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A DESCRIPTION OF ALGORITHM FSF∗ MENTIONED IN COROLLARY 1

The description of the algorithm FSF∗ is given in Algorithm 4. We initialize parameters J , γ, β, w1 ∈ RJ>0, γ(j),

and w
(j)
1 ∈ Rm>0 for j = 1, 2, . . . , J as stated in Step 1 in Algorithm 4. We run J copies of fixed share forecaster

algorithms (Herbster and Warmuth, 1998) with different value of parameter γ(j). For each round t = 1, 2, . . . , T ,
first we normalize wt ∈ RJ>0 to calculate qt, where wtj represents the weight of the j-th copy, and normalize

w
(j)
t ∈ Rm>0 to calculate p

(j)
t , which represents, for each j ∈ [J ], the weights of each action i ∈ [m]. Then, we

compute and output pt ∈ Rm>0, the sum of the vectors p
(j)
t weighted by qtj for j = 1, 2, . . . , J . After outputting

pt, the algorithm receives feedback `ti for each i ∈ [m], which represents a loss of choosing i in round t.

After receiving feedback `t, we update the weights for the next round. We use different value of parameter γ(j)

for each j ∈ [J ]. For each j ∈ [J ], we calculate w
(j)
t+1 ∈ Rm>0, as stated in (6) and (7). We calculate wt+1 ∈ RJ>0

by multiplicative weight update with parameter γ and with loss for j-th action defined to be `>t p
(j)
t , i.e., wt+1,j

is calculated as in Step 9 in Algorithm 4 for each j ∈ [J ].

Algorithm 4 FSF∗

Require: The number T of rounds and the number m of actions.

1: Set J = dlog T e, γ =
√

log J
T , β = 1

T and initialize wt = (wt1, wt2, . . . , wtJ)> by w1j = 1 for j = 1, 2, . . . , J .

For j = 1, 2, . . . , J , set γ(j) =
√

log(mT )
2j−1 and initialize w

(j)
t = (w

(j)
t1 , w

(j)
t2 , . . . , w

(j)
tm)> by w

(j)
1i = 1 for i =

1, 2, . . . ,m.
2: for t = 1, 2, . . . , T do

3: Set qt = wt

‖wt‖1 and p
(j)
t =

w
(j)
t

‖w(j)
t ‖1

for j = 1, 2, . . . , J .

4: [t-th output] Compute pt =
∑J
j=1 qtjp

(j)
t and output pt.

5: [t-th input] Get feedback of `t = (`t1, `t2, . . . , `tm)>.
6: for j = 1, 2, . . . , J do

7: Compute v
(j)
ti = w

(j)
ti exp(−γ(j)`ti) for i = 1, 2, . . . ,m.

8: Update w
(j)
t by w

(j)
t+1,i = β

W
(j)
t

m + (1− β)v
(j)
ti for i = 1, 2, . . . ,m where W

(j)
t = v

(j)
t1 + · · ·+ v

(j)
tm.

9: Update wtj by wt+1,j = wtj exp(−γ`>t p
(j)
t ).

10: end for
11: end for
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B OMITTED PROOFS

B.1 Proof of Corollary 1

If m = 1, then
∑T
t=1

(
`>t pt − `ti∗t

)
= 0 holds. If T = 1 and m ≥ 2, since `t ∈ [−1, 1]m,

∑T
t=1

(
`>t pt − `ti∗t

)
≤ 2.

On the other hand, we have

8
√
T ((P ′ + 1) log(mT ) + log(1 + log T )) = 8

√
(P ′ + 1) log 2 > 4.

Thus, we suppose m ≥ 2 and T ≥ 2. We have the following inequality (see, e.g., Cesa-Bianchi and Lugosi
(2006)):

T∑
t=1

(`>t pt − `>t p
(j)
t ) ≤ γT +

1

γ
log J = 2

√
T log J. (16)

From Theorem 1,

T∑
t=1

(`>t p
(j)
t − `ti∗t ) ≤ γ(j)T +

1

γ(j)

(
(2P ′ + 1) logm+ log

1

βP ′(1− β)T−P ′−1

)
≤ γ(j)T +

2

γ(j)
(P ′ + 1) log(mT ) (17)

holds for each j ∈ [J ], where we utilize

log
1

βP ′(1− β)T−P ′−1
= P ′ log T + (T − P ′ − 1) log

(
1 +

1

T − 1

)
≤ P ′ log T +

T − P ′ − 1

T − 1

≤ P ′ log T + 1

and log 2 > 1
2 . By the definition of {γ(j)}Jj=1, there exists j ∈ [J ] such that

γ(j)

2
≤
√

(P ′ + 1) log(mT )

T
≤ γ(j)

(
⇐⇒

√
(P ′ + 1) log(mT )

T
≤ γ(j) ≤ 2

√
(P ′ + 1) log(mT )

T

)

holds. For such j, by (17) we have

T∑
t=1

(`>t p
(j)
t − `ti∗t ) ≤ 4

√
T (P ′ + 1) log(mT ). (18)

Therefore, by (16) and (18),

T∑
t=1

(`>t pt − `ti∗t ) ≤ 2
√
T log J + 4

√
T (P ′ + 1) log(mT )

= 2
(√

T log J +
√

4T (P ′ + 1) log(mT )
)

≤ 2
(

2
√
T log(1 + log T ) +

√
4T (P ′ + 1) log(mT )

)
≤ 8
√
T ((P ′ + 1) log(mT ) + log(1 + log T ))

holds, where the second inequality holds since for T ≥ 2,

log J = log(dlog2 T e) ≤ log(1 + log2 T ) ≤ 2 log(1 + log T )

holds.
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B.2 Proof of Lemma 2

The procedure given by (10) can be expressed by

yt+1 = xt − ηgt, xt+1 ∈ argmin
x∈[0,1]n

‖x− yt+1‖22. (19)

We have

‖xt+1 − x∗t ‖22 ≤ ‖yt+1 − x∗t ‖22 = ‖xt − x∗t − ηgt‖22 = ‖xt − x∗t ‖22 + η2‖gt‖22 − 2ηg>t (xt − x∗t ),

where the inequality follows from the second part of (19) and the generalized Pythagorean theorem, and the first
equality follows from the first part of (19). By dividing both sides with 2η, we obtain

g>t (xt − x∗t ) ≤
η

2
‖gt‖22 +

1

2η

(
‖xt − x∗t ‖22 − ‖xt+1 − x∗t ‖22

)
.

By taking the sum for t ∈ [T ], we obtain

T∑
t=1

g>t xt −
T∑
t=1

g>t x
∗
t ≤

T∑
t=1

(
η

2
‖gt‖22 +

1

2η

(
‖xt − x∗t ‖22 − ‖xt+1 − x∗t ‖22

))

≤ η

2

T∑
t=1

‖gt‖22 +
‖x1 − x∗1‖22

2η
+

1

2η

T−1∑
t=1

(
‖xt+1 − x∗t+1‖22 − ‖xt+1 − x∗t ‖22

)
≤ η

2

T∑
t=1

‖gt‖22 +
n

2η
+

1

2η

T−1∑
t=1

(2xt+1 − x∗t+1 − x∗t )>(x∗t − x∗t+1)

≤ η

2

T∑
t=1

‖gt‖22 +
n

2η
+

1

η

T−1∑
t=1

‖x∗t − x∗t+1‖1,

where the last inequality follows from ‖2xt+1 − x∗t+1 − x∗t ‖∞ ≤ 2.

B.3 Proof of Lemma 3

Define δs by

δs =

T∑
t=1

(ft(X
∗
t )− ft(Xts)) (20)

for s = 0, 1, . . . , k. Then, for an arbitrary fixed s ∈ {0, 1, . . . , k − 1}, we have

δs =

T∑
t=1

(ft(X
∗
t )− ft(Xts))

≤
T∑
t=1

∑
i∈X∗t

(
ft(Xts ∪ {i∗j})− ft(Xts)

)

=

T∑
t=1

−∑
i∈X∗t

`
(s+1)
ti


= −k

T∑
t=1

`
(s+1)
tit,s+1

+B
(s+1)
T

= k (δs − δs+1) +B
(s+1)
T ,

where the inequality follows from submodularity of ft, the second equality follows from the definition (12), (13)

of `
(s+1)
ti , the third equality follows from the definition (14) of B

(s+1)
T , and the fourth equality follows from (12),

(13), and (20).
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Thus,

δs+1 ≤
(

1− 1

k

)
δs +

1

k
B

(s+1)
T

holds for each s ∈ {0, 1, . . . , k}, and hence, we have

δs+1 ≤
(

1− 1

k

)s+1

δ0 +
1

k

s+1∑
j=1

(
1− 1

k

)s+1−j

B
(j)
T .

Therefore,

δk −
(

1− 1

k

)k
δ0 ≤

1

k

k∑
s=1

(
1− 1

k

)k−s
B

(s)
T (21)

holds. On the other hand, we have

δk −
(

1− 1

k

)k
δ0 =

(
1−

(
1− 1

k

)k) T∑
t=1

ft(X
∗
t )−

T∑
t=1

ft(Xtk) +

(
1− 1

k

)k T∑
t=1

ft(Xt0)

≥
(

1− 1

e

) T∑
t=1

ft(X
∗
t )−

T∑
t=1

ft(Xt)

= R
(1−1/e)
T ({X∗t }Tt=1), (22)

where the first equality follows from the definition (20) of δs, the inequality follows from the nonnegativity of ft

and
(
1− 1

k

)k ≤ 1
e , and the second equality follows from the definition (2) of RαT . By (21) and (22), we obtain

R
(1−1/e)
T ({X∗t }Tt=1) ≤ 1

k

k∑
s=1

(
1− 1

k

)k−s
B

(s)
T .

B.4 Proof of Lemma 4

For proving Lemma 4, we first state Lemmas 5 and 6.

Lemma 5 (Lemma 2.1 of Buchbinder et al. (2015)). For each t ∈ [T ] and for each s ∈ [n], ats + bts ≥ 0 holds.

Lemma 6. It holds that

E
[
R

(1/2)
T ({X∗t }Tt=1)

]
≤ E

 T∑
t=1

1

2

∑
s∈X∗t

(1− q(s)t )ats +
1

2

∑
s∈[n]\X∗t

q
(s)
t bts −

1

4

n∑
s=1

(qtsats + (1− qts)bts)

 .
Proof of Lemma 6. Let Zts = (X∗t ∪Xts) ∩ Yts. Then,

ft(X
∗
t ) =

n∑
s=1

(ft(Zt,s−1)− ft(Zts)) + ft(Xt) (23)

holds.

• Suppose that s ∈ X∗t . If Xts = Xt,s−1 ∪ {s} (with probability q
(s)
t ), we have

ft(Zt,s−1) = ft(Zts).

Otherwise (with probability 1− q(s)t ), by submodularity,

ft(Zt,s−1)− ft(Zts) ≤ ft(Xt,s−1 ∪ {s})− ft(Xt,s−1) = ats

holds since Zt,s−1 = (Xt,s−1 ∪ {s}) ∪ Zts and Xt,s−1 = (Xt,s−1 ∪ {s}) ∩ Zts. Thus, we obtain

E [ft(Zt,s−1)− ft(Zts)] ≤ E
[
(1− q(s)t )ats

]
. (24)



Tatsuya Matsuoka, Shinji Ito, Naoto Ohsaka

• Suppose that s /∈ X∗t . If Xts = Xt,s−1 ∪ {s} (with probability q
(s)
t ), by submodularity,

ft(Zt,s−1)− ft(Zts) ≤ ft(Yt,s−1 \ {s})− ft(Yt,s−1) = bts.

holds since Zt,s−1 = (Yt,s−1 \ {s}) ∪ Zts and Yt,s−1 = (Yt,s−1 \ {s}) ∩ Zts. Otherwise (with probability

1− q(s)t ), we have

ft(Zt,s−1) = ft(Zts).

Thus, we obtain

E [ft(Zt,s−1)− ft(Zts)] ≤ E
[
q
(s)
t bts

]
. (25)

Therefore, by combining (23), (24), and (25), we obtain

E [ft(X
∗
t )− ft(Xt)] ≤ E

∑
s∈X∗t

(1− q(s)t )ats +
∑

s∈[n]\X∗t

q
(s)
t bts

 . (26)

Here, ft(Xt) can be decomposed as

ft(Xt) = ft(Xtn) =

n∑
s=1

(ft(Xts)− ft(Xt,s−1)) + ft(Xt0). (27)

From Step 6 of Algorithm 3, we have

E [ft(Xts)− ft(Xt,s−1)] = E
[
q
(s)
t (ft(Xt,s−1 ∪ {i})− ft(Xt,s−1))

]
= E

[
q
(s)
t ats

]
.

By the above equation and (27), we have

E [ft(Xt)− ft(Xt0)] = E

[
n∑
s=1

q
(s)
t ats

]
. (28)

Similarly,

E [ft(Yt)− ft(Yt0)] = E

[
n∑
s=1

(1− q(s)t )bts

]
(29)

holds. By (26), (28), and (29), we obtain

E
[
R

(1/2)
T ({X∗t }Tt=1)

]
= E

[
1

2

T∑
t=1

ft(X
∗
t )−

T∑
t=1

ft(Xt)

]

≤ 1

2
E [ft(X

∗
t )− ft(Xt)]−

1

4
E [ft(Xt)− ft(Xt0)]− 1

4
E [ft(Yt)− ft(Yt0)]

≤ E

 T∑
t=1

1

2

∑
s∈X∗t

(1− q(s)t )ats +
1

2

∑
s∈[n]\X∗t

q
(s)
t bts −

1

4

n∑
s=1

(qtsats + (1− qts)bts)

 .

It holds from the definition of `
(s)
t that

E

 T∑
t=1

1

2

∑
s∈X∗t

(1− q(s)t )ats +
1

2

∑
s∈[n]\X∗t

q
(s)
t bts −

1

4

n∑
s=1

(qtsats + (1− qts)bts)


=

1

2

n∑
s=1

E

∑
t∈[T ]

`
(s)>
t p

(s)
t −

∑
t∈[T ]:s∈X∗t

`
(s)
t1 −

∑
t∈[T ]:s/∈X∗t

`
(s)
t2

− E

[
n∑
s=1

T∑
t=1

(
1

2
`
(s)
t

>
p
(s)
t +

1

4
(q

(s)
t ats + (1− q(s)t )bts)

)]
.

(30)
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Since p
(s)
t1 = 1

2 (4q
(s)
t − 1) and p

(s)
t2 = 1

2 (3− 4q
(s)
t ), by Step 5 of Algorithm 3, it holds that

1

2
`
(s)
t

>
p
(s)
t +

1

4
(q

(s)
t ats + (1− q(s)t )bts) =

1

4

(
−(1− q(s)t )ats(4q

(s)
t − 1)− q(s)t bts(3− 4q

(s)
t ) + q

(s)
t ats + (1− q(s)t )bts

)
=
ats + bts

4
(2q

(s)
t − 1)2 ≥ 0.

By the above inequality, (30), and Lemma 6, we obtain Lemma 4.

B.5 Proof of Theorem 5

To prove Theorem 5, we use the following lemma.

Lemma 7. Let X = B1 +B2 + · · ·+Bm, where each Bi ∈ {−1, 1} follows a Bernoulli distribution of parameter
1/2, independent and identically distributed for i ∈ [m]. We then have E[|X|] ≥

√
m/3.

Proof of Lemma 7. By Hölder’s inequality (E[|A||B|] ≤ (E[|A|p])1/p(E[|B|q])1/q (p > 0, q > 0, 1/p + 1/q = 1))
with A = |X|4/3, B = |X|2/3, p = 3, and q = 3/2,

E[|X|2] = E[AB] = E[|A||B|] ≤ (E[|A|3])1/3(E[|B|3/2])2/3 = (E[|X|4])1/3(E[|X|])2/3

holds, which implies

E[|X|] ≥ (E[|X|2])3/2

(E[|X|4])1/2
. (31)

Then, we have

E[|X|2] = E[X2] = E

 m∑
i=1

B2
i +

m∑
i=1

∑
j∈[m]\{i}

BiBj

 = E

[
m∑
i=1

B2
i

]
= m, (32)

where the third equality follows from E[Bj | Bi] = 0 for j 6= i and the fourth equality follows from Bi ∈ {−1, 1}
for each i ∈ [m]. Similarly, by utilizing E[Bj | Bi] = 0 for j 6= i and Bi ∈ {−1, 1} for each i ∈ [m], we obtain

E[|X|4] = E[X4] = E

 m∑
i=1

B4
i +

(
4
2

)
2

m∑
i=1

∑
j∈[m]\{i}

B2
iB

2
j

 = m+ 3m(m− 1) ≤ 3m2. (33)

Therefore, by (31), (32), and (33), we have

E[|X|] ≥ m3/2

(3m2)1/2
=

√
m

3
.

Let Bt ∈ {−1, 1} be a random variable which depends on a Bernoulli distribution of parameter 1/2, independent
and identically distributed for t ∈ [T ]. Let n′ = min{n + P, T}, T ′ = bT/n′c, and n′′ = min{n′, n}. For each
i ∈ [n′′], define ft : 2[n] → [0, 1] by

ft(X) =

{
(1−Bt)/2 (i ∈ X)

(1 +Bt)/2 (i /∈ X)

for t = (i− 1)T ′ + 1, (i− 1)T ′ + 2, . . . , iT ′. For t = n′′T ′ + 1, n′′T ′ + 2, . . . , n′T ′, let

ft(X) =

{
(1−Bt)/2 (1 ∈ X)

(1 +Bt)/2 (1 /∈ X)
.
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Define ft(X) = 0 for t > n′T ′. Let {Xt}Tt=1 denote a (random) output sequence of an arbitrary fixed algorithm.
Then, Xt is independent of ft since Xt depends only on f1, f2, . . . , ft−1 which are independent of ft. By combining
this fact and E[ft(X)] = 1/2 for all X ⊆ [n], we obtain

E[ft(Xt)] = 1/2 (34)

for t ∈ [n′T ′], where the expectation is taken for Xt and Bt. Define X∗ ⊆ [n] so that

i ∈ X∗ ⇐⇒
iT∑

t=(i−1)T ′+1

Bt ≥ 0

for all i ∈ [n′′].

Set X∗t = X∗ for t ∈ [n′′T ′]. For each j ∈ [P ], define

X(j) =

{
X∗ ∪ {1}

(∑(n′′+j)T ′

t=(n′′+j−1)T ′+1Bt ≥ 0
)

X∗ \ {1} (otherwise)

and set X∗t = X(j) for all t = (n′′ + j − 1)T ′ + 1, (n′′ + j − 1)T ′ + 2, . . . , (n′′ + j)T ′. Set X∗t = X(n′′+P )T ′ for
t > (n′′ + P )T ′. Then, we have

T−1∑
t=1

|X∗t4X∗t+1| ≤ P

and

T∑
t=1

ft(X
∗
t ) =

n′∑
j=1

jT ′∑
t=(j−1)T ′+1

ft(X
∗
t ) =

n′∑
j=1

T ′
2
− 1

2

jT ′∑
t=(j−1)T ′+1

|Bt|

 . (35)

Then, by combining (34) and (35), we obtain

E[RT ({X∗t }Tt=1)] =
1

2

n′∑
j=1

E

 jT ′∑
t=(j−1)T ′+1

|Bt|

 ≥ 1

2
n′
√
T ′

3
=

n′

2
√

3

√⌊
T

n′

⌋

≥ n′

2
√

3

√
T

2n′
≥ 1

2
√

6

√
n′T =

1

2
√

6

√
T min{T, n+ P},

where the expectation is taken over the randomness of {Bt}Tt=1 and {Xt}Tt=1. Therefore, there exists a realization
of {Bt}Tt=1 for which this inequality holds.
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