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Abstract

In this paper, we propose algorithms for on-
line submodular optimization with tracking
regret bounds. Online submodular optimiza-
tion is a generic framework for sequential de-
cision making used to select subsets. Existing
algorithms for online submodular optimiza-
tion have been shown to achieve small (static)
regret, which means that the algorithm’s per-
formance is comparable to the performance of
a fixed optimal action. Such algorithms, how-
ever, may perform poorly in an environment
that changes over time. To overcome this
problem, we apply a tracking-regret-analysis
framework to online submodular optimiza-
tion, one by which output is assessed through
comparison with time-varying optimal sub-
sets. We propose algorithms for submodular
minimization, monotone submodular maxi-
mization under a size constraint, and uncon-
strained submodular maximization, and we
show tracking regret bounds. In addition, we
show that our tracking regret bound for sub-
modular minimization is nearly tight.

1 INTRODUCTION

Submodularity is a property of set functions naturally
arising in many machine learning applications, such
as influence maximization (Kempe et al., 2003), price
optimization (Ito and Fujimaki, 2016), and data sum-
marization (Bach, 2013). A set function f: 2" — R
is said to be submodular if f(X U {e}) — f(X) >
fY U {e}) — f(Y) whenever X C Y C [n] and
e € [n] \'Y. Optimization of submodular functions,
which is a critical component in those applications,
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has been shown to be computationally tractable over
the past few decades; in particular, submodular mini-
mization is solvable in polynomial time, and submodu-
lar maximization is constant-factor approximable (see
Section 1.2).

Online submodular optimization is a generic frame-
work for sequential decision making, which is a (dis-
crete) variant of online convex optimization, wherein
a decision maker needs to choose actions repeatedly
in the face of the uncertainty. Formally, an online al-
gorithm sequentially observes T' submodular objective
functions f1,..., fr: 2" = R, over T rounds. In each
round ¢t € [T], the algorithm must choose an action
X: C [n] without observing f;, and it is then given
access to f; and incurs loss f;(X:). The performance
of an online (submodular) minimization algorithm is
often measured in terms of (static) regret, which is de-
fined as the difference between the total loss of actions
that the algorithm has chosen and that of the best
fized action in hindsight; specifically,

T T
; filX) = gnih, ; R

On submodular maximization, we adopt a different
definition of regret (a-regret) as the offline version of
maximization cannot be solved exactly in polynomial
time; see Section 2. Efficient algorithms for online sub-
modular optimization with static regret bounds have
been developed (see Section 1.2 for more details).

Such online algorithms with static regret bounds, how-
ever, may perform poorly if the underlying environ-
ment is so dynamic that the best action changes over
time. We present below two motivating examples for
such a situation.

Example 1: Influence Maximization in Dy-
namic Networks Influence mazimization (Kempe
et al., 2003) is the problem of identifying a small set
of “seed” nodes X; in a social network that maximizes
the spread of influence f;(X;) initiated by X, moti-
vated by the application to viral marketing (Domin-
gos and Richardson, 2001). Since the influence spread
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Table 1: Tracking regret bounds of the proposed algorithms. {f;}: objective, {X;}: output of the algorithm,
{X;}: (arbitrary) comparator sequence, EO: the time for single call of evaluation oracle. O(+) ignores polyloga-

rithmic factors in n and T. The highlighted field is results presented in this paper.

Problem Unconstrained Size-constrained monotone Unconstrained nonmonotone

setting submodular minimization submodular maximization submodular maximization
Assumption f+: submodular ft: submodular, monotone ft: submodular
Constraint None Size constraint: |X;| < k None

T T N T N T T N T
Regret i Ji(Xe) = 3 fi(XT) (L= )Xoy folXF) = X0y fo(Xe) | 5 30,1 fe(XT) = 200y felXe)
Algorithm Algorithm 1 Algorithm 2 Algorithm 3
Regret bound 0 < T(n+ P)) (Theorem 2) 6} ( kT (k + P)) (Theorem 3) 0 ( nT (n+ P)) (Theorem 4)
Time complexity O(n - EO) per round O(kn - EO) per round O(n - EO) per round
Static regret bounds | O(v/nT) (Hazan and Kale, 2012) | O(VAT) (Streeter and Golovin, 2008; | O(nv/T) (Roughgarden and Wang, 2018)
Harvey et al., 2020) O(v/nT') (Harvey et al., 2020)

function f; is submodular (Kempe et al., 2003) and the
structure of the underlying network would be unknown
a priori, influence maximization naturally fits into the
framework of online submodular maximization. In re-
ality, however, the optimal seed set may change dras-
tically as time goes by (Ohsaka et al., 2016; Zhuang
et al., 2013) due to the dynamic nature of social net-
works (Leskovec et al., 2007).

Example 2: Multi-Product Long-Term Price
Optimization In the price optimization problem,
we are given n types of products and choose the set
X; C [n] that indicates which products are discounted,
with the purpose of maximizing gross profit f;(X;). Ito
and Fujimaki (2016) have shown that — f; is submod-
ular under certain assumptions, which means that the
problem is captured in the framework of online sub-
modular minimization. Hence, one can achieve small
static regret using algorithms developed by Hazan and
Kale (2012) and Ito (2019). Optimal prices, however,
may change day to day as the demand for products
is affected by such factors as the appearances of other
competitive products.

1.1 Owur Contributions

In this paper, we propose algorithms for online sub-
modular optimization with tracking regret bounds.
Tracking regret is a performance metric that makes
it possible to compare an algorithm’s actions to an
arbitrary sequence of actions. Given a comparator se-
quence {X;}L ;, tracking regret for the minimization
problem is defined as

AKX =D f(XD).

For the maximization problem, a-(approzimate) track-
ing regret is defined as

T T
a R =D h(X).

Tracking regret is so general that it includes static re-
gret as a special case (X7 = X5 =--- = X7), and it
can even “track” the best actions that could change
over T rounds. Tracking-regret analyses can be found
in a large body of literature on online learning, in-
cluding the expert problem (Herbster and Warmuth,
1998) and online convex optimization (Hall and Wil-
lett, 2013), of which details are given in Section 1.2.

We investigate three problem settings: (1) un-
constrained submodular minimization, (2) size-
constrained monotone submodular maximization, and
(3) unconstrained submodular maximization. Table 1
summarizes tracking regret bounds of the proposed
algorithms for each of them. Our regret bounds are
parameterized by the path-length P of a comparator
sequence. Intuitively speaking, P captures the degree
of action change in a comparator sequence, and P = 0
corresponds to static regret bounds. Details regarding
each problem setting are given below.

e For unconstrained submodular minimization (e.g.,
price optimization), we present an algorithm
whose expected tracking regret is bounded by
O(y/T(n+ P)). Further, we show that this bound
is almost tight up to a constant.

e For size-constrained monotone submodular maxi-
mization (e.g., influence maximization), we show an
online algorithm that has a tracking regret bound
of O(\/ET(k + P)) in expectation, where k < n is a
parameter specifying a size constraint.

e For unconstrained submodular maximization, we
develop an online algorithm having a tracking re-
gret bound of O(y/nT'(n + P)) in expectation.
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The main ingredient of the first algorithm is a reduc-
tion to online convex optimization involving Lovész
extension, while that of both the second and third al-
gorithms is an application of algorithms for the expert
problem.

1.2 Related Work

Submodular optimization has been studied over a
wide range of research communities, including theoret-
ical computer science (Fujishige, 2005; Lovéasz, 1983;
Iwata, 2008), machine learning (Bach, 2013), and data
mining (Kempe et al., 2003; Mossel and Roch, 2007;
Bach, 2013). One influential work is the greedy algo-
rithm for size-constrained monotone submodular max-
imization (Nemhauser et al., 1978), which efficiently
finds a (1 — 1/e)-approximate solution. This approxi-
mation ratio is tight, as no polynomial-time algorithms
can achieve a better approximation (Nemhauser and
Wolsey, 1978; Feige, 1998). Similarly, unconstrained
nonmonotone submodular maximization admits (1/2)-
approximation algorithms (Buchbinder et al., 2015;
Buchbinder and Feldman, 2018) and this ratio is op-
timal (Feige et al., 2011). In contrast to maximiza-
tion problems, unconstrained submodular minimiza-
tion can be solved exactly. The first polynomial-
time algorithm was proposed by Grotschel et al.
(1981). Many improvements have been made, such as
a strongly polynomial-time algorithm (Grotschel et al.,
1988), combinatorial strongly polynomial-time algo-
rithms (Iwata et al., 2001; Schrijver, 2000), and fast
algorithms later (Orlin, 2009; Iwata, 2003; Lee et al.,
2015).

In the research area of online submodular optimiza-
tion, efficient algorithms with (approximate-)static re-
gret bounds have been found for some problem set-
tings. For online size-constrained monotone sub-
modular maximization, Streeter and Golovin (2008)
constructed an algorithm that achieves (1 — 1/e)-
approximate static regret of O(v/AT). Recently, Har-
vey et al. (2020) gave a (1 — 1/e)-approximate regret
algorithm of O(\/k:T ), which improve the regret bound
by Streeter and Golovin (2008) above by a factor of
O(vlogn/+/log(n/k)). In the case of unconstrained
nonmonotone submodular maximization, Roughgar-
den and Wang (2018) proposed a (1/2)-approximate
regret algorithm of O(n+/T) and recently Harvey et al.
(2020) proposed a (1/2)-approximate regret algorithm
of O(v/nT). For online submodular minimization,
Hazan and Kale (2012) provided an algorithm with
an O(v/nT)-regret bound, and showed its optimality.
Additionally, other problem settings have also been ex-
tensively studied, such as k-submodular maximization
(Soma, 2019), continuous submodular optimization
(DR-submodular optimization) (Chen et al., 2018a,b;

Zhang et al., 2019), submodular minimization with the
constraints of combinatorial structures (Jegelka and
Bilmes, 2011). Also, submodular optimization (and
other related function-class problems) with limited in-
formation feedback has been considered (Hazan and
Kale, 2012; Streeter and Golovin, 2008; Zhang et al.,
2019).

Studies on tracking regret, which were initiated by
Herbster and Warmuth (1998) in the context of the
expert problem (Section 3.2), have spread over a vari-
ety of problem settings, including multi-armed bandit
(Auer et al., 2002), online convex optimization (Hall
and Willett, 2013; Zhang et al., 2018, 2017), and on-
line combinatorial optimization with certain structures
(Gyorgy et al., 2005, 2007). Further, adaptive regret
(Hazan and Seshadhri, 2007) and strongly adaptive re-
gret (Daniely et al., 2015) are closely related to track-
ing regret. In the expert problem, for example, bounds
for strongly adaptive regret lead to those for tracking
regret. Such connections, however, do not directly ap-
ply to the problem settings in which path-lengths are
defined with respect to a metric over action spaces,
e.g., convex optimization and the problems discussed
in this paper.

2 PROBLEM SETTINGS

A player is given T and n, which represent the num-
ber of rounds and the size of the underlying set, re-
spectively. In each round t € [T, the player (ran-
domly) chooses a subset X; C [n]| of the underlying
set [n] :={1,2,...,n}. After choosing X;, the player
gets full-information feedback regarding the objective
function f;: 2" — [0,1]; i.e., can observe f;(X) for
any X C [n] after choosing X;. Objective functions f;
are here assumed to be submodular and the adversary
decides f; in each round t. Note that the adversary
only knows the strategy of the player and does not
know what action X; does the player take until the
decision of f;.

The goal of the player is to minimize/maximize
23:1 f:(X¢), the sum of the values of objective func-
tions. In this paper, we consider three different prob-
lem settings for online submodular optimization: (un-
constrained nonmonotone) submodular minimization,
size-constrained monotone submodular maximization,
and unconstrained nonmonotone submodular maxi-
mization.

Online Submodular Minimization In online sub-
modular minimization, there is no constraint, i.e., the
player can choose an arbitrary subset X; of [n]. The
performance of the player is evaluated by means of
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tracking regret defined as

(1)

M-
e

r({X; 1) th Xi) —

for an arbitrary comparator sequence {X;}_, C [n].

Online Submodular Maximization In online
size-constrained monotone submodular maximization,
the player is given a parameter k € [n] before the
game starts, and the available actions are constrained
so that any chosen subset has a size of at most k, i.e.,
|X:| < k. In this setting, objective functions are as-
sumed to be monotone, i.e., f;(X) < fi(Y) hold for
any X,Y C [n] satisfying X C Y. By way of contrast,
in the problem setting of unconstrained nonmonotone
submodular maximization, there is no constraint and
the objective can be nonmonotone. In both problem
settings, the performance of the player is measured in
terms of a-(approzimate) tracking regret defined as

th(Xt)a (2)

!

T
RE(XIYL) =) filX]) -

where the parameter @ > 0 corresponds to the ap-
proximation ratios.! In the size-constrained monotone
setting (Section 4.2), we set a = (1 — 1). In the un-
constrained nonmonotone setting (Section 4.3), we set
a = 1. In the size-constrained setting, the compara-
tor sequence {X;}7_, is assumed to be constrained as

2
well, ie., |X/| < k.

For a comparator sequence {X;}]_;, we define its
path-length P by

T-1

P =Y |X{AX]], (3)
t=1

where XAY represents the symmetric difference of
X and Y, e, XAY = (X\Y)U (Y \ X). Intu-
itively speaking, the value of P measures the length of
the path that the comparator X, moves along over T’
rounds. In the special case of P = 0, tracking regrets
defined in (1) and (2) correspond, respectively, to the
static regret and the a-static regret. In our analysis,
we provide bounds for tracking regrets parametrized
with the path-lengths P.

3 PRELIMINARIES

This section introduces certain known techniques that
are key ingredients in our proposed algorithms.

1Since offline counterparts are computationally hard, we
employ these approximate regrets.

3.1 Lovasz Extension

In the construction of the algorithm for submodu-
lar minimization, we reduce the problem to (contin-
uous) convex optimization via a technique referred to
as Lovdsz extension (Lovasz, 1983), which is defined
as follows: For x € [0,1]" and uw € [0,1], denote
H,(x) = {¢ € [n] | i > u}. Given a submodu-
lar function f: 2"} — R, define the Lovész extension
f:[0,1]" = R of f by

f(@) = Eymvmito I (Hu ()], (4)

where Unif([0,1]) represents a uniform distribution
over [0,1]. This f is indeed an extension of f as it
holds for all X C [n] that f(x(X)) = f(X), where
x(X) € {0,1}" represents the indicator vector of X.

Given a permutation o: [n] — [n] over [n], denote
Se(i) == {o(4) | 7 € [{]}. I « € [0,1]" satisfies
Ta(l) 2 Te(2) = *° 2 Tg(n), Lovasz extension can
be expressed as

n

Fla) = F©0) + ) (f(So(8) = f(So(i = 1))@

=1

Given a submodular function f: 2?1 — R and a per-
mutation o: [n] — [n], define g(o) € R™ as follows:

n

9(0) = Y (f(Ss () = f(Se(i = 1)x(a(i)),  (5)

i=1

where x(i) € {0,1}" is the indicator vector, i.e.,
x(4); =1 and x(7); = 0 for j € [n]\ {i}. If z € [0,1]"
satisfies T5(1) > To2) > -++ > Ty, then g(o) is a
subgradient of f at x. Since f is a convex function
(Lovész, 1983), we have

fy) = f@) > g(o) " (y—2)
for z,y € [0,1]" and a permutation o: [n] — [n] such
that To(1) > To(2) > > Lo(n)-

Lemma 1. If f: 2 — R is a submodular
function, g(o) defined by (5) satisfies ||g(o)|1 <
dmaxycpy |f(X)| for any permutation o.

For the proof of this lemma, see, e.g., Lemma 8 of
Hazan and Kale (2012).

3.2 Algorithms for the Expert Problem

When designing the algorithms for online submodular
maximization, we use techniques for the expert prob-
lem, a fundamental problem in online optimization.

In the expert problem, a player is given a number T'
of rounds and a number m of actions before the game
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starts. In each round ¢ € [T, the player chooses a
distribution p; € A™ := {p € [0,1]™ | ||p|1 = 1}
over [m], and the environment then reveals the loss
vector £y = (bi1, 02, ... b)) € [—1,1]™, for which
the player suffers a loss of £ p;.

The fized share forecaster (Herbster and Warmuth,
1998) is an algorithm for the expert problem and can
be described as follows: Set a parameter v > 0 and
B € [0,1]. Initialize the weight vector w, € RZ, by
wy; = 1. The algorithm outputs a distribution pro-
portional to wy, i.e., py = H;"ﬁ In each round ¢, the
weight vector w; is updated on the basis of the obser-
vation of ¢; as follows:

Ui = Wi €XP (_7€ti)

W,
Wig1,i = 5# + (1= By

where W; = Z?:l vg;. The special case of the fixed
share forecaster in which parameter S is chosen as
B = 0is called the multiplicative weight update (MWU)
method. The fixed share forecaster achieves the follow-
ing performance:

Theorem 1 (Herbster and Warmuth (1998)). Sup-
pose that p; is given by p, = H"LUittHl with (6) and (7).
We denote P' = |{t € [T — 1] | iy #i;,,}|. Then, for
any sequence {if Y, C [m],

(EtTPt - fti;)

M=

~~
Il

1
1

<AT + = ((QP’ + 1) logm + log
Y

1
B (1 - 6)TP'1>
holds.

From Theorem 1, we can achieve a tracking regret of
O(y/P'Tlog (mT)) for the expert problem if the pa-
rameters 3 and 7 can be tuned depending on P’. Such
an approach of parameter tuning is, however, impos-
sible as P’ is an arbitrary integer in [T — 1] and is
not given in advance. This issue can be resolved by a
strategy of maintaining multiple learning rates, which
can be found in the literature (van Erven and Koolen,
2016; Zhang et al., 2018). In this strategy, we run mul-
tiple O(logT') fixed share forecaster algorithms with
different parameters, and combine their outputs using
multiplicative weight update method. A more specific
description of the algorithm is given in Algorithm 4 in
the appendix (Section A). We call this algorithm as
FSF*.

Corollary 1. There is an algorithm FSF* (in ap-

pendiz) for the expert problem such that

T

Z (etTPt - ftig)

t=1

< 8T ((P" 4 1)log(mT) + log(1 +log T))

holds for any sequence {i;}1_, C [m], where P’ is de-
fined by P' = [{t € [T —1] [ if # i1}

The computational time of FSF* (in Corollary 1) is of
O(mlogT) per round. Proof of the above corollary is
given in the appendix (Section B.1).

Note that the online submodular optimization prob-
lem setting is a special case of the expert problem, but
if we apply an algorithm for the expert problem like
MWTU it takes exponential time (the regret is polyno-
mial). Thus, by utilizing the submodularity, we con-
struct polynomial-time algorithms, with the assump-
tion that we can call evaluation oracles.

4 PROPOSED ALGORITHMS

4.1 Online Submodular Minimization

In this subsection, we introduce an algorithm for online
submodular minimization. The proposed algorithm is
described in Algorithm 1. Below, we show that Algo-
rithm 1 enjoys the following regret bound:

Theorem 2. If {X;}]_, is produced by Algorithm 1,
it holds for any comparator sequence {X;}1_, C 2"
that

E [Rr({X;}1)] < 163/T (n + P +log(5 + log T)),

where Ry and P are defined in (1) and (3), respec-
tively, and E[] represents expectation taken with re-
spect to the algorithm’s internal randomness.

Reduction to Online Linear Optimization Let
f+ denote the Lovéasz extension of f; defined as in (4).
In the proposed algorithm, we maintain real vectors
xy € [0,1]", and output a subset X;(H,, (z;)) = {i €
[n] | z4; > us} in each round, where wu; is chosen from
a uniform distribution over [0,1]. Then from (4), we
have

E[fi(Xe)] = Elfu(Hu, (@) =E [fi(e)] . (8)

From this, for any {X;}]_, C 2l")]

E lz Fo(Xe) = ft(Xi“)]
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Algorithm 1 Algorithm for online submodular mini-
mization with full-information
Require: The number T of rounds and the size n of
the ground set.
1: Set d = [log,T] + 4 and let p; = 31 € A? and

w; =1 € R% Set’y—q/lofwd.
initialize a:( 2 by x(J) =0eR"
2: fort=1,2,...,T do

Set x4 = Zj 1ptjm§]).
4:  Pick u; from a uniform distribution over [0, 1]
and output X; = Hy, (z) = {i € [n] | 21 > ws}.
5.  Get feedback of f; and compute g;, a subgradi-
ent of f; at x; given by (5).

For each j € [d],

6: forj=1,2,...,ddo

7: Compute xii)l as in (10), where n¥) = | /-

8: end for

9:  Compute py11 = wa:ﬁ, where w; is updated
as in (6) and (7) with m =d, 8 =0, and ¢;; =
gl 2 /4 for j € [d).

10: end for

holds, where z} € {0,1}" is the indicator vector of X},
and g; represents a subgradient of f; at x;. In (9), the
equality follows from (8), and the inequality follows
from the fact that f; is convex.

Online Gradient Descent Online gradient descent
(OGD) method is expressed by the following:

T4q1 € argmin ||z — (2 — 779t)||§a (10)
z€[0,1]™

where 1 > 0 is a parameter referred to as learning rate.
Then x; satisfies the lemma below:

Lemma 2. Suppose that x; is given by (10). Then,

for any {x;}E, C[0,1]", we have
th Ty — th i
_n T n 1Tl
2 * *
= gella + — + — T, —x 1
<53l 5+ 3 i i

Proof of the above lemma is in the appendix (Sec-
tion B.2).

Adaptive Learning Rate via MWU From Lem-
mas 1 and 2, by running OGD with parameter n =

n+ xi—x 1 .
\/ bord 1”T' il , we obtain

thxt thxt— (T(n—i—P)). (11)

However, we here need to choose parameter n depend-
ing on Zthl lz7 — 2,11, the path-length of the com-
parator sequence. This means that (11) holds only
for comparator sequences {z}}1_; with a fized path-
length.

To achieve (11) for all comparator sequences with ar-
bitrary path-lengths, we run OGD algorithms with dif-
ferent learning rates in parallel, and combine them us-
ing the multiplicative weight update method.

Denote d = [log, T + 4. Set n\) = vn2-J for j =
1,2,...,d. For each j, update xgj) € [0,1])™ using OGD
with learning rate nU). Set z; as z; = Z?letjxgj),
where p; € A?is given by multiplicative weight update

method, with ¢;; = g;xg o

where w; is updated by (6) and

j)/4 and v = (/289 je. p,is
defined as p; =
(7) with g =0.

Twe s
Proof of Theorem 2. From Theorem 1, we have

T T ) T T
S ol Y g =4 (z Tp- m)
t=1 t=1 t=1 t=1

4logd

< 4T + < 8y/Tlogd

for all j € [d], where the first equality follows from the
definition of £;;, the inequality follows from Theorem 1
with 8 = 0 and P’ = 0, and the last equality follows

logd
T

from v = . Further, from Lemmas 2 and 1, we

have

th xt

< 8T +

th Ty
1 T-1
w Z f =zt
t=1

2n (J)

Combining the above two inequalities and (9), we ob-
tain

n
Zn(ﬂ)

T T
B> filXe) =D fu(X7)| < 8nY
t=1 t=1
1 T-1
+ o5y 2 et = @il +8Tlogd
t=1

for all j € [d]. From the definition of ) =
there exists j € [d] such that

. T-1 * *
ﬂ - n+23 0 llop —aiglh < n®
N 16T -
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Hence, we have

T T
E | fu(X:) —th(XZ‘)]
t=1 t=1
T-1
<.132T <n+2 m;‘—x;‘HHl) +8+/Tlogd
t=1

= /32T (n + 2P) + 8y/Tlog([log, T + 4),

where the equality follows from the definition of z}
(indicator vector of X;°) and the definition of d. O

4.2 Online Size-Constrained Monotone
Submodular Maximization

The proposed algorithm for online size-constrained
monotone submodular maximization is based on the
algorithms for the expert problem introduced in Sec-
tion 3.2. More specifically, the algorithm runs k in-
stances of FSF* (in Corollary 1) in parallel and chooses
X, on the bases of the outputs of these instances.
The procedure is summarized in Algorithm 2. In each
round ¢, after getting the outputs p§1>,p§2), . ,pgk)
from the k copies of FSF* (in Corollary 1), the algo-
rithm constructs the output X; as

Xt = {itlvit27 e 7itk}7

where i, follows pgs), i.e., iy = ¢ with probability pgf)
for each s € [k]. Then the algorithm feed the loss
vector EES) € [-1,1]™ to the s-th copy FSF*®) | where

0% is defined by

th = {itlvit27 s vits}

09 = [u(Xus) — fo(Xes U {i})

Let us next show that the proposed algorithm enjoys
the regret bound described below.

Theorem 3. Suppose that {X,}1_, is produced by
Algorithm 2.  Then, for any comparator sequence
(XY, € 2" such that | X}| = k, we have

E[RyVI(X )| = 0 (VAT (R P)).

where R(Tl_l/e) and P are defined in (2) and (3), re-
spectively, and where E[-] represents the expectation
taken with respect to the algorithm’s internal random-
ness.

To show Theorem 3, we use the following lemma,
which connects the approximate tracking regret de-
fined in (2) and the bounds in Corollary 1.

Algorithm 2 Algorithm for online monotone submod-
ular maximization under size constraint

Require: The number T of rounds, the size n of the
ground set, the size-constrained parameter k such
that 1 <k <n.

1: Initialize k copies FSF*) FSF*?) . FSF**) of
FSF* (in Corollary 1) with parameters T and m =

n.

2: fort=1,2,...,T do

3: Set X0 =10.

4 for s=1,2,...,k do

5 Get the t-th output pff’ from FSF*(®).

6: Draw an item i;¢ from the distribution pgs).

7 Set th by th = Xt,s—l U {Ztg}

8 end for

9:  Output X; = Xy and get feedback of f;.

10: fors=1,2,...,k do

11: Set £ = (6.6, 6y by &) =
f( Xt s-1) — f(X¢s—1 U {i}) for each ¢ € [n].

12: Feed €§5), as the t-th input, to FSF*(*),

13: end for

14: end for

Lemma 3. For each s € [k], denote

T
BY =3kt - S, (14)

t=1 ieX;

where ng) is defined with (12) and (13). Then, for any
{XYE | such that |X[| = k for all t € [T, the regret
defined in (2) is bounded as

k—s
ey 1 1 )
ROy <13 (1-7) B

This can be shown via the assumption that each f; is
a monotone submodular function. The proof of this
lemma is given in the appendix (Section B.3).

Proof of Theorem 3. From Lemma 3, it suffices to

give bounds for each Bg,f ) defined in (14). For any
sequence {X;}T_, such that |X;| = k, we can choose

{its heerr) sepm € [n] sothat X = {ify,if5, ..., 4}, } and
Pi =t €T =1 |if; # i1}
satisfies
k T-1
2 Pj=P=> |X;AX[,] (15)
j=1 t=1

In fact, (15) holds when we choose {if,}1e[7],se[k] SO
that 7, , = ij, for each s € X ; N X}, Hence, for
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each s € [k], since pgs) are the output of FSF*,
(s) -

E|BY| =Y E
=1

<8 Z \/

T

>

t=1

=4

1) log(nT) + log(1 + log T))

k
Z ((P} + 1)log(nT) +log(1 + log 7))

< 8T (P + klog(nT) + klog(1 +logT)),

where the first inequality follows from Corollary 1,
the second comes from the Cauchy—Schwarz inequality,
and the last inequality follows from (15). By combin-
ing this bound for B;g) and Lemma 3, we obtain the
regret bound in Theorem 3. O

4.3 Online Unconstrained Nonmonotone
Submodular Maximization

The proposed algorithm for online unconstrained non-
monotone submodular maximization relies on Algo-
rithm 4, in a way similar to that in which Al-
gorithm 2 relies on it. Its procedure is sum-
marized in Algorithm 3. The algorithm runs
n copies FSF*W FSF*®  FSF*(™ of FSF* (in
Corollary 1), each of which is used to decide if any
individual element s € [n] should be included in X; or
not. Each of n copies solves an expert problem with
two actions, i.e., m = 2.

We show that Algorithm 3 achieves the regret bound
described below.

Theorem 4. Suppose that {X;}L_, is produced by
Algorithm 3. Then, for any comparator sequence
(X, C 2 we have

B[R 01 - O (VATGF R,

where Rgpl/z) and P are defined in (2) and (3), respec-
tively, and E[-] represents the expectation taken with
respect to the algorithm’s internal randomness.

The lemma below plays an essential role in our proof
of Theorem 4.

Lemma 4. For the output of Algorithm 3 and any
comparator sequence {X;}1_, C 2" we have

B[RS X)) <
,Z]E ST - Y - Y A,

te[T) te[T):se X} te[T)]:s¢ X}

(s)

where Egs) and p;’ are as defined in Algorithm 3.

This lemma can be shown via the diminishing returns
property of submodular functions and the technique
of reduction from Blackwell’s approachability problem
to regret minimization (Abernethy et al., 2011; Soma,
2019). A complete proof of this lemma can be found
in the appendix (Section B.4).

Proof of Theorem 4. Set iy, =1if s € X35 and ij, = 2
if s ¢ Xy for each t € [T] and s € [n]. The values
P! defined by P i= |{t € [T — 1] | if, # if,1,,}| then

satisfy __, P/ = P. From this and the fact that pgs)
are the output from FSF* (in Corollary 1), we have

i SO Y - A

s=1 \t€[T) te[T]:se X} te[T):s¢ Xy
PO DI
s=1 \te[T] te[T]

< SZ VT (P! 4 1)log(nT) + log(1 +log T))

s=1

< 8y/nT (P + nlog(nT) + nlog(1 +logT)),

where the first inequality follows from Corollary 1 and
the second comes from the Cauchy—Schwarz inequality
and Y., P/ = P. From this and Lemma 4, we obtain
the regret bound in Theorem 4.

4.4 Time Complexity of Our Algorithms

The time complexity of all three algorithms in this pa-
per are polynomial in n, T', and EO, which represents
the time for single call of evaluation oracle. Indeed,
each round ¢ € [T] requires computational time poly-
nomial in n and EO as written in Table 1.

5 LOWER BOUND

The regret bound given in Theorem 2 achieved by Al-
gorithm 1 is nearly tight up to a constant. In fact, we
can show the following regret lower bound:

Theorem 5. For any T, P,n such that 0 < P < nT
and any algorithm for online submodular minimization
there is a sequence of submodular functions fi: 2"} —
[0, 1] and a comparator sequence {X;}L | such that
|X*AXt+1| < P, and the following holds:

Q(min{/T(n+ P),T}).

E[Rr({X7}Hi))] =

Proof of the above theorem is written in appendix
(Section B.5).
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Algorithm 3 Algorithm for online unconstrained non-
monotone submodular maximization
Require: The number T of rounds, the size n of the
base set.
1: Initialize n copies FSF*(M) FSF*) . FSF*(™ of
FSF* (in Corollary 1) with parameters T and 2.
2: fort=1,2,...,T do
3:  Set X3 =0 and Y3y = [n].

4: fors=1,2,...,ndo

¥ Get the t-th output pgs) from FSF*(S), and set
a” = 11+ 2p)).

6: With probability ngs), set Xy 1= Xy 5—1U{s}
and Y, = Y, s_1. Otherwise, (with prob-

ability (1 — q,gs)),) set Xis
Y;‘/s = Y;S*l \ {S}

= X;s-1 and

7:  end for

8:  Output X; := Xy, = Y3, and get feedback of f;.

9: fors=1,2,...,ndo

10: Set Ats — ft(Xt’sfl @] {S}) - ft(Xt’sfl) and
bts = ft(th,sfl \ {S}) - ft(y;f,sfl)-

1 Set 47 = (67, 65T by 47 = —(1 - )as,
and Kg) = —qis)bts.

12: Feed Kis), as the t-th input, to FSF*(*).

13:  end for

14: end for

6 CONCLUSION

In this paper, we considered the tracking regret bounds
for three online submodular optimization problems;
(i) (unconstrained) submodular minimization, (ii) size-
constrained monotone submodular maximization, and
(iii) unconstrained nonmonotone submodular maxi-
mization. For the above problems, we gave (i) tracking
regret bound of O(\/T(n + P)), (ii) (1 —1/e)-tracking
regret of O(\/kT(k+ P)), and (iii) 1/2-tracking re-
gret of O(y/nT(n + P)), respectively. Also, for (i), we
gave the lower bound Q(min{\/T(n + P),T}), which
means that tracking regret bound O(y/T(n + P)) is
tight if we ignore the polynomial terms of logarithmics
of T and n when we focus on order and coefficient of
polynomials of T'.

As future work directions, other themes related to both
tracking regret bounds and (generalization or variant
of) submodularity can be considered, such as tracking
regret bounds of online optimization for k-submodular
functions, other functions with the generalized prop-
erty of submodularity, or DR-submodular functions.
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