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A DERIVATION OF ALGORITHM 1

In this appendix, we provide a detailed derivation of the variational message-passing algorithm presented in
Section 3 of the main text.

We begin with a brief recall of the coordinate-ascent variational inference (CAVI) algorithm. Given a set of
random variables z = (z1, . . . , zL) and a joint distribution p(z), the algorithm finds a mean-field approximation
q(z)

.
=
∏
` q(z`) that minimizes the divergence KL(q‖p). Starting with an arbitrary q(z), the algorithm iterates

over ` ∈ [L] and refines the approximating distribution using the update rule

q(z`) ∝ exp
{
E−`[log p(z`, z−`)]

}
, (1)

where z−` denotes the set of all variables except the `th one, and E−`[·] denotes an expectation taken over q(z−`).
Winn and Bishop (2005) and Blei et al. (2017) show, using different arguments, that the update (1) strictly
decreases KL(q‖p). Thus, CAVI is guaranteed to converge to a local minimum of the KL-divergence.

We are now ready to consider the probabilistic model of Section 3. For convenience, we summarize the main
symbols used throughout the paper in Table 1. In our case, z = (u,v), and the distribution p(u,v) is a product
of different types of factors,

p0(ui) = Dir(ui | αi), p0(vj) = Cat(vj | βj), f(ui, vj) = Cat(vj | ui).

Writing out the logarithm of the joint density, we obtain

log p(u,v) =
∑
i

log p0(ui) +
∑
j

log p0(vj) +
∑

(i,j)∈E

log f(ui, vj) + cst

=
∑
j,k

1{vj = k} log βjk +
∑
i,k

(αik − 1) log uik +
∑
i,k

∑
j∈Ni

1{vj = k}

+ cst

=
∑
j,k

1{vj = k} log βjk +
∑
i,k

αik − 1 +
∑
j∈Ni

1{vj = k}

 log uik + cst

Writing out the CAVI update for the approximate marginal q(vj), we get

q(vj = k) ∝ exp
{
E−j [log p(u,v)]

}
∝ exp

log βjk +
∑
i∈Nj

E−j [log uik]


∝ exp

log βik +
∑
i∈Nj

ψ(ᾱik)

 , (2)
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Table 1: Table of symbols and notation.

Symbol Domain Description

M N Number of users
N N Number of items
K N Number of classes
i [M ] User
j, ` [N ] Item
vj [K] True class of item j
v̂j [K] Noisy label associated with item j
E P([M ]× [N ]) Set of edges, denotes user-item interactions
Ni P([N ]) Neighbors of user i, Ni = {j : (i, j) ∈ E}
Nj P([M ]) Neighbors of item j, Nj = {i : (i, j) ∈ E}
δ [0, 1] Corruption probability
αi RK Parameter of the Dirichlet prior on user i’s class proportions
βj ∆ Parameter of the categorical prior on item j’s class
ᾱi RK Parameter of the variational posterior on user i’s class proportions
β̄j ∆ Parameter of the variational posterior on item j’s class

where ψ(x)
.
= Γ′(x)/Γ(x) is the digamma function. Similarly, the update for q(ui) is given by

q(ui) ∝ exp
{
E−i[log p(u,v)]

}
∝ exp

∑
k

αik − 1 +
∑
j∈Ni

E−i[1{vj = k}]


∝ Dir

(
ui

∣∣∣ αi +
∑
j∈Ni

β̄j

)
(3)

Note that, because the updates of the item (respectively, user) marginals do not depend on β̄ (ᾱ), we can
update the marginal over all items (users) in batch. Algorithm 1, presented in the main text, is simply a concise
reformulation of (2) and (3).

Connection to LDA. Our algorithm has some parallels with the variational inference method of Blei et al.
(2003) for the latent Dirichlet allocation (LDA) topic model. In particular, our model enjoys conjugacy properties
similar to those of the LDA model, leading to analogous closed-form CAVI updates. The two models are however
distinctly different.

Alternatives to CAVI. Most prior work on collective classification (see, e.g., Taskar et al., 2001, 2002) uses a
different approach to inference in structured models called loopy belief propagation (LBP) (Pearl, 1988; Yedidia
et al., 2005). A brief derivation shows that our particular probabilistic model is not amenable to inference using
LBP, because the resulting messages have no closed-form representation. As an alternative, we could use the
expectation propagation (EP) framework (Minka, 2001), following the approach of Minka and Lafferty (2002).
This would however result in an algorithm that is significantly more complex than Algorithm 1, and that would
consequently be much harder to analyze theoretically. In addition, the convergence of LBP and EP is poorly
understood, in contrast to CAVI which is guaranteed to converge.

B PROOFS

In this appendix, we provide proofs for the results presented in Section 4 of the main text. We begin by presenting
some well-known bounds in Section B.1. Next, we introduce three auxiliary results that characterize some
aspects of the Sparse Interaction Model in the large N limit in Section B.2. We prove Theorems 1, 2 and 3 in
Sections B.3, B.4 and B.5, respectively.



B.1 Useful Bounds

We recall some standard concentration inequalities. For a random variable z ∼ Bin(n, p), the Chernoff bound
yields

P[z ≥ 2np] ≤ exp
(
−np

3

)
, (4)

P[z ≤ np/2] ≤ exp
(
−np

8

)
. (5)

If p < c/n < 1, we can make use of the following tighter bound, given in Arratia and Gordon (1989):

P[z ≥ c] ≤ exp [−nKL(c/n‖p)] ≤ exp

(
−c log

c

np

)
. (6)

Next, let x1, . . . , xn be identically distributed (but not necessarily independent) random variables with support in
[a, b] and mean E[x`] = µ. Define the dependency graph of {x1, . . . , xn} as H = ([n],A) such that (i, j) ∈ A ⇐⇒
xi and xj are dependent. Let χ be the chromatic number (Diestel, 2016) of the dependency graph H, and let
z =

∑
i xi. Then, an application of Janson (2004, Thm. 2.1) yields, for any q ∈ [0, 1],

P[z ≤ qnµ] ≤ exp

(
−2

n(1− q)2µ2

χ(b− a)2

)
, (7)

Let ψ(x)
.
= Γ′(x)/Γ(x) be the digamma function. Guo and Qi (2014, Theorem 1) show that

log(x+ 1/2)− 1/x < ψ(x) < log(x). (8)

B.2 Auxiliary Results

We begin with Lemma 1 of the main text, which formalizes the notion that users tend to interact with items of
the same class. For convenience, we restate the lemma.
Lemma 1. Let D ∼ SBM, and for any i, let j, ` ∈ Ni. Then, for any k′ 6= k,

p(v` = k | vj = k) = (1 + 1/α) · p(v` = k′ | vj = k).

Proof. By construction, the probability that user i interacts with an item of class k is uik. Marginalizing over
ui ∼ Dir(α), we have.

p(vj = k) =

∫
p(vj = k | ui)p(ui)dui =

∫
uikDir(ui | α)dui =

1

K
.

Similarly, the probability that user i interacts with a first item of class k and a second item of class k′ is uikuik′ .
Letting k′ 6= k, we have

p(v` = k, vj = k) =

∫
u2ikDir(ui | α)dui =

1

K
· α+ 1

Kα+ 1
,

p(v` = k′, vj = k) =

∫
uikuik′Dir(ui | α)dui =

1

K
· α

Kα+ 1
.

The claim follows by definition of conditional probability.

The next lemma provides concentration inequalities for the number of items of class k, denoted by |Vk|, and for
the number of users interacting with each item, denoted by |Nj |. Informally, it states that there are approximately
N/K items per class, and each item is connected to approximately MS/N users in the interaction graph.
Lemma 2. Let S ≥ 2 and M > 16N logN . With probability 1− C/N , we have

∀k ∈ [K]
N

2K
< |Vk| <

2N

K
(9)

∀j ∈ [N ]
MS

4N
< |Nj | <

4MS

N
(10)
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Proof. Since vj ∼ Cat(1/K, . . . , 1/K) independently for all j, we have |Vk| ∼ Bin(N, 1/K). Applying inequali-
ties (4) and (5) yields

P

[
|Vk| ≤

N

2K

]
< exp

(
− N

8K

)
, P

[
|Vk| ≥

2N

K

]
< exp

(
− N

3K

)
.

By using a union bound on the K classes, we obtain (9). Next, fix j and let vj = k. The probability that user i
interacts with item j is given by

r
.
= P[j ∈ Ni | vj = k] = Eui

[
nik
|Vk|

]
=

S

K|Vk|
,

where we used ni ∼ Mult(S, ui) and ui ∼ Dir(α). By (9), we have

S

2N
< r <

2S

N

with probability at least 1− 2 exp[−N/(8K)]. Because each user interacts with items independently of other users,
we have |Nj | ∼ Bin(M, r). As such, for any j,

P

[
|Nj | ≤

MS

4N

]
< P

[
|Nj | ≤

Mr

2

]
< exp

(
−MS

16N

)
≤ 1

N2
,

P

[
|Nj | ≥

4MS

N

]
< P [|Nj | ≥ 2Mr] < exp

(
−MS

6N

)
≤ 1

N2
,

making use of inequalities (4) and (5). We obtain (10) by using a union bound on the N items.

Finally, we consider Nj , the set of users interacting with a given item j. Letting i, i′ be two such users, we ask the
question: How likely is it that both i and i′ also “share” another item ` 6= j? The next lemma states a result on the
dependencies between users in Nj , in terms of whether their interactions with other items (excluding j) overlap.
Lemma 3. For any C1 > 0, let M ≥ C1N logN . For any j, let Hj = (Nj ,Aj) be a graph such that

(i, i′) ∈ Aj ⇐⇒ Ni ∩Ni′ \ {j} 6= ∅.

Let χj be the chromatic number of Hj. Then, with probability 1− C2/N we have, for all j ∈ [N ],

χj ≤
5M

C1N logN

Proof. From standard results on greedy colorings (Diestel, 2016), we know that χj ≤ ∆(Hj) + 1, where ∆(Hj)
is the maximum degree of a vertex in Hj . Without loss of generality, assume that all users in Nj interact with
items of class vj = k only. For i, i′ ∈ Nj we have

r
.
= P[(i, i′) ∈ Aj ] = 1−P[Ni ∩Ni′ \ {j} = ∅] = 1−

S−1∏
`=1

(
1− S − 1

|Vk| − `

)

≤ 1−
[
1− S − 1

|Vk| − (S − 1)

]S−1
≤ (S − 1)2

|Vk| − (S − 1)
≤ 4KS2

N
,

for N ≥ S − 1. The last inequality uses (9). Note that, in general, the edge probabilities are not jointly
independent. However, as each user interacts with items independently of other users, the neighbors in Hj of any
fixed i ∈ Nj are distributed independently and identically. Letting Zji be the set of neighbours of i in Hj , we
have |Zji| ∼ Bin(|Nj | − 1, r). Without loss of generality, assume that M ≤ C3N logN . Then, inequality (6) yields

P

[
|Zij | ≥

5M

C1N logN

]
≤ exp

(
−5 log

N

16C1KS3 logN

)
≤
(

16C1KS
3 logN

N

)−5
≤ C4

N4
,



for N large enough. By union bound, it follows that

χj ≤ 1 + ∆(Hj) = 1 + max
i
|Zij | ≤

5M

C1N logN

for all j with probability at least 1− C3 logN/N2.

The meaning of Lemma 3 is as follows. With high probability, any subset of χj + 1 users in Nj contains at least
two users whose neighborhoods are disjoint (except for j).

B.3 Proof of Theorem 1

We now focus on Algorithm 2. For a given j, we let vj = k. From line 7 in the algorithm, we see that the output
v̄j is equal to k if and only if zk > zk′ for all k′ 6= k. Expanding line 3 into line 6, it follows that

v̄j = k ⇐⇒ zk − zk′ =
∑
i∈Nj

∑
`∈Ni\{j}

(1{v̂` = k} − 1{v̂` = k′}) > 0 ∀k′ 6= k. (11)

We begin by analyzing the inner sum in (11). The next lemma characterizes its expected value.
Lemma 4. For any j ∈ [N ], let vj = k. For any i ∈ Nj and any k′ 6= k, we have

E

 ∑
`∈Ni\{j}

(1{v̂` = k} − 1{v̂` = k′})

 =
S − 1

Kα+ 1

(
1− K

K − 1
δ

)

where the expectation is taken over Ni and v̂` for all ` ∈ Ni \ {j}

Proof. By Lemma 1 and by definition of p(v̂j | vj), we have, for all ` ∈ Ni \ {j},

P[v̂` = k | vj = k] = (1− δ) · α+ 1

Kα+ 1
+

δ

K − 1
· (K − 1)α

Kα+ 1
,

P[v̂` = k′ | vj = k] = (1− δ) · α

Kα+ 1
+

δ

K − 1
· (K − 1)α+ 1

Kα+ 1
.

Using the linearity of expectation and elementary algebraic manipulations, we find that

E

 ∑
`∈Ni\{j}

(1{v̂` = k} − 1{v̂` = k′})

 = (S − 1)(P[v̂` = k | vj = k]−P[v̂` = k′ | vj = k])

=
S − 1

Kα+ 1

(
1− K

K − 1
δ

)
.

We are now ready to prove Theorem 1, which we briefly restate here for convenience.
Theorem 1. Let D ∼ SBM, and let v̄ be the output of Algorithm 2 on D. If δ < K−1

K and M ≥
max{16, 40 (Kα+1)2

S (1− K
K−1δ)

−1}·N logN , then for all j ∈ [N ], v̄j = vj w.h.p.

Proof. Fix j, let vj = k and k′ 6= k. Define auxiliary variables {yi : i ∈ Nj} as follows:

yi =
∑

`∈Ni\{j}

(1{v̂` = k} − 1{v̂` = k′})

By construction, we have yi ∈ [−(S − 1), S − 1]. We use Lemma 2 to lower-bound |Nj |, Lemma 3 to upper-bound
χj , Lemma 4 to characterize E[yi], inequality (7) with q = 1 and condition (11) to obtain

P[zk − zk′ ≤ 0] = P

[ ∑
i∈Nj

yij ≤ 0

]
≤ exp

[
−C1

S logN

10(Kα+ 1)2

(
1− K

K − 1
δ

)]
.
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Setting C1 = 20 (Kα+1)2

S (1 − K
K−1δ)

−1, we ensure that P[zk − zk′ ≤ 0] ≤ 1/N2. By choosing M ≥
max{16, C1}N logN we satisfy the conditions of Lemmas 2 and 3. By union bound,

P[∀j v̄j = vj ] ≥ 1−
∑
j

∑
k′ 6=vj

P[zvj − zk′ ] ≥ 1−K/N,

and the claim follows.

B.4 Proof of Theorem 2

We proceed in a similar way to the last section for Algorithm 1, For a given j, we let vj = k and v̄j = arg max` β̄j`,
where β̄j is the output of the algorithm after one iteration. Expanding line 3 into line 6, it follows that

v̄j = k ⇐⇒ ∀k′ 6= k log(β̄jk/β̄jk′)

= log(βjk/βjk′) +
∑
i∈Nj

[
ψ

(
αik +

∑
`∈Ni

β`k

)
− ψ

(
αik′ +

∑
`∈Ni

β`k′

)]
> 0.

(12)

We begin by controlling the expectation of the term inside the sum in (12). The next lemma provides conditions
under which the expectation can be bounded from below by a constant.

Lemma 5. For any j ∈ [N ], let k .
= vj . For any i ∈ Nj and any k′ 6= k, provided that δ ≤ 1/80, S ≥ 1+(K−1)/δ

and α ≤ δ/[(1− δ)K − 1], we have

E

[
ψ

(
αik +

∑
`∈Ni

β`k

)
− ψ

(
αik′ +

∑
`∈Ni

β`k′

)]
≥ 1/6,

where the expectation is taken over Ni and β` for all ` ∈ Ni \ {j}.

Proof. By using Lemma 1 and by definition of p(v̂j | vj), we have, for all ` ∈ Ni \ {j},

β`k =


1− δ w.p. (1− δ) α+ 1

Kα+ 1
+ δ

α

Kα+ 1
,

δ

K − 1
w.p. δ

α+ 1

Kα+ 1
+ (1− δ

K − 1
)
(K − 1)α

Kα+ 1
,

β`k′ =


1− δ w.p. (1− δ) α

Kα+ 1
+

δ

K − 1

(K − 1)α+ 1

Kα+ 1
,

δ

K − 1
w.p. δ

α

Kα+ 1
+ (1− δ

K − 1
)
(K − 1)α+ 1

Kα+ 1
.

We begin by upper-bounding the first term inside of the expectation. By using (8) and Jensen’s inequality, we get

E

[
ψ

(
α+

∑
`∈Ni

β`k′

)]
≤ E

[
log

(
α+

∑
`∈Ni

β`k′

)]
≤ log

(
α+ βjk′ +

∑
`∈Ni\{j}

E[β`k′ ]

)

≤ log

[
α+ βjk′ + (S − 1)

(
α

Kα+ 1
+ 2

δ

K − 1

)]
,



Next, we lower-bound the second term.

E

[
ψ

(
α+

∑
`∈Ni

β`k

)]
≥ E

[
log

(
α+

∑
`∈Ni

β`k

)]
− K − 1

Sδ

≥ log

(
α+ βjk +

∑
`∈Ni\{j}

expE[log β`k]

)
− K − 1

Sδ

≥ log

{
α+ βjk + (S − 1)

(1− δ) ·
(

δ

K − 1

)(δ+ (K−1)α
Kα+1 )

}− K − 1

Sδ

≥ log

{
α+ βjk + (S − 1)

 (1− δ)δ(
2δ + (K−1)α

Kα+1

)(
1 + (K − 1)δ + (K−1)2α

Kα+1

)
}− K − 1

Sδ
,

where we used (8) on the first line, and a variational lower bound (Paisley, 2010) on the second line. If
α ≤ δ/[(1− δ)K − 1], the bounds simplify as follows.

E

[
ψ

(
α+

∑
`∈Ni

β`k′

)]
≤ log

[
α+ βjk′ + (S − 1)

3δ

K − 1

]
,

E

[
ψ

(
α+

∑
`∈Ni

β`k

)]
≥ log

[
α+ βjk + (S − 1)

1− δ
3 + 6(K − 1)δ

]
− K − 1

Sδ
.

Letting δ < 1/80 and S ≥ (K − 1)/δ + 1, we have α ≤ 1 and

E

[
ψ

(
α+

∑
`∈Ni

β`k

)
− ψ

(
α+

∑
`∈Ni

β`k′

)]

≥ log

[
exp

(
−K − 1

Sδ

)
α+ βjk + (S − 1) 1−δ

3+6(K−1)δ

α+ βjk′ + (S − 1) 3δ
K−1

]

≥ log

[
e−1

(S − 1) 1−δ
3+6(K−1)δ

1 + (1− δ) + (S − 1) 3δ
K−1

]

≥ log

[
e−1

(K − 1)(1− δ)
5δ[3 + 6(K − 1)δ]

]
≥ log(4/3) > 1/6.

This concludes the proof.

We are now ready to prove Theorem 2, which we briefly restate here for convenience.

Theorem 2. Let D ∼ SBM, and let β̄ be the output of Algorithm 1 on D after one iteration. There exist
C1, C2, C3, C4 independent of N such that if M ≥ C1N logN , α < C2, δ < C3, S > C4, then for all j ∈ [N ],
arg maxk{β̄jk} = vj w.h.p.

Proof. Fix j, let vj = k and k′ 6= k. Define auxiliary variables {yi : i ∈ Nj} as follows:

yi = ψ

(
α+

∑
`∈Ni

β`k

)
− ψ

(
α+

∑
j∈Ni

β`k′

)

By construction, we have yi ∈ [−C5, C5], where

C5
.
= log

(
α+ S(1− δ)

1/2 + α+ S δ
K−1

)
+

1

α+ S δ
K−1

≥ ψ[α+ S(1− δ)]− ψ
[
α+ S

δ

K − 1

]
,
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making use of (8) twice. We use Lemma 2 to lower-bound |Nj |, Lemma 3 to upper-bound χj , Lemma 5 to bound
E[yi], inequality (7) with q = 1/2 and condition (12) to obtain

P

∑
i∈Nj

yi ≤ log(βjk/βjk′)

 ≤ P

∑
i∈Nj

yi ≤
C1S logN

48

 ≤ exp

(
−C1 logN

1440C2
5

)
≤ 1/N2,

for N large enough, if C1 > 2880C2
5 . By union bound,

P[∀j v̄j = vj ] ≥ 1−
∑
j

∑
k′ 6=vj

P

∑
i∈Nj

yi ≤ log(βjvj/βjk′)

 ≥ 1−K/N,

and the claim follows.

B.5 Proof of Theorem 3

Before proceeding with the proof, we introduce a result from combinatorics. We define the D-uniform random
hypergraph HD(N,M) as a hypergraph1 with N vertices and M edges sampled uniformly at random among the(
N
M

)
possible subsets of [N ] of size M . The following lemma, adapted from Poole (2015), gives a lower bound on

the number of edges necessary to connect the hypergraph.
Lemma 6 (Poole, 2015, Lemma 2.1). Let HD(N,M) be a D-uniform random hypergraph. For any ε > 0, if
M < 1−ε

D N logN then HD(N,M) has at least dlog logNe vertices of degree 0 with high-probability.

We are now ready to prove Theorem 3, which we briefly restate here for convenience.
Theorem 3. Let D ∼ SBM. If M ≤ 1

5KSN logN , then w.h.p. there exists a set of items B ⊆ [N ] such that
|B| ≥ log logN and Nj = ∅ for all j ∈ B.

Proof. We start by viewing the bipartite interaction graph as a hypergraph H([N ],A), where A = {Ni : i ∈ [M ]}.
In other words, H is a hypergraph on the N items where every user corresponds to an edge consisting of all the
items that user interacted with.

Due to the probabilistic nature of user-item interactions in SBM, H is a random hypergraph that is S-uniform
(all users interact with exactly S items), but it is not a S-uniform random hypergraph in the sense of Lemma 6.
Indeed, users have a bias towards interacting with items of the same class (see e.g., Lemma 1).

We thus fix a class k ∈ [K], and assume that for all k′ 6= k, if vj = k′ then Nj 6= ∅, i.e., all “bad” items have
class k. Let Vk = {j ∈ [N ] : vj = k}. Conditioned on class k, users choose nik items uniformly at random from
Vk. In the worst case, nik = S for all i ∈ [M ], and the connectivity of items in Vk is determined by that of the
S-uniform random hypergraph HS(|Vk|,M).

We can then lower-bound |Vk| using Lemma 2 and use Lemma 6 with ε = 1/5 to conclude the proof.

C GENERATIVE ASSUMPTIONS

In this section, we briefly discuss the assumptions of the generative model introduced in Section 4 and sketch how
relaxing them would impact the performance of CAVI and wvRN.

Constant number of edges per user. We assume that every user interacts with exactly S items. This sim-
plifies the proofs, but it is not strictly necessary. We can expect similar results to hold if the number of
interactions is S on average, but varies from user to user.

Uniform choices. We assume that users choose items within a class uniformly at random. This is clearly
unrealistic in many practical applications, where we expect some items to be more popular than others. Our
results rely on all items being “well-connected” in the interaction graph; If there is a popularity bias, some
items might have zero or few users, and it might thus become difficult to correct their labels. In that case,
we can likely develop results that depend on the popularity rank or on the size of an item’s neighborhood in
the interaction graph.

1A hypergraph is a generalization of a graph where edges are subsets of vertices of arbitrary cardinality.



Table 2: Description of classes for each dataset.

Name Classes

Stack Overflow c#, c++, ios, java, javascript, php, python, r, ruby-on-rails, sql
Yelp AZ, NV, ON, OH, NC, PA, QC, AB, WI, IL
Amazon “Books”, “CDs & Vinyl”, “Clothing, Shoes & Jewelry”, “Electronics”,

“Sports & Outdoors”

Balanced item classes. We assume that items belong to one the K classes uniformly at random—in other
words, that the classes are balanced. This assumption is not restrictive, and we make it for simplicity only.
Our results can be extended in a straightforward way to settings where item classes are unbalanced.

Symmetric aggregate affinities. We assume that the users’ class-proportion vector is sampled from a sym-
metric Dirichlet with concentration parameter α. That is, we assume that, when averaged over all users,
class proportions are balanced (but that, individually, each user still prefers some classes more than others).
In theory, we could expect that significant deviations from this assumption might be problematic for our
algorithms. In practice, however, Algorithm 1 appears to work well even on highly asymmetric problems
(such as the podcast dataset studied in Section 5). Algorithm 2 is more sensitive to asymmetric proportions,
but it could be robustified along the lines of the class-distribution relational neighbor algorithm of Macskassy
and Provost (2007).

D EXPERIMENTAL EVALUATION

We briefly describe each of the three public datasets we examine in Section 5.2 of the main text. Upon publication,
we will release code that enables reproducing exactly the results presented in the paper.

Stack Overflow This dataset contains questions and answers from Stack Overflow, a Q&A platform for pro-
grammers. On this platform, users can ask or answer questions (items) that are annotated by tags (classes).
We consider the 10 most popular programming languages discussed on the platform, and retain all questions
that are tagged with exactly one of these languages.

Yelp This dataset contains reviews from Yelp, a crowd-sourced business review service. On this service, users
write reviews about businesses (items), and each business is annotated with a location (class). We consider
the 10 U.S. states and Canadian provinces that are the most prevalent in the dataset, and discard businesses
located elsewhere.

Amazon This dataset contains product reviews from Amazon, an e-commerce platform (McAuley and Leskovec,
2013). Users write reviews about products (items) belonging to one of several categories (classes). We consider
the five largest categories, and retain items annotated with exacly one of these categories.

Table 2 lists the classes we seek to distinguish in each dataset.
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