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Abstract

We consider a setting where users interact
with a collection of N items on an online
platform. We are given class labels possibly
corrupted by noise, and we seek to recover
the true class of each item. We postulate a
simple probabilistic model of the interactions
between users and items, based on the assump-
tion that users interact with classes in differ-
ent proportions. We then develop a message-
passing algorithm that decodes the noisy class
labels efficiently. Under suitable assumptions,
our method provably recovers all items’ true
classes in the large N limit, even when the
interaction graph remains sparse. Empirically,
we show that our approach is effective on
several practical applications, including pre-
dicting the location of businesses, the category
of consumer goods, and the language of audio
content.

1 INTRODUCTION

Over the last two decades, online platforms have be-
come ubiquitous. They let users access and interact
with vast collections of restaurant and consumer goods
reviews, audio and video content, and more. The suc-
cess of these platforms comes, in part, from their ability
to reach a large number of users and from their ability
to offer access to a large number of items—typically,
many more than any single user could reasonably in-
teract with (Anderson, [2006; [Furopean Commission),
2016). A critical problem that these platforms face is the
organization and categorization of information about
items. For example, correctly identifying the location
of a restaurant on a crowd-sourced review service or
the language of a podcast on an audio streaming plat-
form is crucial to providing a good experience to users
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across the world. This problem is particularly challeng-
ing when item metadata come from third-parties (e.g.,
on marketplaces) or from users themselves (e.g., on
collaborative platforms), as the quality and consistency
of that information might be low.

In this work, we consider a prototypical instance of this
problem. We seek to classify each item as belonging
to one of K different classes. We assume that we have
access to a class label for each item, but that some of
these labels are inaccurate (i.e., corrupted by noise).
Furthermore, we assume that we are given a set of users
and observe data about who interacts with what. We
ask the question: Can we take advantage of user-item
interactions to correct erroneous labels?

Our starting point is a natural assumption about users
of online platforms, stating that users interact with
classes in different proportions. For example, users tend
to listen to podcasts mostly in languages they are fluent
in, and they review (or consult reviews of) restaurants
in a handful of cities they live in or visit. In consequence,
two items that a given user interacts with are likely to
be of the same class. Building on this assumption, we
develop a structured probabilistic model that relates
the network of user-item interactions and the noisy class
labels to the items’ true classes (Section. This model
leads to a simple iterative message-passing inference
algorithm. Informally, given an item, the algorithm
considers the set of users having interacted with that
item, and uses the label of other items that these users
have interacted with in order to determine the class of
the item. This links our work to well-known methods in
statistical relational learning (Macskassy and Provostl,
2007; Bhagat et al., |2011; |Sen et al.| |2008)).

We aim to characterize the performance of our approach
theoretically (Section . To this end, we consider an
idealized generative model of online platforms. This
model describes, among others, how users choose items
to interact with and how class labels are corrupted by
noise. Under this model, we identify necessary and suffi-
cient conditions such that, asymptotically, our method
perfectly recovers the true class of all items with high
probability. These conditions are order-optimal, and
they are surprisingly mild: they are essentially equiva-
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lent to having at least one user interacting with every
item. These results set our method apart from generic
statistical relational learning models, for which theo-
retical guarantees are usually difficult to obtain.

Next, we evaluate our algorithm empirically, using syn-
thetic and real-world data (Section . We begin by
illustrating the theoretical bounds and stress-testing
their assumptions through simulations. We then study
three classification tasks using public datasets from
online platforms: a technical Q&A platform, a business
review website, and an online retailer. We treat the
labels provided in these datasets as ground truth and
simulate noisy labels by corrupting some of the ground-
truth labels at random. Our approach corrects a large
fraction of the mistakes in all three cases, significantly
outperforming competing heuristics. In addition, our
approach is able to identify apparent mistakes in the
ground-truth labels provided in the dataset. Finally, we
investigate a language-identification task using a pod-
cast dataset from Spotify, an audio streaming service.
In addition to labels provided by show producers, we
obtain high-quality ground-truth data. On this dataset,
we show that applying our method results in a five-fold
reduction in the error rate.

Our contributions are two-fold. First, we develop a
probabilistic model and a matching inference algo-
rithm that can be used to correct noisy item labels
given user-item interactions. Our method is easy to
implement and scales to millions of users and items
effortlessly. Second, we derive tight bounds on our al-
gorithm’s sample complexity in the perfect recovery
setting, under a natural model of user-item interac-
tions. We show that our algorithm’s sample complexity
is order-optimal: No other algorithm can recover the
true class of all items with fewer interactions (up to
constant factors). Taken together, our results show that
a simple assumption—users interact with classes in dif-
ferent proportions—Ileads to an effective “collaborative”
classification method. Driven by theory, backed by fa-
vorable empirical results, we believe that our method
will be valuable to machine-learning practitioners at
large.

2 RELATED WORK

To the best of our knowledge, the exact problem we
address in this paper, correcting noisy class labels using
user-item interactions, has not been studied previously.
Nevertheless, our approach builds upon existing meth-
ods and ties into a number of research areas. In this
section, we present a brief survey.

Collective Classification. Perhaps the closest
problem to ours is that of collective classification, where

nodes in a network need to be jointly classified based
on node features and the network’s structure (Sen
et al., 2008} [Bhagat et al., 2011)). Structural infor-
mation can help, e.g., if nodes are more likely to be
connected to other similar nodes, a property called
homophily or assortativity (Newman, [2003). Common
approaches to collective classification include local clas-
sifiers (Chakrabarti et al., [1998; [Neville and Jensen,
2000; [Lu and Getoorl}, 2003; [Macskassy and Provost,
2007)) and structured probabilistic models, both di-
rected (Friedman et all (1999} Taskar et al., [2001) and
undirected (Taskar et al.l 2002). Among those, the
weighted-vote relational neighbor algorithm of [Macq
skassy and Provost| (2007) stands out as being simple
and effective; we consider a variant in Section [3} Our
work is closest in spirit to approaches based on graphical
models, such as that of Taskar et al.| (2002). In contrast
to most of the existing work on collective classification,
we consider a problem where the network has a bipar-
tite structure and two distinct types of nodes (users
and items), and we take advantage of this structure
explicitly. |Stankova et al.| (2015 also consider bipartite
networks, but in the context of binary classification,
whereas we consider a multiclass problem.

Statistical Relational Learning. Beyond collec-
tive classification, our work is linked to a number of
ideas from the statistical relational learning (SRL) lit-
erature (Getoor and Taskar, |2007)). For example, our
problem could likely be modeled using a Markov logic
network (Domingos and Lowd) 2009) or a relational
dependency network (Heckerman et al., 2000; [Neville
and Jensen, 2007)). In a sense, our work can be under-
stood as an application of SRL to the specific problem
of classifying items using user-item interactions. This
specialization leads to a) an inference algorithm that
is particularly simple and efficient, and b) theoretical
guarantees on the algorithms’s output, two features
that general-purpose SRL models usually lack.

Parity-Check Codes. Our approach is also closely
related to classic algorithms in channel coding, whose
goal is to efficiently recover a sequence of symbols (e.g.,
bits) transmitted over a noisy communication channel
(Cover and Thomas, 2006). In particular, low-density
parity check (LDPC) codes share some similarities to
our work (Gallager} 1962; MacKay and Neall, [1997)).
LDPC codes identify and correct corrupted symbols by
using additional parity checks connected to some of the
symbols, in a similar way to how we take advantage of
users to identify and correct mislabeled items. What
distinguishes our work from LDPC codes is a different
probabilistic model relating parity checks / users to
symbols / item classes.
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Weakly Supervised Learning. A large body of
machine-learning literature studies settings where su-
pervision is imperfect, because of label noise (Frénay
and Verleysen) 2014) or because some observations are
unlabeled (Chapelle et al., 2010), among others (Zhoul
2018]). Existing work on learning from noisy labels typ-
ically assume access to features and i.i.d. observations
(Angluin and Laird), 1988} [Brodley and Friedl, [1999;
Natarajan et al.| 2013} [Ratner et al., 2016)). In contrast,
we study a structured problem without item features
but where item classes become dependent through users
interactions. Semi-supervised learning addresses a set-
ting where part of the data are unlabeled (Chapelle
et al., [2010). Some methods, in particular those based
on random walks (Zhu et al., 2003} |Zhou et al., [2004]),
are closely related to collective classification (Macskassy]
and Provost, [2007; [Bhagat et al., [2011)) and, in turn,
to our work. They exploit a network that captures
similarities between data to overcome missing labels.

)

Truth Inference in Crowdsourcing. A well-
known problem in crowdsourcing is that of classifying
items by querying multiple crowdworkers, whose an-
swers might be unreliable. In a seminal paper, | Dawid
and Skene| (1979)) introduce an approach that estimates
users’ skill and items’ labels jointly. Since then, a num-
ber of improvements have been proposed (Whitehill
et al.l 2009} [Welinder et al.| 2010} Karger et al.| |2014;
Manino et al., 2019). Whereas crowdsourcing systems
usually ask users to provide class labels explicitly, we
study a setting where users’ interactions carry infor-
mation about item classes only implicitly. Since our
users’ goal is not to provide labels, we make different
assumptions on the information contained in user-item
interactions.

Collaborative Filtering. Our approach shares
some similarities with collaborative filtering (CF), a
popular class of methods for modeling user preferences
(Ricci et al., |2011)). Just like CF, we take advantage of
user-item interactions to infer properties of users and
items. Most CF methods, such as matrix factorization
(Koren et al., [2009), model users and items as points
in a low-dimensional vector space. In contrast, we as-
sume that items belong to one of K discrete classes
and we model user preferences by using a categorical
distribution. Most importantly, however, our model
addresses a different problem: We are not interested in
predicting preferences per se, but instead we seek to
correct corrupted item labels. We justify our specific
modeling choices by showing, in Section [p| that our
method outperforms an approach based on a standard
CF model.

3 INTERACTION MODEL

In this section, we formally introduce our collaborative
classification problem. Starting with a simple assump-
tion about users’ behavior, we postulate a probabilistic
model relating item classes to user-item interactions
and derive two inference algorithms.

3.1 Problem Definition & Model

We consider online platforms where M users interact
with NV items belonging to one of K classes. We denote
the set of users by the consecutive integers [M] =
{1,..., M}. Likewise, we denote the sets of items and
classes by [N] and [K], respectively. We are given a
bipartite interaction graph G = ([M],[N],€), where
& C [M]x[N] and an edge (4, j) € € indicates that user
1 has interacted with item j. The set of items that user
i interacts with is given by N; = {j € [N] : (3,7) € £}.
Similarly, the set of users interacting with item j is
given by N; = {i € [M] : (4,5) € £}. The class of item
Jj is denoted by v; € [K], and we let v = (v1,...,vn).
We do not get to observe v directly; instead, we are
given a noisy version ¢ = (01, ...,0x). Our goal is to
recover the true classes v using the noisy labels © and
the user-item interaction graph G.

To this end, we make the following key assumption:
users interact with classes in different proportions. For-
mally, we assume that each user ¢ is described by a
vector of class proportions u; € A, where A = {z €
[0,1]5 : 37, 2), = 1} is the standard simplex, and we
let w = (u1,...,up). This gives rise to the following
probabilistic model. First, we endow u; with a Dirichlet
prior and v; with a categorical prior. That is,

po(u;) = Dir(u; | oy) ocHu “C_,

H Bl{v]—k}

independently for each ¢ € [M] and j € [N], where
a; € Rfo and 3; € A. The parameter a; can be used
to encode prior beliefs about users’ affinities towards
different classesﬂ and, in the absence of such beliefs,
we can use the flat prior a;r = 1. The parameter
Bjr captures the probability of item j belonging to
class k after observing 0; (but before considering user
interactions). In the absence of other information, a
reasonable choice is to fix a noise level § > 0 and let

(1-3
= o -

! Consider, for example, a language classification appli-
cation. In that case, the users’ country of residence could
be used to form an informative prior.

po(v;) = Cat(v; | 5;)

if k= 0;,

1) otherwise.
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Figure 1: Factor-graph representation of the model.

Left: description of the factors. Dir and Cat represent
Dirichlet and categorical factors, respectively. Right:
example with 4 users and 3 items.

In experiments, we treat § as a hyperparameter and
find its optimal value by cross-validation. Next, for
each edge (i,j) € £ we add a potential f(u;,v;) =
Cat(v; | u;). This favors configurations where item j
has a class for which user 4 has high affinity. Intuitively,
this suggests that users choose items by first sampling
from their class proportion vectors and then selecting
an item within that class (we will consider a precise
such generative model in Section. The resulting joint
probability distribution is given by

plu,v) o [ Dir(u | o) - [] Catte; | 8))
: H Cat(v, | ul)}

(1,7)€€

(1)

We illustrate the model in Figure [I| with a concrete ex-
ample, using the factor graph notation (Bishop), 12006)).

3.2 Inference Algorithm

Ideally, given , we would like to obtain the marginal
distribution p(v). We would then be able to estimate
the corrected item classes as arg max, p(v). Unfortu-
nately, computing this marginal distribution exactly is
intractable. Instead, we start by approximating p(u,v)
using a mean-field variational distribution,

atu,v) = [ Pir(us | &) - T Catley | ),

where & = (@1,...,ay) and 8 = (81,...,0N) are
variational parameters. Given such a distribution g,
we can then easily compute the maximum-likelihood
estimate of class of item j as ©; = argmax,, ;1. To
find a distribution g that is a good approximation of
p, we use the coordinate-ascent variational inference
(CAVI) algorithm, also known as variational message-
passing (Winn and Bishop), 2005; Blei et al., 2017)).
Starting from an arbitrary distribution ¢, the algo-
rithm iteratively refines it by minimizing the divergence
KL(g||p), provably converging to a local minimum.

Algorithm 1 CAVI

repeat
fori=1,...,M do
oy <_ai+2jeM B;
for j=1,...,N do

1:

2 > Update users.
3

4

5: for k=1,...,K do

6

7

8:

> Update items.

2y < log Bji + Zie]\/j (@)
B; « softmax(z)

until has converged

Algorithm 2 wvRN
1: fori=1,...,M do
for k=1,...,K do
Tik ZjEM 1{0; =k}
:forj=1,...,N do
for k=1,...,K do
2k < Yien; (win — 1{0; = k})

Uj ¢ argmaxy 2g

Applying CAVTI to our probabilistic model results in
Algorithm[T] For conciseness, we defer its full derivation
to Appendix[A]in the supplementary file, but we briefly
discuss the algorithm’s simple structure. CAVI repeat-
edly updates user and item marginals (parametrized by
& and (3 and initialized to a and 3, respectively) using
closed-form expressions. Line [3] updates the distribu-
tion over a user’s class proportions by considering soft
class assignments of the items the user interacted with.
Similarly, line [f] updates the distribution over an item’s
class by allocating larger probability mass to high-
affinity classes of users that interacted with the item
(note that the digamma function, ¥ (z) = I (z)/T'(z),
is monotonically increasing).

Running Time. One iteration of the algorithm en-
tails passing messages of size O(K) over the edges twice,
and thus runs in time O(K|£|). The loops over users
and items (lines 2| and [4]) are trivially parallelizable,
leading to a further speed-up. By way of example, on
a standard laptop, a reference implementatiorﬂ in the
Python programming language takes approximately
two minutes per iteration on a dataset with 120 M
edges.

3.3 Alternative Heuristic

We develop Algorithm [1] using a principled approxima-
tion to a precise probabilistic model, but we observe

2The implementation is available at: https://github|
com/spotify-research/collabclass,
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that, at a high-level, it follows an intuitive idea. For a
given item j, the algorithm tends to assign high weight
to class k if other items that co-occur with j (i.e., other
items that users interacting with j interact with) are
of class k.

This suggests the following simpler heuristic. For
all j,¢ € [N], let wj, denote the number of users
that interact with both items j and /. Predict the
class of j using the majority class of all items
weighted by the number of co-occurrences with 7, i.e.,
v; = argmaxy » . wjel{d¢ = k}. This recovers the
weighted-vote relational neighbor (wvRN) algorithm, a
collective-classification procedure that has been demon-
strated to work well on a wide range of problems (Mac;
skassy and Provost, [2007}; Stankova et al.| |2015)).

Algorithm [2] presents a computationally-efficient imple-
mentation tailored to our use-case, with running time
O(K|€]). Note that wvRN does not take an item’s
own label into account when predicting that items’
class (this can be observed by expanding line [3[ into
line @ As such, we expect CAVI to outperform wvRN
at least in settings where some items are very sparsely
connected—we verify this experimentally in Section
Nevertheless, wvRN remains an important baseline.

4 THEORETICAL RESULTS

In this section, we consider an idealized generative
model of online platforms and characterize the sample
complexity of the two inference algorithms presented
in Section [3] CAVI and wvRN. We defer the full proofs
of our results to Appendix [B]in the supplementary file.

We extend into a full generative model of online
platforms as follows. Each item j € [N] draws a class
v; € [K] uniformly at random. Each user i € [M]
first draws a vector of class proportions u; from a
symmetric Dirichlet with concentration parameter a.
Then, they draw S class labels from a multinomial
with probabilities u; € A, resulting in a count vector
n;, € NX. Finally, for each k, they draw n; items
uniformly at random among items of class k, resulting
in a set ; C [N] of items they interact with. In other
words,

o) ~ Unif (K]
. )%
n; ~ Mult(S, u;), N ~ LkJUnlf {( k)} )

Tk

u; ~ Dir(a),

independently for all ¢ € [M] and j € [N], where
Vi = {j € [N] : v; = k}. Lastly, we assume that
the observed class labels are corrupted independently
and identically with probability é € [0,1]. That is,
for a given j, the observed label 9; is equal to v; with
probability 1— 0 and takes a value uniformly at random

in [K]\ {v;} with probability . We call the resulting
model the sparse & biased interaction model (SBM),
and we denote a random dataset sampled from this
generative model by D ~ SBM, where the parameters
M,N,K,S, a and § are omitted for conciseness. This
model is clearly simplistic (e.g., it is unlikely that all
users interact with the same number of items S), but it
captures essential properties of the problem. We discuss
and relax the assumptions in Appendix [C]

First, we derive a consequence of our assumption that
users interact with classes in different proportions.
Lemma (1| formalizes the fact that this assumption
leads to a notion of assortativity: two items connected
through a user in the graph are more likely to be of
the same class. This key property captures the essence
of why learning from user interactions is effective.

Lemma 1 (Assortativity). Let D ~ SBM, and for any
i, let j,£ € Ni. Then, for any k' # k,

ploe =k |vj = k) = (1+1/a) - p(oe =k | v; = k).

Proof. By construction, the probability that user i
interacts with a first item of class k and a second item
of class k' is u;pusp . Letting k' # k and marginalizing
over u; ~ Dir(a), we have

p(ve =k,vj =k) = /u?kDir(ui | o)du;
=(a+1)/(K?a+K),
plve =k ,v;=k) = /uikuik/Dir(ui | a)du;

=a/(K*a+ K). O

Next, we derive upper bounds on the sample complexity
for perfect recovery. We consider a setting where the
number of items N grows and the number of users M
is a function of N, and we assume that the remaining
parameters stay fixed. We say that an event A(N)
holds with high probability (w.h.p.) if P[A(N)] — 1 as
N — co. We first study wvRN. Theorem [I] states that
O(N log N) users are sufficient to recover the true label
of all items.

Theorem 1. Let D ~ SBM, and let v be the out-
put of Algorithm on D. If § < % and M >
max{16,40%(1 — %6)_1}~N10g]\f, then for
all j € [N], v; = v; w.h.p.

Sketch of proof. Consider line [6] of Algorithm [2] Fixing
J, letting k = v; and y;0 = z0 — 1{0; = ¢} for all
¢ € [K], we have that v; = k iff 37, (yik — Yirr) > 0
for all ¥ # k. By Lemma [I] and by properties of our
noise model, we can bound E[y;; — x| by a positive
function of S, K, a and . Additionally, we can show
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that if M = O(NlogN) then |N;| = O(log N) w.h.p.
The random variables {y;} are not independent, but we
can control their dependencies, and we use a Chernoff
bound for sums of dependent variables due to |Janson
(2004) to show that Zie/\fj (yir. — Yirr) > 0 w.h.p. The
claim then follows by a union bound on j. O

The analysis of CAVI is more difficult due to the non-
linearities on line[6] Nevertheless, we are able to derive a
similar upper-bound on the number of users needed for
perfect recovery. We formalize this in the next theorem.

Theorem 2. Let D ~ SBM, and let 3 be the out-
put of Algorithm (1| on D after one iteration. There
exist Cq,Cs,C3,Cy independent of N such that if
M > CiNlogN, a < Cy, 6 < C3, S > (4, then
for all j € [N], argmax,{Bjx} = v; w.h.p.

Theorems [I| and [2| show that O(Nlog N) users are
sufficient to recover the true classes of all items. But
how many users are necessary? Our next theorem shows
that this upper bound is order-optimal: If there are less
than Q(N log V) users, then w.h.p. a growing number of
items are disconnected in the interaction graph. There
is no way to correct the noisy labels of disconnected
nodes, and therefore the §-fraction of these nodes that
are corrupted by noise remain corrupted in the output.
As such, this lower bound applies to any algorithm
estimating v based on v, and not only to CAVI and
wvRN.

Theorem 3. Let D ~ SBM. If M < ﬁNlogN,
then w.h.p. there exists a set of items B C [N] such

that |B| > loglog N and N; = @ for all j € B.

Sketch of proof. We begin by viewing the bipartite in-
teraction graph as a hypergraph over the N items,
where the M edges are sets of size S corresponding
to users’ interactions. We then adapt a result due
to [Poole| (2015]) that extends the connectivity theory
of Erd6s-Rényi random graphs to hypergraphs. [Poole]s
result states that, if M < (1 —)S™!Nlog N edges
are sampled uniformly at random, then w.h.p. at least
[loglog N'| nodes have degree 0, for any £ > 0. In our
setting, however, edges of the hypergraph are not sam-
pled uniformly at random, and our bound reflects the
necessary adaptations. O

To summarize, under our generative model, both Al-
gorithm [T] and Algorithm [2] are able to correct all the
erroneous class labels, essentially as soon as the inter-
action graph is connected.

In light of these results, a reasonable question to ask
is: How often is M > N in practice? For most online
platforms this typically holds in the following practical
sense. Even when, strictly speaking, the number of

items N exceeds the number of users M, there is al-
most always a much smaller number of items N’ < M
that cover most of the user-item interactions. Thus,
the regime M = O(N log N) is realistic if we restrict
ourselves to “reasonably popular” items. Independently
of these considerations, we will demonstrate in the next
section that, empirically, our method works well even
when M < N.

5 EXPERIMENTAL EVALUATION

Next, we study our approach empirically using syn-
thetic and real-world datasets. By using synthetic
datasets, we illustrate the theoretical results of Sec-
tion 4 and study our model’s robustness in a controlled
setting. By using real-world datasets, we evaluate its
performance on realistic interaction networks and on a
broad set of practical classification problems.

5.1 Synthetic Datasets

Taken together, the results of Section [4 suggest a phase
transition in the performance of our algorithms under
SBM. Perfect recovery is highly probable or highly
improbable if the number of users is above C'N log N or
below C’N log N, respectively, for some constants C, C".
To illustrate this, we set N = 1000,S =5, K =5,a =
0.5, and draw 200 realizations of G, u,v and v from
SBM for different values of M and 4. For each sample,
we run CAVI and wvRN on the noisy labels © and
record whether the output v matches the ground-truth
labels v perfectly. Figure [2| (left) shows the fraction
of realizations for which we recover the true classes
perfectly as a function of M, for three different values
of 5. We observe a sharp transition from “never recover’
to “always recover”, as suggested by the theory. We
also note that, as expected, the critical threshold for
M increases with §.

)

In Section [d] we assume that, within a class, users
choose items to interact with uniformly at random.
In practice, some items are likely more popular than
others. To investigate the effect of a popularity bias
on the empirical performance of our algorithms, we
modify SBM as follows. For each item j € [N], we draw
a popularity score from a Pareto Type II distribution
with shape parameter 2 (Onnela et al., |2007). Condi-
tioned on a particular class, each user then chooses
items to interact with probability proportional to the
items’ popularity score (as opposed to uniformly at
random). As a result, the degree distribution of the
item nodes is highly skewed: A handful of items are
connected to a large number of users, while most
items are only connected to zero, one or a few users.
We draw 50 random realizations of this model, using
N = 1000,5 = 5,K = 5, = 0.5 and 6 = 0.1, for
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Figure 2: Experiments on synthetic data, fixing N = 1000, S5 =5, K = 5, = 0.5. Solid lines are used for CAVI,
dotted lines for wvRN. Left: empirical probability of perfect recovery as a function of M under SBM, for different
6. Right: error rate as function of minimum node degree under the Popularity model, for § = 0.1 and different M.

three different values of M. For each realization, we
run CAVI and wvRN and record, for each item, whether
the prediction matches the actual class. We also record
the degree of the node corresponding to each item.

In Figure [2] (right) we plot the error rate (i.e., the frac-
tion of mistakes) as a function of the items’ minimum
degree, averaged over the realizations In this popularity
model, it is unlikely that we can recover the class of
all items perfectly, as it is likely that some items are
not connected to any users. However, if we disregard
low-degree items, both algorithms are still successfully
able to correct a large fraction of the mistakes—with a
clear advantage to CAVI over wvRN.

5.2 Real-World Datasets

We begin by considering dataﬂ from three platforms:
a) Stack Overflow, an online Q&A platform for pro-
grammers, b) Yelp, a crowd-sourced business review
service, and ¢) Amazon, an e-commerce platform. In
each case, users interact with items, be it questions,
businesses or products. We seek to classify, respectively,
questions by programming language, businesses by lo-
cation, and products by category. Table [I] provides
summary statistics for the datasets, and we provide
additional details in Appendix [D} Note that all three
datasets are sparse and present heavy popularity bi-
ases. In the Amazon dataset, for example, over 40%
of the items are connected to a single user, and over
half of the users are connected to a single item. Thus,
in addition to average performance, we also report the
performance of items in the 50" and 90" percentiles
of the node-degree distribution, denoted Pso and Py,
respectively. Finally, all three datasets provide class

3The  datasets are publicly available  at
https://archive.org/details/stackexchange,
http://jmcauley.ucsd.edu/data/amazon/,
https://www.yelp.com/dataset, respectively.

and

labels. We treat these labels as ground truth and ar-
tificially generate noisy versions, by corrupting every
item’s label independently with probability 4.

In addition to CAVI and wvRN, we also evaluate a base-
line method inspired from [Brodley and Friedl| (1999)
and denoted by MF+LR. Given a dataset, we proceed
as follows. We learn a feature representation x; € RP
for each item j by using BPR, a matrix factoriza-
tion model that predicts user-item interactions (Rendle
et al.,[2009). Given these learned features and the noisy
labels ©, we can train a classifier that predicts an item’s
class from its features. We partition the dataset into
L = 10 folds. For each fold ¢, we train a multinomial
logistic regression classifier on the remaining L —1 folds,
and use that classifier to predict on £. We compare the
predicted label to the label provided in the dataset: if
they disagree and the classifier’s confidence is above a
threshold, we change the label to the one predicted by
the classifier. We choose empirically optimal values the
confidence threshold (and other hyperparameters) for
each dataset.

In Table[2] we report the error rate, that is, the fraction
of labels that differ from the ground-truth, for § = 0.1.
Unsurprisingly, wvRN does not perform well on these
difficult datasets, where most items are connected to
only a few users. On the other hand, both CAVI and
MF+LR systematically reduce the error rate below its
baseline value of 0.1, with CAVT significantly outper-
forming MF-+LR. These results highlight that CAVI
remains effective even on network structures that devi-
ate substantially from those studied in Section [d On
the Stack Overflow dataset, for example, CAVI reduces
the error rate by 2.2x (3.3x when considering items in
the 90" percentile, i.e., connected to 6 users or more).
In Figure we show how CAVI performs with in-
creasing levels of noise. We observe that the method
remains effective in the high-noise regime as well. As
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Table 1: Summary statistics of the datasets considered in Section P50 and Py correspond to the 50" and
90*" percentiles of the items’ degree distribution, respectively.

Dataset Class type K M N €]  Pso Pyo
Stack Overflow Programming language 10 644 443 704982 2554436 3 6
Yelp Location 10 1962440 207974 7990277 10 81
Amazon Product category 5 14216570 4849549 43065188 2 15
Podcasts Language 43 43731473 114889 121086529 81 1099

Table 2: Empirical error rate on three datasets, setting
the noise level to § = 0.1. The best performance is
highlighted in bold.

Dataset Method All P5O Pgo
Stack Overflow MF+LR  0.067 0.058 0.048
wvRN 0.185 0.157  0.149
CAVI 0.046 0.037 0.030
Yelp MF+LR  0.006 0.002 0.001
wvRN 0.026 0.012 0.005
CAVI 0.005 0.001 0.001
Amazon MF+LR  0.087  0.078 0.061
wvRN 0.282 0.228 0.162
CAVI 0.074 0.062 0.039

long as the labels carry even a little bit of information,
the network structure can correct a significant fraction
of the errors. On the Yelp dataset, for example, CAVI’s
error rate is 3.15% even when 80% of the labels are
corrupted.

To conclude our analysis of these datasets, we now
revisit the labels we have used so far as ground truth.
The quality of these labels is unknown, and it is possible
that they also include errors. We thus ask the question:
Can we use CAVI to find and correct mistakes in these
so-called “ground-truth” labels? To this end, we run
the algorithm without adding any artificial noise to the
labels, and we manually examine the items that are
most confidently estimated as mislabeled. Qualitatively,
we find that a significant fraction of these appear to be
indeed mislabeled. On the Yelp dataset, for example,
we look at the top 20 most confident predictions that do
not match the provided label. By manually searching
for information about each business online, we find
that the provided labels of all of these businesses are
incorrect, and that CAVI’s prediction is correct. At the
time of writing, these businesses’ listings on Yelp.com
appear to be fixed.

Podcast Language Identification. Finally, we
study a realistic use-case where high-quality ground-
truth labels are available. We consider a dataset from
Spotify, an audio streaming service providing access to
music and podcasts. We seek to classify the language
of each podcast. The dataset contains podcasts in 43

different languages, ranging from ar (Arabic) to zh
(Chinese). Further statistics on the dataset are given
in Table [I} Podcast producers provide metadata that
include language, but that information is not always
reliable. Thus, in addition to the metadata, we obtain
high-quality ground-truth language labels for 10000
podcasts through manual annotation by domain ex-
perts. These labels enable us to assess a) the quality
of the metadata provided by producers, and b) the
accuracy of any predictive model in a consistent and
unbiased way. We initialize CAVI and wvRN using the
metadata language, and we compare their output to the
ground-truth class labels. In Figure we report the
error rate of each method. For confidentiality reasons,
we normalize each error rate by that of the metadata.
In this application, CAVI achieves a 4.8x reduction
in error rate over the metadata provided by podcast
producers.

6 CONCLUSION

In this work, we present a probabilistic model for cor-
recting mislabeled items on online platforms by tak-
ing advantage of user-item interactions. The model
builds on the assumption that users interact with
classes in different proportions, and it lends itself to
a computationally-efficient approximate Bayesian in-
ference algorithm. We first analyze our model theo-
retically and characterize its sample complexity under
a natural generative model. We have then evaluated
its performance empirically and found that it outper-
forms alternative approaches on multiple real-world
applications with difficult network structures.

We have focused on a simple classification setting, but
we envision multiple extensions in future work. One
such extension would be to tailor our approach to class-
conditional noise models, a setting where label noise
is not uniformly random (Natarajan et al., 2013]). For
example, in the podcasts dataset, we informally ob-
serve that languages seem more likely to be mislabeled
to another language of the same language group (e.g.,
Sundanese to Malay). Another extension consists of fur-
ther exploiting the probabilistic nature of our approach.
Indeed, our model can take advantage of flexible user
and item-dependent priors through the parameters «
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at which the mutual information between observed and actual labels is zero.

Figure 3: Empirical performance on real-world datasets.

and (3. Similarly, CAVI’s output is a probability dis-
tribution, and preliminary results show that this can
lead to useful confidence scores. For example, uncertain
predictions could be flagged for expert review.
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