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7 MISSING PROOFS

Proof. (Proposition 1) We will define a set of n labelers with error rates ε, a distribution D over the domain
X , and a binary classification y of X that achieve an error rate for f∗ equal to 2εn/(n + 1). Number the
labelers from 0 to n − 1. The domain X can be partitioned in n + 1 subsets A and B0, . . . , Bn−1 so that
Px∼D(A) = 1− 2nε/(n+ 1) and Px∼D(Bi) = 2ε/(n+ 1) for i = 0, . . . , n− 1. For each x ∈ D, labeler j outputs
1 if and only if x ∈ Bi, for i ∈ {j mod n, j + 1 mod n, . . . , j + (n − 1)/2 mod n}. The labelers output 0 for
each x ∈ A. For each x ∈ A, we have that y(x) = 0 hence all labelers are correct, and the function f∗ clearly
agrees with the output of the labelers. For each x ∈ B0 ∪ . . . ∪Bn−1, we have that y(x) = 0. By the definitions
of the subsets B0, . . . , Bn−1, we can observe that for each subset Bi there are exactly (n + 1)/2 labelers that
output 1 and (n − 1)/2 labelers that output 0. Hence, for all these subsets, the function f∗ returns 1. This
implies that for each region Bi, the labelers that output 1 are wrong. Since each labeler outputs 1 in (n+1)/2 of
these subsets, each labeler is wrong in a subset of the domain that has probability 2ε

n+1 ·
n+1
2 = ε. Also, for each

x ∈ B0∪ . . .∪Bn−1, the function f∗ fails to provide the correct answer, therefore f∗ is incorrect with probability
2εn/(n+ 1). This concludes the proof.

Proof. (Proposition 2) Suppose (w.l.g.) that ε1 ≤ . . . ≤ εn. For i = 1, . . . , n, let Wi be the subset of the
domain where the i-th labeler is wrong, i.e. Wi = {x ∈ X : `i(x) 6= y(x)}. We choose the labelers in a way such
that W1 ⊆ W2 ⊆ . . . ⊆ Wn. For any i = 1, . . . , n, the labelers from i to n are wrong in Wi, hence n − i + 1
labelers are wrong in Wi. Hence, the majority vote is wrong for any x ∈W(n+1)/2, and the statement follows as
Px∼D(x ∈W(n+1)/2) = ε(n+1)/2

Proof. (Proposition 3). We will prove the statement by showing that the left side of the equality is both greater

or equal and less or equal than the right side. It is straightforward to see that maxS∈S(~ε) minf∈F ε(f ◦ ~̀S) ≤
min{ε1, . . . , εn}, as we can just copy the output of the most accurate labeler.

We now show the other inequality. Consider a set of function S = {`1, . . . , `n}, and without loss of generality
assume that the labelers are in non-decreasing order based on their error rates. For i = 1, . . . , n, let Wi =
{x ∈ X : `i(x) 6= y(x)} be the subset of the domain where the labeler i is wrong. We choose S so that the
following holds W1 ⊆ . . . ⊆ Wn. Moreover, let y(x) = 1 if and only if x /∈ W1. Let ~1n be a vector of n bits

all set to 1. We have that Px∼D(y(x) = 1 ∧ ~̀S(x) = ~1n) = Px∼D(x ∈ (X −Wn)) = 1 − εn ≥ 1/2, and that

Px∼D(y(x) = 0 ∧ ~̀S(x) = ~1n) = Px∼D(x ∈ W1) = ε1. Hence, any function in F that maps the vector ~1n to 0
has error at least 1 − εn, and any function that maps the same vector to 1 has error at least ε1. Therefore, we
have shown that there exists a scenario where any function in F has error at least min{ε1, 1 − εn} = ε1. This
concludes the proof.
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Proof. (Proposition 5) For convenience, renumber the labelers to 1, 2 and 3. Observe that the linear program
(5) has 7 equality constraints and 8 variables. If we fix the value of the variable p000 = x, these constraints
impose a unique solution for the other variables. In particular, we have that:

p111 = 1− x− D1,2 + D1,3 + D2,3

2
p011 = (D1,2 + D1,3 − ε2 − ε3)/2 + x

p101 = (D1,2 + D2,3 − ε1 − ε3)/2 + x

p110 = (D1,3 + D2,3 − ε1 − ε2)/2 + x

p100 = (ε2 + ε3 −D2,3)/2− x
p010 = (ε1 + ε3 −D1,3)/2− x
p001 = (ε1 + ε2 −D1,2)/2− x

With this assignment, the objective function of (5) is equal to
∑
i 6=j(εi + εj − Di,j)/2 − 2x. Therefore, the

objective function is maximized by picking the least x that yields a feasible solution. The assignment above is
feasible if and only if each variable is ≥ 0. By setting these constraints, we obtain the following lower-bounds
for x:

p000 ≥ 0 ⇐⇒ x ≥ 0

p100 ≥ 0 ⇐⇒ x ≥ (ε2 + ε3 −D2,3)/2

p010 ≥ 0 ⇐⇒ x ≥ (ε1 + ε3 −D1,3)/2

p001 ≥ 0 ⇐⇒ x ≥ (ε1 + ε2 −D1,2)/2

These lower-bounds on x can be equivalently stated as x ≥ q. By setting x = q, we conclude the proof.

8 ALGORITHM OF SECTION 4.3

Here, we report the pseudocode of the algorithm presented in Section 4.3. The pseudocode uses the method of
Section 4.1 to compute the worst-case error of set of labelers. Alternatively, the method of Section 4.2 can also
be used.

Algorithm 1 GreedySelection(~ε,D)

1: best-eps ← 0
2: best-I ← ∅
3: for i = 1, . . . , n do
4: I ← {i}
5: curr-eps ← εi
6: while minP⊆[n]/I:|P |=2 maxS∈S(~ε,D) ε(λI∪P ◦ ~̀S) < curr-eps do

7: P ← argminP⊆[n]/I:|P |=2 maxS∈S(~ε,D) ε(λI∪P ◦ ~̀S)
8: I ← P ∪ I
9: curr-eps ← maxS∈S(~ε,D) ε(λI ◦ ~̀S)

10: end while
11: if curr-eps < best-eps then
12: best-eps ← curr-eps
13: best-I ← I
14: end if
15: end for
16: return (best-I,best-eps)
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9 ADDITIONAL FIGURES

We provide the additional figures for other groups of AwA2 tasks as we vary the amount of labeled data used to
make estimates of the labeler accuracies.
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Figure 2: Additional figurs for the comparison of our algorithms and other baselines when varying the amount of
labeled data. The upper left graph is averaged over the AwA2 tasks are the second group of tasks when sorted
by committee potential, and the upper right graph contains the third group of tasks. The bottom graph is the
fourth group of AwA2 tasks. Accuracies are reported as in the main text, computed across 3 different splits of
labeled and unlabeled data, and the error bars represent the standard error. The rightmost point is the values
from Table 1 and is averaged over 5 seeds.


