
Misspecification in Prediction Problems and Robustness via Improper Learning

A Proof of Theorem 1

Before we give the proof of the theorem proper, we first recall Le Cam’s method. As we consider the excess loss,
central to our development is the following separation quantity (cf. Duchi, 2018, Sec. 5).

Definition A.1 (Separation). Let f1 : Θ→ R, f2 : Θ→ R. Their separation with respect to Θ is

sep(f1, f2,Θ) := sup

{
ε ≥ 0 | f1(θ) ≤ infθ∈Θ f1(θ) + ε implies f2(θ) > infθ∈Θ f2(θ) + ε

f2(θ) ≤ infθ∈Θ f2(θ) + ε implies f1(θ) > infθ∈Θ f1(θ) + ε,
all θ ∈ Θ

}
.

This separation measures the extent to which minimizing a function f1 means that one cannot minimize a function
f2, and by a standard reduction of estimation and optimization to testing—if one can optimize well, then one
can decide whether one is optimizing f1 or f2—we have Le Cam’s method. (See (Duchi, 2018, Sec. 5.2) for this
specific form.)

Lemma 8 (Le Cam’s Method). Let v ∈ {±1} and Pv be arbitrary distributions on a set Z and fv : Θ→ R be
functions similarly indexed by v ∈ {±1}, where f?v = infθ∈Θ fv(θ). Then

inf
θ̂

max
v∈{−1,1}

EPnv
[
fv(θ̂(Z1, . . . , Zn))− f?v

]
≥ sep(f1, f−1,Θ)

(
1−

√
n

2
Dkl (P1||P−1)

)
,

where the infimum is over θ̂ : Zn → Θ and the expectation is over Zi
iid∼ Pv.

To use Lemma 8 to prove lower bounds, then, the key is to show that for a given loss L, there are distributions
P1, P−1 that induce a large separation in the risks RiskPv while having small KL-divergence. The basic approach,
familiar from other lower bounds Duchi (2018); Wainwright (2019), is to show that for some constants 0 < c0, c1 <
∞ and a power β ≥ 0, we can choose P±1 to scale with a desired rate ε via

sep(RiskP1 ,RiskP−1 ,Θ) ≥ c0εβ while Dkl (P1||P−1) ≤ c1ε2.

Given these separation and divergence bounds, it is then evidently the case that we may choose ε2 = 1
2c1n

, which
immediately yields a lower bound via Lemma 8 scaling as

c0

(
1

2c1n

)β/2
.

Thus any lower bounds we prove become larger as the separation rate β decreases or constant c0 grows. The next
lemma does precisely this, though there is some sophistication required because of the different constraints on our
losses.

Lemma 9. Let the loss take the form L(pθ(y | x)) = `(θTx, y). Let ε ∈ [0, 3
5 ], y ∈ Y, and t ∈ R, and q?` (t, y) be

as in definition (5). Assume t and δ ≥ 0 jointly satisfy

sup
|∆|≤δ

δ`′′(t+ ∆, y) ≤ εq?` (t, y)|`′(t, y)| and 2(t2 + δ2) ≤ R2B2. (12)

Then for any X ⊃ {x ∈ Rd | ‖x‖2 ≤ R}, there exist distributions {P±1} on X × Y such that

sep(RiskP1 ,RiskP−1 ,Θ) ≥ q?` (t, y)

2
|`′(t, y)|δ · ε

while
Dkl (P1||P−1) ≤ q?` (t, y)ε2.

We prove Lemma 9 in Appendix A.2.

Now we leverage Lemma 9 to provide a minimax risk bound over γ variation distance perturbations. The key
here is that the family {Pθ} restricts only conditional distributions—the marginal distribution over X ∈ X may
be arbitrary—allowing us to give appropriate mixtures.

Lemma 10. Assume that X ⊃ {x ∈ Rd | ‖x‖2 ≤ R} and let P±1 be distributions on X ×Y. Let γ ∈ [0, 1]. Then
there exists a distribution P0 ∈ {Pθ}θ∈Θ such that for Q±γ := (1− γ)P0 + γP±1,

sep(RiskQγ ,RiskQ−γ ,Θ) = γ sep(RiskP1
,RiskP−1

,Θ) and Dkl (Qγ ||Q−γ) ≤ γDkl (P1||P−1) .

See Appendix A.3 for the short proof of the result.

With Lemma 10 in hand we can now prove Theorem 1.
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A.1 Proof of Theorem 1 proper

First, recalling the perturbed minimax risk from Definition 1.1,

Mn(Θ,Γ, γ) := inf
p̂n∈Γ

sup
θ∈Θ

sup
P :‖P−Pθ‖TV

≤γ
EPn [RiskΘ

P (p̂n)],

where the infimum is over all procedures. Now, let (ε, y, t, δ) be any collection satisfying the conditions of Lemma 9
and {P±1} be the distributions the lemma guarantees exist. Additionally, let Q±γ be the perturbed distributions
Lemma 10 provides, so that there exists P0 ∈ {Pθ} such that ‖P0 −Q±γ‖

TV
≤ γ ‖P0 − P±1‖

TV
≤ γ. Then we

immediately obtain

Mn(Θ,Γ, γ) ≥ inf
θ̂n

max
v∈±1

EQnvγ
[
RiskΘ

Qvγ (θ̂n)
]

(i)

≥ sep(RiskQγ ,RiskQ−γ ,Θ)

(
1−

√
n

2
Dkl (Qγ ||Q−γ)

)
(ii)

≥ γ sep(RiskP1 ,RiskP−1 ,Θ)

(
1−

√
nγ

2
Dkl (P1||P−1)

)
(iii)

≥ γq?` (t, y)|`′(t, y)|δ
2

ε

(
1−

√
nγq?` (t, y)ε2/2

)
,

where inequality (i) is Le Cam’s inequality (Lemma 8), inequality (ii) follows via Lemma 10, and Lemma 9 gives
inequality (iii) whenever ε ≤ 3

5 . Choosing ε2 = 1
2nγq?` (t,y) (where we use that n is large enough that ε2 ≤ 1

3 )
yields the lower bound

Mn(Θ,Γ, γ) ≥
√
γq?` (t, y)

4
√
n

|`′(t, y)|δ (13)

valid for all δ ≥ 0 satisfying

δ ≤ |`′(t, y)|
sup|∆|≤δ `

′′(t+ ∆, y)

√
q?` (t, y)
√

2nγ
.

This is circular, but we note that if we define

mn(δ) = mn(δ, t, y, `, γ) := min

{
δ,

|`′(t, y)|
sup|∆|≤δ `

′′(t+ ∆, y)

√
q?` (t, y)
√

2nγ

}

then mn(δ) satisfies mn(δ) ≤ |`′(t,y)|
sup|∆|≤mn(δ) `

′′(t+∆,y)

√
q?` (t,y)
√

2nγ
, and substituting mn(δ) for δ in the lower bound (13)

gives

Mn(Θ,Γ, γ) ≥
√
γq?` (t, y)

4
√
n

|`′(t, y)|min

{
δ,

|`′(t, y)|
sup|∆|≤δ `

′′(t+ ∆, y)

√
q?` (t, y)
√

2nγ

}
,

valid for all δ ≥ 0 satisfying 2(t2 + δ2) ≤ R2B2 as in Eq. (12).

A.2 Proof of Lemma 9

Recall throughout that ε ∈ [0, 1]. We provide the proof in two parts. In the first, we demonstrate the claimed risk
separation by a Taylor approximation argument, and in the second, we provide the claimed bound on the KL
divergence.

To show the risk separation, choose orthogonal vectors v, w ∈ Rd satisfying ‖v‖2 = ‖w‖2 = R/
√

2 and 〈v, w〉 = 0,
so that ‖v ± w‖2 = R. For values q ∈ [0, 1], α ∈ [−1, 1], and y0 ∈ Y to be specified presently, we consider
distributions on Rd × Y defined for σ ∈ {−1, 0, 1} by

Pi : (X,Y ) =


(αv, y0) with probability 1− q
(v + w, y) with probability q

2 (1 + σε)

(v − w, y) with probability q
2 (1− σε).

(14)

In this case, the risk evidently satisfies

RiskP0
(θ) = (1− q)`(αθT v, y0) +

q

2

[
`(θT (v + w), y) + `(θT (v − w), y)

]
.
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We now construct its minimizer by judicious choice of q, where scaling by α ∈ [−1, 1] is sometimes necessary.
Define θ0 = 2

R2 tv, so that ‖θ0‖2 =
√

2t/R ≤ B, θT0 w = 0 and θT0 v = t, and

∇RiskP0
(θ0) = α(1− q)`′(αt, y0)v + q`′(t, y)v,

so that if

q =
α`′(αt, y0)

α`′(αt, y0)− `′(t, y)

satisfies q ∈ [0, 1], we have ∇RiskP0
(θ0) = 0 and θ0 ∈ argminθ∈Θ RiskP0

(θ). In particular, we may choose

q = q?` (t, y) := sup
y0∈Y,α∈[−1,1]

{
α`′(αt, y0)

α`′(αt, y0)− `′(t, y)
s.t. sign(α`′(αt, y0)) 6= sign(`′(t, y))

}
.

We will perform a Taylor approximation of the risks RiskPσ for σ ∈ {±1} around θ0 to show the desired separation
bound. To that end, for δ ∈ R define the shifted vector

θδ :=
2

R2
(tv + δw) = θ0 +

2δ

R2
w,

for which we have ‖θδ‖22 = 2(t2 + δ2)/R2 and θTδ (v ± w) = t± δ. Using the risk expansion

RiskPσ (θ) = RiskP0
(θ) +

qσε

2

[
`(θT (v + w), y)− `(θT (v − w), y)

]
(15)

and the Taylor approximation

`(t+ δ, y) = `(t, y) + `′(t, y)δ +
δ2

2
`′′(t+ ∆, y) for some ∆ ∈ [0, δ],

we obtain

RiskPσ (θδ) = (1− q)`(t, y0) + q`(t, y) + σεq`′(t, y) · δ +
δ2

2
rem(δ)

= RiskP0
(θ0) + σεq`′(t, y) · δ +

δ2

2
rem(δ),

where the remainder term |rem(δ)| ≤ sup|∆|≤δ `
′′(t + ∆, y). In particular, if |δ| is small enough that the

conditions (12) hold, that is,

sup
|∆|≤|δ|

|δ|`′′(t+ ∆, y) ≤ εq|`′(t, y)| and 2(t2 + δ2) ≤ R2B2,

then setting s = − sign(σ`′(t, y)) and letting δ ≥ 0 satisfy the conditions (12), we have θsδ ∈ Θ and

inf
θ∈Θ

RiskPσ (θ) ≤ RiskPσ (θsδ) ≤ RiskP0(θ0)− qε

2
|`′(t, y)|δ.

Combining this inequality with the risk expansion (15), we see immediately that if θ ∈ Θ satisfies `(θT (v+w), y) ≥
`(θT (v − w), y) then

RiskP1
(θ) ≥ inf

θ∈Θ
RiskP1

(θ) +
qε

2
|`′(t, y)|δ,

and conversely `(θT (v − w), y) ≤ `(θT (v − w), y) implies

RiskP−1(θ) ≥ inf
θ∈Θ

RiskP1(θ) +
qε

2
|`′(t, y)|δ.

As θ0 minimizes RiskP0 , the expansion (15) implies that any θ minimizing RiskPi(θ) over Θ necessarily satisfies
σ[`(θT (v + w), y)− `(θT (v − w), y)] < 0, so we obtain the risk separation

sep(RiskΘ
P1
,RiskΘ

P−1
,Θ) ≥ qε

2
|`′(t, y)|δ,

valid for any δ satisfying the constraints (12), which proves the claimed risk separation in the lemma.

To see the KL bound in Lemma 9, we note that for any pair of distributions of the form (14), we have

Dkl (P1||P−1) =
q(1 + ε)

2
log

1 + ε

1− ε
+
q(1− ε)

2
log

1− ε
1 + ε

= qε log
1 + ε

1− ε
(?)

≤ qε2,

where inequality (?) is valid for ε ≤ 3
5 .
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A.3 Proof of Lemma 10

Let P0 have any distribution on Y | X and P0(X = 0) = 1, that is, the marginal over X is supported completely
on 0. Then it is immediate that for Q±γ = (1− γ)P0 + γP±1, we have

RiskQ±γ (θ) = (1− γ)EP0
[`(0, Y )] + γRiskP±1

(θ),

and therefore RiskΘ
Q±γ (θ) = γRiskΘ

P±1
(θ). It is therefore immediate that sep(RiskQγ ,RiskQ−γ ,Θ) =

γ sep(RiskP1 ,RiskP−1 ,Θ). For the gap on the KL divergence, we use joint convexity to obtain

Dkl (Qγ ||Q−γ) = Dkl ((1− γ)P0 + γP1||(1− γ)P0 + γP−1) ≤ (1− γ)Dkl (P0||P0)︸ ︷︷ ︸
=0

+γDkl (P1||P−1) .

A.4 Proof of Proposition 2

By assumption, there exist t, y, y0 satisfying `′(t, y)`′(t, y0) < 0, and `′′(t, y) = 0. Then it is evidently the case
that q?` ≡ q?` (t, y) > 0, so that we obtain the lower bound

Lin(`,Y, R,B, n, γ) ≥ c sup
0≤δ≤RB/2

|`′(t, y)|min

{
δ
√
γq?` ,

|`′(t, y)|
sup|∆|≤δ `

′′(t+ ∆, y)

q?`√
2n

}
.

Now, we recall that ` is C3 near t and by assumption `′′(t, y) = 0, for all suitably small δ we obtain |`′′(t+ ∆, y)| ≥
|`′′′(t, y)||∆|/2, and so in particular for all small δ,

Lin(`,Y, R,B, n, γ) ≥ c|`′(t, y)|min

{
δ
√
γq?` ,

2|`′(t, y)|
|`′′′(t, y)|δ

q?`√
2n

}
.

Set δ2 = 1√
n
to obtain that for some problem-dependent constant cprob, we have Lin(`,Y, R,B, n, γ) ≥ cprob

1
n1/4 .

Substitute this lower bound in Theorem 1.

B Technical appendices

B.1 Derivations for Example 2

For logistic regression with logarithmic loss, we have Y = {−1, 1}, pθ(y | x) = 1
1+exp(−yθT x)

, and `(t, y) =

log(1 + e−ty), so that

`′(t, y) =
−y

1 + ety
and `′′(t, y) =

ety

(1 + ety)2
.

Without loss of generality, let y = 1. If RB ≤ 1, then by taking t = 1
2BR and δ = 1

2BR, it is immediate that
q?` (t, y) & 1, and each of `′(t, y) and `′′(t, y) are numerical constants. Then we obtain the lower bound

Lin(`,Y, R,B, n, γ) ≥ cmin

{
BR
√
γ,

1√
n

}
,

so that Theorem 1 yields minimax lower bound min{RB
√
γ√

n
, 1
n}.

The more interesting regime is when RB � 1—for example, in the natural case that the data and parameter
radii scale with the dimension of the problem—so let us assume RB ≥ 1. Here, take y = −1 and y0 = 1, so that
for any α ∈ [0, 1] and t ∈ R we have sign(`′(t, y)) = 1 6= −1 = sign(`′(αt, y0)). Let ε ∈ [0, 1] to be chosen and set
t2 = (1− ε)R

2B2

2 (where t ≥ 0). Then by taking α = 1
RB , in the definition (5) we have

q?` (t, y) ≥
α 1

1+etα

α 1
1+etα + 1

1+e−t

=
1

1 +RB 1+etα

1+e−t

≥ 1

1 + (e+ 1)RB
&

1

RB

and `′(t, y) = 1
1+e−t ≥

1
2 . Thus for all δ ∈ [0, RB

√
ε/2], the linearity constant has lower bound

Lin(`,Y, R,B, n, γ) ≥ cmin

{
δ
√
γ/RB,

1

sup|∆|≤δ e
−t+∆

1

RB
√
n

}
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where c > 0 is a numerical constant. Taking δ = RB
√
ε/2 and ε = 1/9 then gives

Lin(`,Y, R,B, n, γ) ≥ cmin

{√
γRB, exp

(
3RB/(5

√
2)
) 1

RB
√
n

}
.

In particular, if n ≤ e6RB/5
√

2

R2B2 , then Lin(`,Y, R,B, n, γ) ≥ c
√
γRB, and otherwise (as ex/x & e.99x for all x ≥ 1)

Lin(`,Y, R,B, n, γ) ≥ exp(RB/4)/
√
n, giving us the minimax lower bound

Mn(Θ,Γ, γ) ≥ cmin

{√
γRB√
n

,
exp(2RB/5)

n

}
. (16)

B.2 Derivations for Example 3

We say Y ∼ Geo(λ) for some λ ∈ (0, 1) if Y has support {0, 1, 2, . . . , } and P (Y = y) = λ(1− λ)y. We model this
via Y | x ∼ Geo(eθ

T x/(1 + eθ
T x)), giving losses

Llog(pθ(· | x), y) = (y + 1) log(1 + exp(θTx))− θTx and `(t, y) = (y + 1) log(1 + et)− t.
We perform a quick sketch, letting b = RB for shorthand, assuming that b ≥ 1 and that diam(Y) := max{y ∈ Y}
is finite and at least 3.

First, we construct a lower bound on q?` (t, y): take y = max{y ∈ Y} to be the maximum element of Y, and set
y0 = y and t = −b. Then setting α = −1/b in the definition (5) we obtain

q?` (t, y) ≥
−y+1

b
1

1+e + 1
b

−y+1
b

1
1+e + 1

b − (y + 1) eb

1+eb
+ 1

=

y+1
1+e − 1

y+1
1+e − b+ 1 + b(y + 1) eb

1+eb

&
1

b

as b ≥ 1 and y ≥ 3. Additionally, we have |`′(t, y)| & y and `′′(t, y) . ye−b, and so, as in the derivation in
Example 2 and by setting δ & b, we obtain that there exist numerical constants c0, c1 > 0 such that

Lin(`,Y, R,B, n, γ) ≥ c0ymin

{√
γb,

ec1b√
n

}
.

Substituting, we obtain the analogue of inequality (16), that is,

Mn(Θ,Γ, γ) ≥ c0diam(Y) min

{√
γRB√
n

,
exp(c1RB)

n

}
.

B.3 Proofs of mixability in Table 1

We assume that Y is discrete and of size k (it is not difficult to obtain a result when Y = N), so that we may
identify distributions on Y with vectors p ∈ ∆k := {v ∈ Rk+ | 1T v = 1}, the probability simplex in Rk. Consider
any C2 function h : ∆→ R, noting that

∇ exp(−ηh(p)) = −η exp(−ηh(p))∇h(p),

∇2 exp(−ηh(p)) = η exp(−ηh(p))
[
η∇h(p)∇h(p)T −∇2h(p)

]
.

We consider each of the columns of the table in turn. Thus to demonstrate exp-concavity it is sufficient that
∇2h(p) � η∇h(p)∇h(p)T for all p ∈ ∆k.

1. For Llog, we take h(p) = − log p, for which it is immediate that η = 1 suffices as exp(−h(p)) = p.

2. For Lsq, we have h(p) = 1
2 (p− 1)2, h′(p) = (p− 1), and h′′(p) = 1, so η = 1 suffices.

3. For Lhel, we have h(p) = (
√
p− 1)2 = p− 2

√
p+ 1, h′(p) = 1− 1√

p , and h
′′(p) = 1

2p3/2 . Thus, we seek η such
that

1

2p3/2
≥ η(1− 1/

√
p)2 or

1

2
≥ η(p3/2 − 2p+

√
p)

for all p ∈ [0, 1]. Letting β =
√
p and solving for the stationary points of β3 − 2β + β at √p = β = 1/3 and

β = 1, we see it is sufficient that 1 ≥ 2η(1/27− 2/9 + 1/3) = 8
27η, or η ≤

27
8 .

4. For Lquad, we have h(p) = 1
2 ‖p− ey‖

2
2, so it suffices that I − η(p− ey)(p− ey)T � 0, or η ≤ 1

2 .
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B.4 Proof of Theorem 5

Recall Definition A.1 of the separation between two functions. We first recall the essentially standard reduction of
estimation to testing, which proceeds as follows. Let V be a finite set indexing a collection {Pv}v∈V of distributions
on X × Y and a collection of functions {fv}. Consider the following process: draw V ∈ V uniformly at random,
and conditional on V = v, observe (Xi, Yi)

iid∼ Pv for i = 1, 2, . . . , n. Then we have the following lemma, which
reduces optimization of fv to testing the index V (see, e.g. (Duchi, 2018, Sec. 5) or (Wainwright, 2019, Ch. 15)).

Lemma 11. Let f?v = infθ∈Θ fv(θ) for v ∈ V. Then

inf
θ̂n

max
v∈V

EPnv
[
fv(θ̂n(Xn

1 , Y
n
1 ))− f?v

]
≥ min
v 6=w∈V

sep(fv, fw,Θ) · inf
Ψ̂n

P(Ψ̂n(Xn
1 , Y

n
1 ) 6= V ),

where the infima are over procedures θ̂n : Xn × Yn → Θ and all measurable functions Ψ̂n, respectively.

We thus lower bound the probability of error in testing, Ψ̂ 6= V , for which we use Fano’s inequality Cover and
Thomas (2006):

Lemma 12 (Fano’s Inequality). Let I(V ;Xn
1 , Y

n
1 ) be the (Shannon) mutual information between V and (Xn

1 , Y
n
1 ),

where (Xi, Yi)
iid∼ Pv conditional on V = v and V is uniform on V. Then for any Ψ̂,

P(Ψ̂(Xn
1 , Y

n
1 ) 6= V ) ≥ 1− I(V ;Xn

1 , Y
n
1 ) + log 2

log |V|
.

Now, we define the collection of problems we consider and their induced risks. Let X be uniform on {±1}d, and
let

pθ(y | x) = exp(yθTx−A(θTx))

be the density of Pθ with respect to the base measure ν. For a value δ ≥ 0 to be chosen, let Pv be the joint
distribution on (X,Y ) with θ = δv. We first demonstrate that these induce a separation in the expected log loss
of a predictive distribution p(· | x), where for such a p we define the risk

Riskδv(p) := EPv [Llog(p(· | X), Y )] = EPv [− log p(Y | X)],

where we note that pδv minimizes Riskδv as it is well-specified. The key to applying Lemmas 11 and 12 are the
following two technical results, which respectively lower bound the separation and upper bound the KL-divergence
between distributions. We defer proofs to Sections B.4.1 and B.4.2.

Lemma 13. Let P be the collection of all conditional probability distributions on Y | X. There exists a constant
C(A) depending only on the log partition function A(·) such that for all δ ≥ 0 and u, v ∈ Rd,

sep(Riskδv,Riskδw,P) ≥ 1

16
A′′(0)δ2 ‖v − w‖22 − C(A)δ3d3/2 max{‖v‖2 , ‖w‖2}

3.

Lemma 14. For v ∈ Rd, let Pδv denote the joint distribution over X ∼ Uni({−1, 1}d) and Y | X = x having
exponential family density pδv(y | x) = exp(yθTx−A(θTx)). There exists a constant C(A) depending only on the
log partition function A(·) such that for all δ ∈ [0, 1] and u, v satisfying ‖u‖2 ≤ 1, ‖v‖2 ≤ 1,

Dkl (Pδv||Pδw) ≤ δ2

2
A′′(0) ‖v − w‖22 + C(A)δ3 ‖v − w‖32 .

With these two lemmas, the result is relatively straightforward. We consider two cases: that d ≥ 8 and (for
completeness) that d ≤ 8, which we defer temporarily. Let d ≥ 8. By a standard volume argument (Wainwright,
2019, Ch. 15), there exists a packing set V ⊂ {v ∈ Rd | ‖v‖2 = 1} of the `2 sphere satisfying |V| ≥ exp(d/4) and
‖v − w‖2 ≥

1
2 for each v 6= w ∈ V. Let V be uniform on V as in our construction above. Then naive bounds on

the mutual information I(V ;Xn
1 , Y

n
1 ) yield that

I(V ;Xn
1 , Y

n
1 ) ≤ 1

|V|2
∑
v,w∈V

Dkl (Pnv ||Pnw)
(?)

≤ n · 1

|V|2
∑
v,w∈V

δ2A′′(0) ‖v − w‖22 ≤ 4nδ2A′′(0),

where inequality (?) holds for any sufficiently small δ ≥ 0 by Lemma 14. Applying Lemmas 11 and 13 by noting
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that ‖v − w‖2 ≥
1
2 , there exists a numerical constant c > 0 such that for small enough δ ≥ 0,

Mn(Θ,P, 0) ≥ cA′′(0)δ2 inf
Ψ̂n

P(Ψ̂n(Xn
1 , Y

n
1 ) 6= V )

≥ cA′′(0)δ2

(
1− I(V ;Xn

1 , Y
n
1 ) + log 2

log |V|

)
,

where the second inequality is Fano’s inequality (Lemma 12). Applying the preceding bound on the mutual
information and that log |V| ≥ d/4 then implies

Mn(Θ,P, 0) ≥ cA′′(0)δ2

(
1− 16nδ2A′′(0) + 4 log 2

d

)
.

Choosing δ2 = d
32A′′(0)n then gives the theorem in the case that d ≥ 8.

For the final case that d ≤ 8, we apply Le Cam’s method as in our proof of Theorem 1. We assume that d = 1,
as increasing the dimension simply increases the risk bound, and let X ∼ Uni({−1, 1}). Recalling Lemma 8, we
apply Lemmas 13 and 14 to obtain

Mn(Θ,P, 0) ≥ cA′′(0)δ2
(

1−
√
Cnδ2A′′(0)

)
,

where 0 < c and C <∞ are numerical constants. Setting δ2 = 1
4CnA′′(0) then yields the result.

B.4.1 Proof of Lemma 13

We define the excess risk functional

fδv(p) := Riskδv(p)− inf
p
Riskδv(p) = EPv

[
log

pδv(Y | X)

p(Y | X)

]
= E [Dkl (pδv(· | X)||p(· | X))] ,

where we have used that the exponential family model pδv minimizes Riskδv, and we note that

sep(fδv, fδw,P) ≥ 1

2
inf
p∈P
{fδv(p) + fδw(p)}

(this inequality is valid for any functions and set P). Thus

2 sep(Riskδv,Riskδw,P) = 2 sep(fδv, fδw,P) ≥ E
[
inf
p
{Dkl (pδv(· | X)||p) +Dkl (pδw(· | X)||p)}

]
.

Now we use that for any three distributions P0, P1, Q, if P = 1
2 (P0 + P1) then

Dkl (P0||Q) +Dkl (P1||Q) = Dkl

(
P0||P

)
+Dkl

(
P1||P

)
+ 2Dkl

(
P ||Q

)
≥ Dkl

(
P0||P

)
+Dkl

(
P1||P

)
,

and substituting this into the preceding lower bound on the separation gives
2 sep(Riskδv,Riskδw,P) ≥ E [Dkl (pδv(· | X)||(1/2)(pδv(· | X) + pδw(· | X)))]

+ E [Dkl (pδw(· | X)||(1/2)(pδv(· | X) + pδw(· | X)))] ,
(17)

where the outer expectation is over X ∼ Uni({−1, 1}d).

We now provide an asymptotic lower bound on the KL divergences, focusing on a single term given X = x in the
lower bound (17). By a Taylor expansion,

log(1 + et) = log 2 +
t

2
+
t2

8
±O(1)t3,

where O(1) denotes a universal numerical constant and the expansion is valid for all t ∈ R because t 7→ log(1 + et)
is 1-Lipschitz. Using the shorthand t = δvTx and u = δwTx and pt(y) = pδv(· | x) and similarly for pu, we have

Dkl (pt||(1/2)(pt + pu)) =

∫
pt(y) log

2

1 + pu(y)/pt(y)
dν

=

∫
pt(y)

[
log 2− log

(
1 + ey(u−t)−(A(u)−A(t))

)]
dν

=

∫
pt(y)

[
y(t− u) +A(u)−A(t)

2
− (y(t− u) +A(u)−A(t))2

8
±O(1)(y(t− u) +A(u)−A(t))3

]
dν.

By standard properties of exponential families, if Et denotes expectation under pt, we have A′(t) = Et[Y ], and A
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is C∞ near 0, so that A(u)−A(t) = A′(t)(u− t) + 1
2 (u− t)2A′′(ũ) for some ũ ∈ [u, t]. We may thus write

Dkl (pt||(1/2)(pt + pu))

=

∫
pt(y)

[
(y −A′(t))(t− u)

2
+

(u− t)2A′′(ũ)

4
−
(
(y −A′(t))(t− u) + (u− t)2A′′(ũ)/2

)2
8

±O(1)
[
|y −A′(t)|3|t− u|3 + (t− u)6A′′(ũ)3

] ]
dν

=
1

4
A′′(ũ)(u− t)2 − 1

8
A′′(t)(u− t)2 − 1

32
A′′(ũ)2(u− t)4 ±O(1)Et[|Y − Et[Y ]|3]|t− u|3.

As A(·) exists in a neighborhood of 0, the moment generating functions of pt, pu exist, this expansion is uniform
in u, t near 0, and so we obtain

Dkl (pt||(1/2)(pt + pu)) =
1

8
(u− t)2A′′(0)± C(A)|u− t|3, (18)

where C(A) is a constant depending on the log partition function A(·), and the expansion is uniform for u, t in a
neighborhood of 0.

Finally, we recall that t = δvTx and u = δwTx, and as |vTx| ≤ ‖v‖2 ‖x‖2, we have the lower bound

inf
p
{Dkl (pδv(· | x)||p) +Dkl (pδw(· | x)||p)} ≥ 1

8
A′′(0)δ2(xT (w − v))2 − C(A)δ3d3/2 max{‖w‖2 , ‖v‖2}

3.

Substituting this into our lower bound (17) and using that E[XXT ] = Id by construction then gives the lemma.

B.4.2 Proof of Lemma 14

Without loss of generality, assume that ‖v‖2 ≥ ‖w‖2. We have

Dkl (Pδv||Pδw) = E [Dkl (pδv(· | X)||pδw(· | X))] .

Fix x temporarily, and consider the inner KL-divergence term. As in the proof of Lemma 13, we use the shorthands
t = δvTx, u = δwTx, pt = pδv(· | x) and pu = pδw(· | x), noting that |t| ≤ δ

√
d ‖v‖2 and similarly for u. Then

writing Et for expectation under pt, we have

Dkl (pt||pu) = Et [Y (t− u)] +A(u)−A(t) = A(u)−A(t)−A′(t)(u− t) =
1

2
A′′(ũ)(u− t)2,

where ũ ∈ [u, t]. As A is C∞ near 0, we obtain that for a constant C(A) depending only on A that

Dkl (pt||pu) ≤ 1

2
A′′(0)(u− t)2 + C(A)|u− t|3,

valid for all u, t ∈ [−δ
√
d ‖v‖2 , δ

√
d ‖v‖2]. We we obtain

Dkl (Pδv||Pδw) ≤ δ2

2
A′′(0)E[(XT (v − w))2] + C(A)δ3E[|XT (v − w)|3],

and using E[(XT (v − w))2] = ‖v − w‖22 and E[|XT v|3] . ‖v‖32 for X ∼ Uni({−1, 1}d) gives the lemma.

B.5 Proof of Theorem 6

Recall θ̂n = argminθ∈Θ Riskn(θ) and Definition 3.1. For shorthand, we use the standard empirical process notation
that Pf = EP [f ] and Pnf = 1

n

∑n
i=1 f(Xi, Yi). Let δn > 0 be any sequence satisfying

log log n

n
� δ2

n �
1√
n
.

We will define a “good event,” which is roughly that the empirical risk Riskn approximates the true risk RiskP
well and a local quadratic approximation to both is accurate, and perform our analysis (essentially) conditional
on this good event. To that end, let λmin = λmin(∇2RiskP (θ?) and λmax = λmax(∇2RiskP (θ?)) be the minimum
and maximum eigenvalues of ∇2RiskP (θ?). Recall that ε1 > 0 is the radius of the ball on which ∇2L(pθ(· | x), y)
is MLip,2(x, y) Lipschitz (Def. 3.1), and for an ε > 0 to be determined

En :={
PnMLip,2 ≤ 2PMLip,2,

λmin

2
I � ∇2Riskn(θ) � 2λmaxI for ‖θ − θ?‖2 ≤ ε, ‖θ̂n − θ

?‖2 ≤ δn
}
.

(19)
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We prove the theorem in a series of lemmas. The first shows that En occurs eventually, and the remainder we will
demonstrate hold on the event.

Lemma 15. For all sufficiently small ε > 0, En happens eventually. That is, there is a (random) N , finite with
probability 1, such that En occurs for all n ≥ N .

Proof. By the strong law of large numbers, we have PnMLip,2
a.s.→ PMLip,2, so that PnMLip,2 ≤ 2PMLip,2

eventually, while Definition 3.1 implies that |||∇2Riskn(θ)−∇2Riskn(θ?)|||op ≤ 2PMLip,2ε for all ‖θ − θ?‖2 ≤ ε1
on the same event. Whenever ε is small enough that PMLip,2ε ≤ λmax

2 and PMLip,2ε ≤ λmin

4 , we then obtain that
λmin

2 I � ∇2Riskn(θ) � 2λmaxI by choosing

ε ≤ min

{
ε1,

λmin

4PMLip,2

}
.

Finally, we argue that ‖θ̂n − θ?‖2 ≤ δn eventually. A standard argument (van der Vaart, 1998, Thm. 5.7) and the
Glivenko Cantelli theorem, which implies supθ∈Θ |Riskn(θ)− RiskP (θ)| a.s.→ 0 by the compactness of Θ, gives the
consistency θ̂n

a.s.→ θ?. As θ? ∈ int Θ, Taylor’s theorem implies that

0 = ∇Riskn(θ̂n) = ∇Riskn(θ?) + (∇2Riskn(θ?) + En(θ̂n, θ
?))(θ̂n − θ?),

where En is an error matrix that Definition 3.1 implies satisfies

|||En|||op ≤
1

n

n∑
i=1

MLip,2(Xi, Yi)‖θ̂n − θ?‖2.

Thus |||En|||op
a.s.→ 0, and as ∇2Riskn(θ?)

a.s.→ ∇2Risk(θ?), we have θ̂n − θ? = −(∇2Risk(θ?) + E′n)−1∇Riskn(θ?),
where E′n

a.s.→ 0 is an error matrix. By the a.s. convergence E′n → 0 and law of the iterated logarithm,

lim sup
n

√
n

log log n

∥∥(∇2Risk(θ?) + E′n)−1∇Riskn(θ?)
∥∥

2

≤
∣∣∣∣∣∣∇2Risk(θ?)−1

∣∣∣∣∣∣
op

lim sup
n

√
n

log logn
‖∇Riskn(θ?)‖2 <∞

with probability 1. In particular, whenever δ2
n �

log logn
n , we have ‖θ̂n − θ?‖2 ≤ δn eventually.

An immediate consequence of the identifiability condition (iii) in Definition 3.1 and Taylor’s theorem is the
following lemma.

Lemma 16. For all large enough n, on event En we have

Riskn(θ) ≤ Riskn(θ̂n) + 2λmax‖θ − θ̂n‖22 for all ‖θ − θ̂n‖2 ≤ δn
and

Riskn(θ) ≥ Riskn(θ̂n) +
1

4
λminδ

2
n for all θ ∈ Θ s.t. ‖θ − θ̂n‖2 ≥ δn.

Finally, we show that on En we have∥∥∥∥µ̂Vovk
n,η − N

(
θ̂n,

1

n
∇2Riskn(θ̂n)−1

)∥∥∥∥
TV

→ 0.

For shorthand, let πn be the probability distribution N(θ̂n,
1
n∇

2Riskn(θ̂n)−1). We split the variation distance into
two terms. Let Bn = δnBd2 be an `2 ball of radius δn. Then

2
∥∥µ̂Vovk

n,η − πn
∥∥

TV
=

∫
θ̂n+Bn

|dµ̂Vovk
n,η − dπn|︸ ︷︷ ︸

=:T1

+

∫
Θ\{θ̂n+Bn}

|dµ̂Vovk
n,η − dπn|︸ ︷︷ ︸

=:T2

+πn(Θc)︸ ︷︷ ︸
=:T3

. (20)

We bound each of the terms Ti in turn. For the second term, we compute bounds on the densities themselves.
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Let θ ∈ Θ \ {θ̂n +Bn}. Then for any c > 0 small enough that λmin

4 − 2c2λmax =: K > 0,

d

dθ
µ̂Vovk
n,η (θ) =

exp(−nRiskn(θ))∫
Θ

exp(−nRiskn(θ′))dθ′
≤ exp(−nRiskn(θ))∫

θ̂n+cBn
exp(−nRiskn(θ′))dθ′

(i)

≤
exp(−λmin

4 nδ2
n)

exp(−2λmaxc2δ2
n) Vol(cBn)

= exp

(
−nKδ2

n + d log
1

cδn
− cd

)
,

where inequality (i) follows from Lemma 16 and cd = log Vol(Bd2) is the log volume of the `2-ball. A completely
analogous calculation gives

d

dθ
πn(θ) =

exp(−n2 (θ − θ̂n)T∇2Riskn(θ̂n)(θ − θ̂n))∫
exp(−n2 (θ′ − θ̂n)T∇2Riskn(θ̂n)(θ′ − θ̂n))dθ′

≤
exp(−λmin

4 nδ2
n)

exp(−2λmaxc2δ2
n) Vol(cBn)

= exp

(
−nKδ2

n + d log
1

cδn
− cd

)
,

where the inequality uses the definition (19) of En. In particular, setting the constant c = 1
4

√
λmin

λmax
, the term

K = 1
8λmin and we may bound term T2 in expression (20) by

T2 ≤ 2 Vol(Θ) exp

(
−nKδ2

n +
d

2
log

16λmax

λminδ2
n

− cd
)
→ 0,

as δn � 1√
n
and δn → 0.

Let us turn to term T1 in expression (20). For sets A ⊂ Rd we define the normalizing constants

ZN
A,n :=

∫
A

exp
(
−n

2
(θ − θ̂n)T∇2Riskn(θ̂n)(θ − θ̂n)

)
dθ and ZVovk

A,n :=

∫
A

exp
(
−n(Riskn(θ)− Riskn(θ̂n))

)
dθ.

Changing notation slightly to let Bn = θ̂n + δnBd2, Lemma 16 implies the inequalies

max
{
ZVovk

Θ\Bn,n, Z
N
Θ\Bn,n

}
≤ Vol(Θ) exp

(
−λmin

4
nδ2
n

)
and

min
{
ZN
Bn,n, Z

Vovk
Bn,n

}
≥ exp(−2nλmaxc

2δ2
n) Vol(cδnBd2),

valid for any c ≤ 1. Thus, the ratio

ρn := max

{
ZVovk

Θ\Bn,n

ZN
Bn,n

,
ZN

Θ\Bn,n

ZVovk
Bn,n

}
≤

Vol(Θ) exp(−λmin

4 nδ2
n)

exp(−2nλmaxc2δ2
n) Vol(cδnBd2)

≤ Vol(Θ) exp

(
−nδ2

n

(
λmin

4
− 2c2λmax

)
+ d log

1

cδn
− cd

)
,

where as before cd = log Vol(Bd2), so that for all small c > 0 we have ρn → 0 as n→∞ on the event En. We may
then bound the normalizing constant ratio by

ZVovk
Bn,n

ZN
Bn,n

+ ρn ≥
ZVovk
Bn,n

+ ZVovk
Θ\Bn,n

ZN
Bn,n

≥
ZVovk

Θ,n

ZN
Θ,n

≥
ZVovk
Bn,n

ZN
Bn,n

+ ZN
Θ\Bn,n

≥

(
ZN
Bn,n

ZVovk
Bn,n

+ ρn

)−1

. (21)

Performing a Taylor expansion, on En, for any θ ∈ Bn the Lipschitz continuity of ∇2Riskn(θ) implies

Riskn(θ) = Riskn(θ̂n) +
1

2
(θ − θ̂n)T∇2Riskn(θ̂n)(θ − θ̂n)± PMLip,2 · δ3

n.

Using this O(δ3
n) remainder term, we then immediately obtain the ratio bounds

ZVovk
Bn,n

ZN
Bn,n

=

∫
Bn

exp
(
−n(Riskn(θ)− Riskn(θ̂n))

)
dθ∫

Bn
exp(−n2 (θ − θ̂n)T∇2Riskn(θ̂n)(θ − θ̂n))dθ

∈ exp
(
±PMLip,2 · δ3

n

)
.

Substituting this containment in the inequalities (21), we find that for all large enough n, on the event En in
Eq. (19), we have the bounds

exp(−PMLip,2δ
3
n)−O(1)ρn ≤

ZVovk
Θ,n

ZN
Θ,n

≤ exp(PMLip,2 · δ3
n) +O(1)ρn. (22)
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Finally, we return to computing the densities in the term T1 in Eq. (20). Let ZN
n = ZN

Rd,n, where an argument
similar to those above shows that ZN

n /Z
N
Θ,n → 1 as n → ∞. Defining the remainder remn(θ) = Riskn(θ) −

Riskn(θ̂n)− 1
2 (θ − θ̂n)T∇2Riskn(θ̂n)(θ − θ̂n) and using that ‖remn(θ)‖2 ≤ PMLip,2 · δ3

n for any θ ∈ Bn as above,
the inequalities (22) imply∣∣dµ̂Vovk

n,η (θ)− dπn(θ)
∣∣ /dθ = exp

(
−n

2
(θ − θ̂n)T∇2Riskn(θ̂n)(θ − θ̂n)

) ∣∣∣∣∣exp(−nrn(θ))

ZVovk
Θ,n

− 1

ZN
n

∣∣∣∣∣
≤

exp(−n2 (θ − θ̂n)T∇2Riskn(θ̂n)(θ − θ̂n))

ZN
n

[∣∣∣∣∣exp(−nPMLip,2 · δ3
n)
ZN

Θ,n

ZVovk
n

− 1

∣∣∣∣∣+

∣∣∣∣∣ 1

ZN
n

− 1

ZN
Θ,n

∣∣∣∣∣
]

Integrating over Bn and invoking inequality (22) then implies

T1 =

∫
Bn

|dµ̂Vovk
n,η − dπn| ≤

∫
Bn

exp(−n2 (θ − θ̂n)T∇2Riskn(θ̂n)(θ − θ̂n))

ZN
n

· o(1)→ 0.

Lastly, we note that the final term T3 in the variation distance (20) satisfies πn(Θc)→ 0 as n→∞ as on event
En, there is eventually a ball of some (fixed) radius ε > 0 such that θ̂n + εBd2 ⊂ Θ, and ∇2Riskn(θ̂n) � (λmin/2)I.
For Standard normal concentration results then immediately imply that πn(Θc) ≤ πn({θ̂n + εBd2})→ 0, as the
variance of θ ∼ πn satisfies Eπn [‖θ − E[θ]‖22] ≤ C/n for some problem-dependent C. We conclude that each of
T1, T2, T3 → 0 in the variation distance (20).

B.6 Proof of Corollary 7

We again use the event En in Eq. (19) in the proof of Theorem 6 and log logn
n � δ2

n � 1√
n
as well. Let pn = P̂Vovk

n,η

and µn = µ̂Vovk
n,η for shorthand, and let pθ̂n the the point model. Let Bn = θ̂n + n−1/4Bd2 be a ball of radius n−1/4

around θ̂n, where for all large enough n, on En we have Bn ⊂ B ⊂ Θ, where we recall that B is the neighborhood
of θ? in Assumption 1. Then for the base measure ν on Y, we expand

2
∥∥∥pn(· | x)− pθ̂n(· | x)

∥∥∥
TV

=

∫ ∣∣∣∣∫
Θ

(
pθ(y | x)− pθ̂n(y | x)

)
dµn(θ)

∣∣∣∣ dν(y)

≤ µn(Θ \Bn) +

∫ ∣∣∣∣∫
Bn

(
pθ(y | x)− pθ̂n(y | x)

)
dµn(θ)

∣∣∣∣ dν(y).

By Theorem 6, we have µn(Θ \Bn)→ 0 on En. Now, let `θ = log pθ for shorthand, and also define the shorthands
ṗθ = ∇θpθ and ˙̀

θ = ∇θ`θ = ṗθ
pθ
. The Lipschitz condition on log pθ in Assumption 1 guarantees that (for large n)

on the set Bn we have | ṗθ(y|x)
pθ(y|x) | ≤ Lipp(x, y) for θ ∈ Bn. Writing

pθ(y | x)− pθ̂n(y | x) =

∫ 1

0

ṗtθ+(1−t)θ̂n(y | x)T (θ − θ̂n)dt =

∫ 1

0

˙̀
tθ+(1−t)θ̂n(y | x)T (θ − θ̂n)ptθ+(1−t)θ̂n(y | x)dt,

we have

|pθ(y | x)− pθ̂n(y | x)| ≤ Lipp(x, y)‖θ − θ̂n‖2
∫ 1

0

ptθ+(1−t)θ̂n(y | x)dt.

Thus ∫
Y

∣∣∣∣∫
Bn

(
pθ(y | x)− pθ̂n(y | x)

)
dµn(θ)

∣∣∣∣ dν(y)

≤
∫
Y

∫
Bn

Lipp(x, y)‖θ − θ̂n‖2
∫ 1

0

ptθ+(1−t)θ̂n(y | x)dtdµn(θ)dν(y)

=

∫ 1

0

∫
Bn

‖θ − θ̂n‖2
[∫
Y
Lipp(x, y)ptθ+(1−t)θ̂n(y | x)dν(y)

]
dµn(θ)dt ≤ Lipp(x)n−1/4

on En, and we have the desired convergence.


