be met in different structural low complexity
situations, e.g. clustered means, means being sparse
vectors, or lying on a low-dimensional manifold. The
method does not need information about said struc-
ture in advance and in this sense adapts to it.

3.2 Using the Same Data for Tests and
Estimation

We now present a general result in the case where the
estimators and tests are not assumed to be indepen-
dent (e.g. computed from the same data.) To this end
we introduce the following additional events:

C(τ) :
{

max
i 6=j
|〈µ̂NE

i − µi, µ̂NE
j − µj〉| > τσ2

}
;

C ′(τ) :
{

max
i
‖µ̂NE

i − µi‖2 > σ2 + τσ2
}
.

Theorem 3.2. Assume that there exists a family of
tests (Tij)(i,j)∈[[B]]2 . For a given τ > 0 consider the
family of estimators (µ̃i)i∈[[B]] defined by (5) with re-
spective parameters

γi :=
τ

1 + τ
. (10)

Then, for τ ′ ≤ τ , with probability greater than 1 −
P[A(τ) ∪B(τ ′) ∪ C(τ) ∪ C ′(τ)], it holds

∀i ∈ [[B]] : ‖µ̃i − µi‖2 ≤ 2σ2

(
τ +

τ + |Vi|−1

1 + τ

)
. (11)

Let N denote the covering number of the set of means
{µj , j ∈ [[B]]} by balls of radius

√
τ ′σ/2. Then, with

the same probability as above, it holds

1

B

B∑
i=1

‖µ̃i − µi‖2 ≤ 2σ2

(
τ +

τ

1 + τ
+
N
B

1

1 + τ

)
.

(12)

The interpretation of the above result is similar to that
of Theorem 3.1, with the caveat that the factor in the
MSE bound is not always bounded by 1 as before; but
the qualitative behaviour when τ is small, which is the
relevant regime, is the same as previously described.

3.3 The Gaussian Setting

In view of the previous results, the crucial point is
whether there exists a family of tests such that the
events A(τ), B(τ ′), C(τ), C ′(τ) have small probability,
for a value of τ significantly smaller than 1, and τ ′ of
the same order as τ (up to an absolute numerical con-
stant). This is what we establish now in the Gaussian
setting.
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Proposition 3.3. Assume (GI) is satisfied. For a
fixed α ∈ (0, 1), define the tests

Tij = 1
{∥∥µ̂NE

i − µ̂NE
j

∥∥2 ≤ (2 + τ/2)d/N
}
. (13)

Then, provided τ ≥ 225 max(δ,
√
δ), where δ :=

(2 logB+logα−1)/d, it holds P[A(τ)] ≤ α, P[B(τ ′)] ≤
α with τ ′ = τ/4, P[C(τ)] ≤ 2α and P[C ′(τ)] ≤ α.

The above result is significant in combination with
Theorems 3.1 and 3.2 when δ is small, which is the
case if log(B)/d is small. The message is the follow-
ing: in a high-dimensional setting, provided B � ed,
we can reach a large improvement compared to the
naive estimators, if the set of means exhibits struc-
ture, as witnessed by a small covering number at scale
d

1
4

√
(logB)/N . The best-case scenario is when all the

means are tightly clustered around a few values, so
that N is small but B is large, then the improvement
in the MSE is by a factor of order

√
(logB)/d.

3.4 The Bounded Setting

The strict Gaussian setting with isotropic covariance is
unrealistic for most practical applications. First, real
data distributions often depart from being Gaussian;
secondly, their covariance matrix is seldom a multi-
ple of the identity, especially in high dimension. To
analyze theoretically a more realistic framework, we
consider in this section the case of bounded data with
general covariance matrices. A particularly important
motivation is the application of our results to the Ker-
nel Mean Embedding setting using a bounded kernel,
as will be discussed in more detail in the next section.
We therefore consider the following bounded setting:

∀i ∈ [[B]] : Ni = N and
∥∥X(i)

k

∥∥ ≤ L,Pi − a.s., k ∈ [[N ]].
(BS)

(note in particular that we still assume that all bags
have the same size for the theoretical results.)

In order to apply our general results of Theo-
rems 3.1 and 3.2, we must again find suitable val-
ues of τ (as small as possible) and τ ′ (as close to
τ as possible) so that the probability of the events
A(τ), B(τ ′), C(τ), C ′(τ) is small, in the setting (BS).
In that context, the role of the dimension d will be
played by the effective dimension Tr Σ/‖Σ‖op. Since
this quantity can change from one source distribution
to the the other, we will consider the minimum effec-
tive dimension across tasks:

deff := min
i∈[[B]]

(Tr Σi/‖Σi‖op). (14)

We stress that the results of this section do not require
that the space has finite dimension, i.e. X can be a

Hilbert space. In this case the covariance operator of
a Hilbert-valued random variable is Σ = E[X ⊗X] −
E[X]⊗ E[X]. Under (BS), the covariance operator Σi
for task i is guaranteed to exist with Tr(Σi) ≤ L.

We will test based on the following estimate of ∆2
ij :

Uij =
1

N(N − 1)

N∑
k,`=1
k 6=`

(〈
X

(i)
k , X

(i)
`

〉
+
〈
X

(j)
k , X

(j)
`

〉)

− 2

N2

N∑
k,`=1

〈
X

(i)
k , X

(j)
`

〉
. (15)

Observe that in contrast to the statistic
∥∥µ̂NE

i − µ̂NE
j

∥∥2

used in the Gaussian setting, which had a bias of
MSE(i, µ̂NE

i ) + MSE(j, µ̂NE
j ), the above one is unbi-

ased, i.e. E[Uij ] = ∆2
ij . This is why the test threshold

(see (18) below) does not include an offset (2 + τ) like
in (13). However, the discrimination power of the two
types of tests has the same behavior, as established
next.

Proposition 3.4. Consider model (1)-(2), the
bounded setting (BS) and assume (14) holds. Define

r(t) := 5

(√(
1

deff
+

L

Nσ

)
t+

Lt

Nσ

)
, (16)

and
τmin(t) := r(t) max

(√
2, r(t)

)
. (17)

For a fixed t ≥ 1, define the tests Tij for i, j in [[B]]2

Tij := 1
{
Uij < τσ2/2

}
. (18)

Then, provided τ ≥ 144τmin(t) , it holds

P[A(τ) ∪B(τ/4) ∪ C(τ/7) ∪ C ′(τ/48)] ≤ 14B2e−t .

The quantity r(t) above (taking t = log(14B2α−1),
where 1−α is the target probability) plays a role anal-
ogous to δ in the Gaussian setting (Proposition 3.3).
As the bag size N becomes sufficiently large, we expect
σ = O(N−

1
2 ) and, therefore, σN = O(N

1
2 ). Hence,

provided N is large enough, the quantity r(t) is mainly
of the order

√
log(B)/deff . Like in the Gaussian case,

this factor determines the potential improvement with
respect to the naive estimator, which can be very sig-
nificant if the effective data dimensionality deff is large.

From a technical point of view, capturing precisely the
role of the effective dimension required us to estab-
lish concentration inequalities for deviations of sums
of bounded vector-valued variables improving over the
classical vectorial Bernstein’s inequality of Pinelis and
Sakhanenko (1986). We believe this result (see Corol-
lary S-6.3 in the Supplemental) to be of interest of its
own and to have potential other applications.
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3.5 The Kernel Mean Embedding Setting

We recall that the principle of KME posits a repro-
ducing kernel k on an input space Z, corresponding to
a feature mapping Φ : Z → H, where H is a Hilbert
space, with k(z, z′) = 〈φ(z), φ(z′)〉. The feature map-
ping φ can be extended to probability distributions P
on Z, via φ(P) := EZ∼P[φ(Z)], provided this expecta-
tion exists, which can be guaranteed for instance if φ
is bounded. This gives rise to an extended kernel on
probability distributions via k(P,Q) := 〈φ(P), φ(Q)〉 =
E(Z,Z′)∼P⊗Q[k(Z,Z ′)].

As explained in the introduction, if we have a large
number of distributions (Pi)i∈[[B]] for each of which

an independent bag (Z
(i)
k )1≤k≤Ni

is available, and
we wish to collectively estimate their KMEs, this is
an instance of the model (1)-(2) under the transfor-

mation X
(i)
k := φ(Z

(i)
k ). The distributions Pi are

replaced by their image distribution through φ s.t.
µi = φ(Pi) and the naive estimators are µ̂NE

i = φ(P̂i),
where P̂i is the empirical measure associated to bag

Z
(i)
• . Under the common assumption that the kernel

is bounded, supz∈Z k(z, z) = supz∈Z‖φ(z)‖2 ≤ L2, we
are precisely in the case (BS) considered in the pre-
vious section. Furthermore, once interpreted in the
KME setting the inter-task distance ∆ij is precisely
the maximum mean discrepancy (MMD) between Pi
and Pj , and the test statistic (15) is exactly the stan-
dard MMD2 estimate (Muandet et al., 2017), which
can be evaluated simply by replacing scalar products〈
X

(i)
k , X

(j)
`

〉
by kernel evaluations k(Z

(i)
k , Z

(j)
` ).

As always for kernel-based methods, elements of the
Hilbert space H are an abstraction which are never
explicitly represented in practice; instead, norms and
scalar products between elements, that can be writ-
ten as linear combinations of sample points, can be
computed by straightforward formulas using the ker-
nel. In this perspective, a central object is the inter-
task Gram matrix K defined as Kij := k(Pi,Pj) =
〈µi, µj〉, (i, j) ∈ [[B]]2. In the framework of inference
on distributions, as for instance support measure ma-
chines (Muandet et al., 2012), the distributions Pi act
as (latent) training points and the matrix K as the
usual kernel Gram matrix for kernel inference. In con-
trast to what is assumed in standard kernel inference,
K is not directly observed but approximated by K̂
s.t. K̂ij := 〈µ̂i, µ̂j〉, for some estimators (µ̂i)i∈[[B]] of
the true KMEs. The following elementary proposition
links the quality of approximation of the means with
the corresponding inter-task Gram matrix:

Proposition 3.5. Assume the model (1)-(2) and the
bounded setting (BS). Let µ̂i be estimators of µi
bounded by L, and the matrices K and K̂ defined as
the Gram matrices of (µi)i∈[[B]] and (µ̂i)i∈[[B]], respec-

tively. Then∥∥∥ 1

B
(K − K̂)

∥∥∥2

Fr.
≤ 4L2

B

∑
i∈[[B]]

‖µi − µ̂i‖2, (19)

where ‖K‖Fr. := Tr(KKT )
1
2 is the Frobenius norm.

This result further illustrates the interest of improving
the task-averaged squared error.

4 EXPERIMENTS AND
EVALUATION

We validate our theoretical results in the KME set-
ting3 on both synthetic as well as real world data.4

The neighboring kernel means are determined from the
tests as described in (18). More specifically, in practice
we use the modification that (i) we adapt the formula,
i.e. Uij estimated as squared MMD, for possibly un-
equal bag sizes, and (ii) in each test Tij we replace σ2

by the task-dependent unbiased estimate

M̂SE(i, µ̂NE
i ) :=

1

2N2
i (Ni − 1)

·
Ni∑
k 6=`

k(Z
(i)
k , Z

(i)
k )

−2k(Z
(i)
k , Z

(i)
` ) + k(Z

(i)
` , Z

(i)
` ). (20)

We analyze three different variations of our method
which we call similarity test based (STB) approaches.
STB-0 corresponds to (5) with γ = 0. STB weight

uses model optimization to find a suitable value for γ,
whereas STB theory sets γ as defined in (7). How-
ever, here we replaced τ with c · τ , where c > 0 is a
multiplicative constant, to allow for more flexibility.

We compare their performances to the naive esti-
mation, NE, and the regularized shrinkage estimator,
R-KMSE, (Muandet et al., 2016) which also estimates
the KME of each bag separately but shrinks it towards
zero. Furthermore, we modified the multi-task averag-
ing approach presented in Feldman et al. (2014) such
that it can be used for the estimation of kernel mean
embeddings. Similar to our idea, this method shrinks
the estimation towards related tasks. We test two op-
tions: MTA const assumes constant similarity for each
bag; MTA stb uses the proposed test from (18) to as-
sess the bags for their similarity. See Supplemental S-7
for a detailed description of the tested methods.

In the presented results, each considered method has
up to two tuning parameters that, in our experiments,
are picked in order to optimize averaged test error.

3In the Gaussian setting, we report numerical results in
the Supplemental S-9.

4Code is available at https://github.com/Han1Mar/
stb_kme.

https://github.com/Han1Mar/stb_kme
https://github.com/Han1Mar/stb_kme
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Therefore, the reported results can be understood as
close to “oracle” performance – the best potential of
each method when parameters are close to optimal
tuning. While this can be considered unrealistic for
practice, a closely related situation can occur in the
setting where the user wishes to use the method on
test bags of size N , and has at hand a limited number
of training bags of much larger size N ′ � N . From
each such training bag, one can subsample N points,
use the method for estimation of the means of all bags
of size N (incl. subsampled bags), and monitor the er-
ror with respect to the means of the full training bags
(of size N ′, used as a ground truth proxy). This allows
a reasonable calibration of the tuning parameters.

For all experiments we report the decrease in KME
estimation error compared to NE in percent. See Sup-
plemental S-8 for the raw errors.

4.1 Synthetic Data

The toy data consists of multiple, two-dimensional

Gaussian distributed bags Z
(i)
• with fixed means but

randomly rotated covariance matrices, i.e.

Z
(i)
• ∼ N

(
0, R(θi)ΣR(θi)

T
)

= Pi

θi ∼ U(−π/4, π/4),

where the covariance matrix Σ = diag(1, 10) is rotated
using rotation matrix R(θi) according to angle θi. The
different estimators are evaluated using the unbiased,
squared MMD between the estimation µ̃i and µi as
loss. Since µi is unknown, it must be approximated

by another (naive) estimation µ̂NE
i (Y

(i)
• ) based on in-

dependent test bags Y
(i)
• from the same distribution as

Z
(i)
• , with |Y (i)

• | = 1000. The test bag Y
(i)
• has much

larger size than the training bag Z
(i)
• , as a consequence

the estimator µ̂NE
i (Y

(i)
• ) has a lower MSE than all con-

sidered estimators based on Z
(i)
• , and can be used as

a proxy for the true µi.
5 In order to guarantee com-

parability, all methods use a Gaussian RBF with the
kernel width fixed to the average feature-wise standard
deviation of the data. Optimal values for the model
parameter, e.g. ζ and γ for STB weight, are selected
such that they minimize the estimation error averaged
over 100 trials. Once the values for the parameters
are fixed, another 200 trials of data are generated to
estimate the final generalization error. Different ex-
perimental setups were tested:

(a) Different Bag Sizes
B = 50 and Ni ∈ [10, 300] for all i ∈ [[B]],

5Additionally, the estimation of the squared loss is un-
biased if the diagonal entries of the Gram matrix will be

included for Z
(i)
• but excluded for Y

(i)
• .

(b) Different Number of Bags
B ∈ [10, 300] and Ni = 50 for all i ∈ [[B]],

(c) Imbalanced Bags
B = 50 and N1 = 10, . . . , N50 = 300,

(d) Clustered Bags
Ni, B = 50 for all i ∈ [[B]] but the Gaussian distri-
butions are no longer centered around 0. Instead,
each ten bags form a cluster with the cluster cen-
ters equally spaced on a circle. The radius of the
circle is varied between 0 and 5, to model different
degrees of overlap between clusters.

The results for the experiments on the synthetic data
can be found in Figure 1(a) to (d). The estimation
of the KME becomes more accurate as the bag size
increases. Nevertheless, all of the tested methods pro-
vide an increase in estimation performance over the
naive estimation, although, the improvement for larger
bag sizes decreases for R-KMSE and MTA const. As ex-
pected, methods that use the local neighborhood of the
KME yield lower estimation error when the number of
available bags increases. Interestingly, this decrease
seems to converge towards a capping value, which
might reflect the effective dimensionality of the data
as indicated by Theorems 3.1 and 3.2 combined with
Proposition 3.4. Although we assumed equal bag sizes
in the theoretical results, the proposed approaches pro-
vide accurate estimations also for the imbalanced set-
ting. Figure 1(c) shows that the improvement is most
significant for bags with few samples, which is con-
sistent with results on other multi-task learning prob-
lems (see e.g. Feldman et al., 2014). However, when
the KME of a bag with many samples is shrunk to-
wards a neighbor with few samples, the estimation
can be deteriorated (compare results on (a) with those
on (c) for large bag sizes). A similar effect can be
seen in the results on the clustered setting. When the
bags overlap (0 < radius < 3), a bag from a different
cluster might be considered as neighbor which leads
to a stronger estimation bias and decline in accuracy.
When the tasks have similar centers or are strictly sep-
arated (radius > 3), the methods show similar perfor-
mance to what is shown in Figure 1(b).

To summarize, NE and R-KMSE give worst performances
because they estimate the kernel means separately.
Even though MTA const assumes all tasks to be re-
lated, it improves the estimation performance even
when the bags are not similar. However, the methods
that derive the task similarity from the local neighbor-
hood achieve most accurate KME estimations in all of
the tested scenarios, especially STB weight and STB

theory.
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(a) Different Bag Sizes
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(b) Different Number of Bags
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(c) Imbalanced Bags
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(d) Clustered Bags
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Figure 1: Decrease in KME estimation error com-
pared to NE in percent on experimental setups (a) to
(d). Higher is better. STB methods give similar results
so that their plots are overlaid.

4.2 Real World Data

We test our methods on two real world data sets. The
AOD-MISR1 data set is a collection of 800 bags with
each 100 samples. The samples correspond to ran-
domly selected pixels from a MISR satellite, where
each instance is formed by 12 reflectances from three
MISR cameras.6 It can be used to predict the aerosol
optical depth (AOD) which poses an important prob-
lem in climate research (Wang et al., 2011).

The AOD data is standardized such that each of the
features has unit standard deviation and is centered
around zero. In each out of the 100 trials, we ran-
domly subsample 20 samples from each bag, on which
the KME estimation is based. This estimation is then
compared to the naive estimation on the complete bag.
Cross-validation, with 400 bags for training and test-
ing, is used to optimize for the model parameters of
each approach and then estimate its error. A linear
kernel and a Gaussian RBF with the kernel width fixed
to one are tested. The results are shown in Table 1.

Table 1: Decrease in KME estimation error compared
to NE in percent on the AOD-MISR1 data with differ-
ent kernels. Higher is better.

METHOD LINEAR RBF

R-KMSE −5.14 8.83
MTA const 8.56 13.92
MTA stb 7.82 17.17
STB-0 0.00 1.43
STB theory 14.51 21.83
STB weight 15.30 22.73

For the linear kernel, STB-0 finds no neighbors and
R-KMSE is even worse than NE. STB weight and STB

theory provide most accurate estimations of the
KMEs.

When the RBF kernel is used, all of the methods pro-
vide a more accurate estimation of the KME than the
naive approach. The estimations given by STB-0 are
similar to those of NE, because STB-0 considers very
few bags as neighbors. This lets us conclude that the
bags are rather isolated than overlapping. MTA stb,
STB weight and STB theory might give better esti-
mations because they allow for more flexible shrinkage.
Again, STB weight and STB theory are outperform-
ing the remaining methods.

The second data set7 consists of wine characteris-
tics, e.g. ’acid’, ’juicy’, represented as 39-dimensional

6We only use 12 out of 16 features because the remain-
ing four are constant per bag.

7https://www.kaggle.com/dbahri/wine-ratings.

https://www.kaggle.com/dbahri/wine-ratings
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(a) DNF kernel
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(b) mDNF kernel
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Figure 2: Decrease in KME estimation error com-
pared to NE in percent on the wine data set for different
bag sizes and kernels. Higher is better.

boolean variables of wines (used as samples) of differ-
ent countries (used as bags) (Gupta et al., 2018). We
selected only countries with at least 460 wines, result-
ing in 15 different bags. In order to get balanced bags,
we randomly selected a subset of samples in case a bag
had more than 460 samples. The complete bags are
used to approximate their true KMEs. This proxy is
then again compared with an estimated KME based
only on a randomly selected subset of samples (re-
peated for 100 trials). Leave-one-out cross-validation
is used to find optimal model parameters and estimate
the estimation performance. Since this is binary data,
we applied the Disjunctive Normal Form (DNF) ker-
nel and the monotone DNF kernel (mDNF) (Polato
et al., 2018). The DNF counts the number of common
{0, 1}-entries, whereas the mDNF kernel only counts
common 1s. We normalized the DNF kernel such that
it lies in [0, 1].

kDNF(z, z′) = −1 + 2(<z,z′>+<z̄,z̄′>)/39

kmDNF(z, z′) = −1 + 2<z,z
′>,

where z̄ = 1−z. The results can be found in Figure 2.

The improvement over NE is most significant for small
bag-sizes, as it was seen before. Neighboring bags even
deteriorate the estimation by STB-0 such that its per-

formance becomes worse than NE. R-KMSE provides an
improvement only for the mDNF kernel. STB weight

and STB theory again outperform the other methods,
including the ones based on MTA.

5 CONCLUSION

In this paper we proposed an improved estimator for
the multi-task averaging problem. The estimation is
improved by shrinking the naive estimation towards
the average of its neighboring means. The neighbors
of a task are found by multiple testing so that task
similarities must not be known a priori. Provided that
appropriate tests exist, we proved that the introduced
shrinkage approach yields a lower squared error for
each task individually and also on average. We show
that there exists a family of statistical tests suitable for
isotropic Gaussian distributed data or bounded data
in a Hilbert space. Theoretical analysis shows that
this improvement can be especially significant when
the (effective) dimension of the tasks is large, using
the property that the typical detection radius of the
tests is much smaller than the standard estimation er-
ror in high dimension. This property is particularly
important for the estimation of multiple kernel mean
embeddings (KME), for which the proposed estimator
and the theoretical results can naturally be translated.

We tested different variations of the presented ap-
proach on synthetic and real world data and compared
its performance to other state-of-the-art methods. In
all of the conducted experiments, the proposed shrink-
age estimators yield the most accurate estimations.

Since the estimation of a KME is often only an inter-
mediate step for solving a final task, as for example
in distribution regression (Szabó et al., 2016), further
effort must be made to assess whether the improved
estimation of the KME also leads to a better final pre-
diction performance. Furthermore, the results on the
imbalanced toy data sets have shown that the shrink-
age estimator particularly improves the estimation of
small bags. However, when the KME of a bag with
many samples is shrunk towards a neighbor with low
bag size, its estimation might be distorted. There-
fore, another direction for future work will be the de-
velopment of a similarity test or a weighting scheme
that take the bag size into account in a principled way.
From a theoretical perspective, the empirical estima-
tion of the naive MSEs should also be taken into ac-
count. We also will investigate if the improvement
factor with respect to the naive estimates is optimal
in a suitable minimax sense.
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Szabó, Z., Sriperumbudur, B. K., Póczos, B., and
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