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7 Appendix

For documented code demonstrating our SDP mechanisms used to generate the plots of Figure 2 please visit
our repo: https://github.com/casey-meehan/location_trace_privacy

The following sections will include proofs of results, derivations of algorithms, and explanations of experimental
procedures.

7.1 Illustrations

7.1.1 NYC Mayoral Staff Member Location Trace

(a) (b) (c)

Figure 3: Example of sensitive location trace of NYC mayoral staff member exposed by (Valentino-DeVryes, 2018). (b)
and (c) depict the posterior uncertainty (green) PA,P(Xi|Z) for each 2d location. (a) depicts three sensitive times (red
with blue outline): Gracie Mansion (Mayor’s home), an event on Staten Island that the mayor attended, and finally the
staff member’s home on long island. (b) provides an example of Approach C: adding independent Gaussian noise to each
location (red dotted line). A GP posterior still maintains high confidence within a small radius along the trace, including
at the sensitive times. (c) provides an example of the optimized noise of Multiple Secrets of identical aggregate MSE as
(b). By focusing correlated noise around the three sensitive times, there is high uncertainty at sensitive times and high
confidence elsewhere.

7.1.2 Juxtaposition of Mechanisms’ Covariance Matrices

The following figures aim to illustrate the difference between the covariance matrices used in the experimental
baselines (indep./uniform and indep./concentrated) and those chosen by our SDP algorithms for both the RBF
and periodic prior. Note that here we presume the different dimensions of location to be independent and — by
Corollary 7.2.1 — are able to treat a 2d location trace as two 1d traces. As such, the following examples are
demonstrating mechanism covariance matrices and additive noise samples used for either a single dimension of
location data (for RBF kernel) or for the one dimension of temperature data (for periodic kernel).

The first figure (a) shows the covariance of the Approach C baselines used in the experiments. The second figure
(b) shows the covariance of our SDP mechanisms for the RBF kernel used on location data. The third figure (c)
shows the covariance of our SDP mechanisms for the periodic kernel used for temperature data.

In each figure the covariance matrix is depicted as a heat map with warmer colors indicating higher values
(normalized to largest and smallest value in the covariance matrix). The drawn noise samples G are plotted
against their time index. So, the sequence of plotted (x, y) values is

[
(1, G1), (2, G2), . . . , (n,Gn)

]
, where n = 50

https://github.com/casey-meehan/location_trace_privacy
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for the RBF case and n = 48 for the periodic case.

(a) Covariance matrices and mechanism samples for the baselines used in experiments.

The first figure demonstrates the uniform approach that distributes the independent Gaussian noise budget along the
entire trace, regardless of IS .

The second and third show the concentrated approach that allocates the entire noise budget to only the sensitive locations
in IS : first for a basic secret (one location) and then for a compound secret of 3 evenly spaced locations.
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(b) Covariance matrices and mechanism samples for the median RBF prior (leff ≈ 6).

The first noise mechanism (Mech. basic) demonstrates the covariance matrix chosen by SDPA for a basic secret of a single
location Xi in the middle of the trace. The uncorrelated dot in the middle of the covariance matrix, Σ

(g)
ii , represents

the independent noise Gi added at the sensitive location to mitigate direct loss. To mitigate inferential loss, the SDP
optimizes the remainder of the matrix to be positively correlated with maximum variance allocated to locations near Xi in
time. This thwarts GP inference of the true location at time ti.

The second mechanism (Mech. comp.) depicts the covariance chosen by SDPA to protect a compound secret of two
adjacent locations in the trace (visible as the uncorrelated ‘+’ through the middle consuming 2 rows/columns). Recall
that a compound secret ought to protect directional information: did the user visit B first and then A, or A and then B?
That is precisely what this mechanism does by randomizing the angle of approach to the two locations in the middle with
positively and negatively correlated noise. Also note that the SDP does not allocate a large share of noise budget to the
actual locations themselves. This highlights the fact that protecting a compound secret does not protect its constituent
basic secrets.

The third and final mechanism (Mech. all basic) is the noise covariance chosen by SDPB in the Multiple Secrets algorithm.
To protect all basic secrets with a utility constraint, the SDP converges to a mechanism that looks similar to the uniform
baseline. However, this mechanism adds a subtle degree of off-diagonal correlation along with greater noise power towards
the beginning and end of the trace. The off-diagonal correlation is noticeable when the samples are compared to those of
the uniform baseline in the previous figure. While this change appears to be minor, it makes a significant change in the
posterior confidence of a GP adversary (as seen in Figure 2c).
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(c) Covariance matrices and mechanism samples for the median periodic prior (leff ≈ 1.1), and a period of half the trace
length.

The first noise mechanism (Mech. Basic) shows the covariance chosen by SDPA to protect a single location (temperature)
in the middle of the trace. As in the RBF case, significant noise power is allocated to the sensitive location itself, Xi, to
limit direct privacy loss. However, the noise added to the remainder of the trace is significantly different. It is tailored to
thwart inference by a periodic prior, wherein the location one period away has correlation 1.

The second noise mechanism (Mech. comp.) shows the covariance chosen by SDPA to protect a compound secret of two
locations, Xi, Xj , 16 timesteps apart (not quite a full period). Here, we see the SDP randomize the phase of the additive
noise such that periodic inference cannot tell directional information like Xi > Xj or vice versa.

The third noise mechanism (Mech. all basic) is identical to the all basic secrets mechanism chosen for the RBF case above,
except using a periodic prior Σ. The mechanism chosen looks similar to the uniform baseline, except with slightly periodic
off-diagonal correlation imitating the prior covariance. Additionally, noise power is mitigated towards the middle and
ends of the trace. Again, Figure 2g indicates that this subtle change makes a significant difference in thwarting Bayesian
adversaries.
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7.2 Proof of results

7.2.1 Proof of Theorem 3.3

Theorem 3.3 Prior-Posterior Gap: An (ε, λ)-CIP mechanism with conditional prior class Θ guarantees that for
any event O on sanitized trace Z ∣∣∣∣ log

PP,A(si|Z ∈ O)

PP,A(sj |Z ∈ O)
− log

PP(si)

PP(sj)

∣∣∣∣ ≤ ε′
for any P ∈ Θ with probability ≥ 1− δ over draws of Z|XIS = si or Z|XIS = sj, where ε′ and δ are related by

ε′ = ε+
log 1/δ

λ− 1
.

This holds under the condition that Z|XIS = si and Z|XIS = sj have identical support.

Proof. This result makes use of a Rényi divergence property identified in Mironov (2017):

Lemma 7.1. Let P,Q be two distributions on X of identical support such that

max

{
Dλ

(
PP(X)

PQ(X)

)
, Dλ

(
PQ(X)

PP(X)

)}
≤ ε

Then for any event O,

PP(X ∈ O) ≤ max
{
eε
′
PQ(X ∈ S), δ

}
and

PQ(X ∈ O) ≤ max
{
eε
′
PP(X ∈ S), δ

}
where

ε′ = ε+
log 1/δ

λ− 1

CIP guarantees that for all P ∈ Θ and all discriminative pairs (si, sj) ∈ Spairs (which also includes (sj , si))

Dλ

(
PP,A(Z|XIS = si)

PP,A(Z|XIS = sj)

)
≤ ε

and thus by Lemma 7.1 we have for any event O on Z

PP,A(Z ∈ O|XIS = si) ≤ max
{
eε
′
PP,A(Z ∈ O|XIS = sj), δ

}
and

PP,A(Z ∈ O|XIS = sj) ≤ max
{
eε
′
PP,A(Z ∈ O|XIS = si), δ

}
As such, given that XIS = si the probability of some event {Z ∈W} such that

PP,A(Z ∈W |XIS = si) ≥ eε
′
PP,A(Z ∈W |XIS = sj)

is no more than δ. The same is true swapping sj for si. So, over draws of Z|XIS = si or Z|XIS = sj we have that

PP,A(Z ∈ O|XIS = si)

PP,A(Z ∈ O|XIS = sj)
≤ eε

′
and

PP,A(Z ∈ O|XIS = sj)

PP,A(Z ∈ O|XIS = si)
≤ eε

′

with probability ≥ 1− δ, which is equivalent to the statement that

−ε′ ≤ log
PP,A(Z ∈ O|XIS = si)

PP,A(Z ∈ O|XIS = sj)
≤ ε′∣∣∣∣ log

PP,A(si|Z ∈ O)

PP,A(sj |Z ∈ O)
− log

PP(si)

PP(sj)

∣∣∣∣ ≤ ε′
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7.2.2 Proof of Lemma 3.2

Lemma 3.2 (CIP loss for additive mechanisms) For an additive noise mechanism, a fully dependent trace as in
Figure 1b, and any prior P on X the CIP loss may be expressed as

Dλ

(
PA,P(Z|XIS = si)

PA,P(Z|XIS = sj)

)
=
∑
i∈IS

[
Dλ

(
PA(Zi|Xi = si)

PA(Zi|Xi = sj)

)]
+Dλ

(
PA,P(ZIU |XIS = si)

PA,P(ZIU |XIS = sj)

)

Proof.

Dλ

(
PA,P(Z|XIS = xs)

PA,P(Z|XIS = x′s)

)
= Dλ

(
PA(ZIS |XIS = xs)PA,P(ZIU |XIS = xs)

PA(ZIS |XIS = x′s)PA,P(ZIU |XIS = x′s)

)
(1)

= Dλ

(
PA(ZIS |XIS = xs)

PA(ZIS |XIS = x′s)

)
+Dλ

(
PA,P(ZIU |XIS = xs)

PA,P(ZIU |XIS = x′s)

)
(2)

= Dλ

(∏
i∈IS PA(Zi|Xi = xi)∏
i∈IS PA(Zi|Xi = x′i)

)
+Dλ

(
PA,P(ZIU |XIS = xs)

PA,P(ZIU |XIS = x′s)

)
(3)

=
∑
i∈IS

[
Dλ

(
PA(Zi|Xi = xi)

PA(Zi|Xi = x′i)

)]
+Dλ

(
PA,P(ZIU |XIS = xs)

PA,P(ZIU |XIS = x′s)

)
(4)

Where line (1) uses the conditional independence seen in the graphical model of Figure 1. Line (2) is due to
the fact that the two terms in line (1) are conditionally independent, allowing for separating into the sum of
two separate divergences (which is an easily verifiable property of Rényi divergence evident from its definition in
Equation 1). Line (3) is again from the conditional independence between the Zi for each i ∈ IS when conditioned
on XIS . Line (4) uses the same property of Rényi divergence used in Line (2): the terms in the product are
conditionally independent allowing for the separation into the sum of multiple divergences.

7.2.3 Proof of Theorem 3.3

Thoerem 3.3 Robustness to Prior Misspecification Mechanism A satisfies ε(λ)-CIP for prior class Θ. Suppose
the finite mean true distribution Q is not in Θ. The CIP loss of A against prior Q is bounded by

Dλ

(
PA,Q(Z|XIS = si)

PA,Q(Z|XIS = sj)

)
≤ ε′(λ)

where

ε′(λ) =
λ− 1

2

λ− 1
∆(2λ) + ∆(4λ− 3) +

2λ− 3
2

2λ− 2
ε(4λ− 2)

and where ∆(λ) is

inf
P∈Θ

sup
si∈S

max

{
Dλ

(
PP(XIU |XIS = si)

PQ(XIU |XIS = si)

)
, Dλ

(
PQ(XIU |XIS = si)

PP(XIU |XIS = si)

)}

Proof. By ‘finite mean’ distribution Q, we mean that all conditionals of Q given some XIS have finite mean.
Since a conditional prior class contains conditionals of one distribution with any offset (any mean value), this
guarantees that ∆(λ) is achieved for some P ∈ Θ. Intuitively, this prevents the pathological case of infP∈Θ being
a limit as the mean of P → ∞, only asymptotically approaching ∆(λ). If the mean of Q is finite, then the closest
P ∈ Θ (in Rényi divergence) must also have finite mean, since any mean is attainable in a conditional prior class
Θ.

With this in mind, we make use of the following triangle inequality provided in Mironov (2017):
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Lemma 7.2. For distributions P, Q, R on X with common support we have

Dλ

(
PP(X)

PQ(X)

)
≤
λ− 1

2

λ− 1
D2λ

(
PP(X)

PR(X)

)
+D2λ−1

(
PR(X)

PQ(X)

)

In our case, we assume that the mechanism A gives Z|XIS = xs identical support for all IS , xs. Using this, we
have

Dλ

(
PA,Q(ZIU |XIS = xs)

PA,Q(ZIU |XIS = x′s)

)
≤
λ− 1

2

λ− 1
D2λ

(
PA,Q(ZIU |XIS = xs)

PA,P(ZIU |XIS = xs)

)
+D2λ−1

(
PA,P(ZIU |XIS = xs)

PA,Q(ZIU |XIS = x′s)

)
.

By a data processing inequality, the divergence of the first term is bounded by ∆(2λ) and the blue term may be
bounded by a second application of the triangle inequality:

D2λ−1

(
PA,P(ZIU |XIS = xs)

PA,Q(ZIU |XIS = x′s)

)
≤

2λ− 3
2

2λ− 2
D4λ−2

(
PA,P(ZIU |XIS = xs)

PA,P(ZIU |XIS = x′s)

)
+D4λ−3

(
PA,P(ZIU |XIS = x′s)

PA,Q(ZIU |XIS = x′s)

)
The first divergence is bounded by ε(4λ− 2) and the second divergence is bounded by ∆(4λ− 3). Putting all this
together we have the following upper bound

Dλ

(
PA,Q(ZIU |XIS = xs)

PA,Q(ZIU |XIS = x′s)

)
≤
λ− 1

2

λ− 1
∆(2λ) + ∆(4λ− 3) +

2λ− 3
2

2λ− 2
ε(4λ− 2)

7.2.4 Proof of Theorem 3.4

Theorem 3.4 CIP loss bound for GP conditional priors: Let Θ be a GP conditional prior class. Let Σ be the
covariance matrix for X produced by its kernel function. Let S be the basic or compound secret associated with IS,
and S be the number of unique times in IS. The mechanism A(X) = X +G = Z, where G ∼ N (0,Σ(g)), then
satisfies (ε, λ)-Conditional Inferential Privacy (Spairs, r,Θ), where

ε ≤ λ

2
Sr2

( 1

σ2
s

+ α∗
)

where σ2
s is the variance of each Gi ∈ GIS (diagonal entries of Σ

(g)
ss ) and α∗ is the maximum eigenvalue of

Σeff =
(
ΣusΣ

−1
ss

)ᵀ(
Σu|s + Σ

(g)
uu

)−1(
ΣusΣ

−1
ss

)
.

Proof. Again, the conditional prior class Θ is defined by a kernel function i, j → Cov(i, j), which – given the
indices of the trace X – induces a covariance matrix Σ between all Xi, Xj . In practice, when the sampling rate of
locations is non-uniform the kernel function may use the time-stamps of the points in the trace to assign high
correlation to Xi that are close in time and low correlation to Xi that are far apart in time. Of course, correlation
between Xi that are different dimension (e.g. latitude and longitude) must be designed for the given application
and may be completely independent. The kernel function can encode this as well.

Recall from Equation 1 that the Rényi divergence between two mean-shifted multivariate normal distributions,
P1 = N (µ1,Σ) and P2 = N (µ2,Σ) is

Dλ

(
P1

P2

)
=
λ

2
(µ1 − µ2)ᵀΣ−1(µ1 − µ2)

Now, for any prior P ∈ Θ, we have that X ∼ N (µ,Σ) for some µ and for Σ defined by the kernel function. Again,
G ∼ N (0,Σ(g)). IS encodes the indices of a single location basic secret or a multi-location compound secret.
Then, the divergence to bound for (ε, λ)-CIP(Spairs, r,Θ) is

Dλ

(
PA,P(Z|XIS = si)

PA,P(Z|XIS = sj)

)
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for any

(si, sj) ∈ Spairs = {(xs, x′s) : ‖xs − x′s‖2 ≤ 2r}

if IS encodes a basic secret, or for any

(si, sj) ∈ Spairs =
{(
{xs1, xs2, . . . }, {x′s1, x′s2, . . . }

)
: ‖xsk − x′sk‖2 ≤ 2r, ∀ k

}
if IS encodes a compound secret. A discriminative pair (si, sj) is two real valued vectors ∈ R|IS |, representing
two hypotheses about the true values of XIS . We denote the mth element as sim, sjm. Let f : IS → [|IS |] be a
mapping from each index w ∈ IS to its corresponding position in the vector si or sj (where the value of Xw is
hypothesized). By Lemma 3.2, the divergence can be written as

Dλ

(
PA,P(Z|XIS = si)

PA,P(Z|XIS = sj)

)
=
∑
w∈IS

[
Dλ

(
PA(Zw|Xw = sif(w))

PA(Zw|Xw = sjf(w))

)]
+Dλ

(
PA,P(ZIU |XIS = xs)

PA,P(ZIU |XIS = x′s)

)
where PA(Zw|Xw = x) = N (x, σ2

s) for all w ∈ IS . Recall from the statement of the Theorem that we assume the
diagonal entries of Σss all equal some value σ2

s : we add the same noise variance to each point in the secret set, which
is optimal under MSE constraints. Additionally, note that for the hypothesis XIS = xs, we know the distribution
of XIU |XIS = xs ∼ N (µu|s,Σu|s), where µu|s = µu + ΣusΣ

−1
ss (xs − µs) and Σu|s = Σuu − ΣusΣ

−1
ss Σsu. Notice

that only µu|s depends on the actual value of xs, and Σu|s depends only on the indices of IS . Being the sum of

two normally distributed variables, we have that (ZIU |XIS = xs)
d
= (XIU |XIS = xs) +GIU = N (µu|s,Σu|s + Σ

(g)
uu ).

Substituting this into the divergences above sum of divergences:

Dλ

(
PA,P(Z|XIS = si)

PA,P(Z|XIS = sj)

)
=

|IS |∑
m=1

[
Dλ

(
N (sim, σ

2
s)

N (sjm, σ
2
s)

)]
+Dλ

(N (µu|si ,Σu|s + Σ
(g)
uu )

N (µu|sj ,Σu|s + Σ
(g)
uu )

)
(1)

=
λ

2

|IS |∑
m=1

1

σ2
s

(sim − sjm)2 +
λ

2
(µu|si − µu|sj )

ᵀ(Σu|s + Σ(g)
uu )−1(µu|si − µu|sj ) (2)

=
λ

2σ2
s

(si − sj)ᵀ(si − sj) +
λ

2

(
ΣusΣ

−1
ss (si − sj)

)ᵀ
(Σu|s + Σ(g)

uu )−1
(
ΣusΣ

−1
ss (si − sj)

)
(3)

=
λ

2σ2
s

(si − sj)ᵀ(si − sj) +
λ

2
(si − sj)ᵀΣ−1

ss Σsu(Σu|s + Σ(g)
uu )−1ΣusΣ

−1
ss (si − sj) (4)

Line (1) substitutes in the normal distributions given by our mechanism and conditional prior class. Line (2)
substitutes in the closed-form expression for Rényi divergence between two mean-shifted normal distributions
given in Equation 1. Line (3) substitutes in the expression for µu|s given above, and simplifies. To expand out
this simplification in explicit steps:

(µu|si − µu|sj ) =
(
µu + ΣusΣ

−1
ss (si − µs)− [µu + ΣusΣ

−1
ss (sj − µs)]

)
=
(
ΣusΣ

−1
ss si − ΣusΣ

−1
ss sj

)
= ΣusΣ

−1
ss (si − sj)

Line (4) distributes the transpose in the right term of line (3):(
ΣusΣ

−1
ss (si − sj)

)ᵀ
= (si − sj)ᵀ

(
ΣusΣ

−1
ss

)ᵀ
= (si − sj)ᵀ

(
Σ−1
ss

)ᵀ
Σᵀ
us

= (si − sj)ᵀΣ−1
ss Σsu

where that final step is a consequence of Σ being symmetric. Σss is also a symmetric matrix (so its inverse is
symmetric) and Σᵀ

us = Σsu.

Returning to line (4) above, simplify this expression by substituting ∆ = si − sj :

Dλ

(
PA,P(Z|XIS = si)

PA,P(Z|XIS = sj)

)
=

λ

2σ2
s

∆ᵀ∆ +
λ

2
∆ᵀΣ−1

ss Σsu(Σu|s + Σ(g)
uu )−1ΣusΣ

−1
ss ∆ (5)

=
λ

2σ2
s

‖∆‖22 +
λ

2
∆ᵀΣeff∆ (6)
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Where Σeff = Σ−1
ss Σsu(Σu|s + Σ

(g)
uu )−1ΣusΣ

−1
ss . The left term of line (6) attributes the direct loss of ZIS on XIS

and the right term attributes the indirect loss of ZIU on XIS .

We are interested in bounding the expression of line (6) for all (si, sj) ∈ Spairs. We do this by bounding it for all
vectors ∆ ∈ D

D = {si − sj : ‖si − sj‖2 ≤
√
S r}

, where S is the number of basic secrets (locations) contained in IS which may be a basic or compound secret
set. For a basic secret (S = 1), this bound is tight, since D = {si − sj : (si, sj) ∈ Spairs}. The set of ∆ ∈ D is
exactly any two hypothesis (si, sj) that are within any circle of radius r. For a compound secret, this bound is
not guaranteed to be tight. Recall once again that the set of Spairs for a compound secret is given by the set of
(si, sj) in

Spairs =
{(
{xs1, xs2, . . . }, {x′s1, x′s2, . . . }

)
: ‖xsk − x′sk‖2 ≤ r, ∀ k

}
For concreteness, consider the 2d location trace example in Figure 3, where we have a compound secret of S = 3
locations. Here, si, sj ∈ R6, where 6 comes from the fact that we have three 2d locations. So, (si, sj) represents a
pair of hypotheses on all three locations. si’s hypothesis of the first secret location — written as xs1 ∈ R2 above
— is within r of the sj ’s hypothesis of the first secret location — written as xs′1 ∈ R2 above. The same goes for
the second and third locations. So, the L2 norm of ∆ = si − sj is no greater than

sup
(si,sj)∈Spairs

‖si − sj‖2 = sup
(si,sj)∈Spairs

√√√√ 6∑
m=1

(sim − sjm)2

= sup
(si,sj)∈Spairs

√√√√ 3∑
k=1

‖xsk − xs′k‖22

=

√√√√ 3∑
k=1

r2

=
√

3 r

For compound secrets, D represents the L2 ball enclosing all ∆ ∈ {si − sj : (si, sj) ∈ Spairs}. However, D also
includes some values of ∆ = si − sj not covered by Spairs. Suppose an adversary considers the hypotheses

si = {xs1, xs2, xs3}, sj = {x′s1, x′s2, x′s3}

where xs1 = 0, xs
′
1 =
√

3 r, xs2 = xs
′
2, xs3 = xs

′
3. Since xs1, xs

′
1 are not within r of each other, this is not in

Spairs. However, it is covered by D, and thus is covered by our bound on CIP loss and our mechanisms.

With D defined, we may return to bounding the expression in line (6):

Dλ

(
PA,P(Z|XIS = si)

PA,P(Z|XIS = sj)

)
≤ sup

∆∈D

(
λ

2σ2
s

‖∆‖22 +
λ

2
∆ᵀΣeff∆

)
(7)

≤ λ

2

(
1

σ2
s

Sr2 + Sr2maxeig(Σeff)

)
(8)

=
λ

2
Sr2

( 1

σ2
s

+ α∗
)

(9)

where line (8) distributes the supremum. For the right term, this is given by the maximum magnitude of
all ∆ ∈ D times the maximum eigenvalueof Σeff which equals Sr2maxeig(Σeff). Line (9) simply substitutes
α∗ = maxeig(Σeff).
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7.2.5 Proof of Corollary 3.4.1

Corollary 3.4.1 Graceful Composition in Time Suppose a user releases two traces X and X̂ with additive noise
G ∼ N (0,Σ(g)) and Ĝ ∼ N (0, Σ̂(g)), respectively. Then basic or compound secret XIS of X enjoys (ε̄, λ)-CIP,
where

ε̄ ≤ λ

2
Sr2

( 1

σ2
s

+ ᾱ∗
)

and where ᾱ is the maximum eigenvalue of Σ̄eff =
(
ΣusΣ

−1
ss

)ᵀ(
Σu|s + Σ̄

(g)
uu

)−1(
ΣusΣ

−1
ss

)
. Σ is the covariance

matrix of the joint distribution on X, X̂ and

Σ̄(g) =

[
Σ(g) 0

0 Σ̂(g) .

]

Proof. Here, we record two traces (presumably) far apart in time

(X1, . . . , Xn) and (X̂1, . . . , X̂m)

And release

(Z1, . . . , Zn) = (X1,+G1, . . . , Xn +Gn) and (Ẑ1, . . . , Ẑm) = (X̂1,+Ĝ1, . . . , X̂m,+Ĝm)

the first trace protects secret locations XIS and the second protects X̂IS , so we have that

Dλ

(
PA,P(Z|XIS = si)

PA,P(Z|XIS = sj)

)
≤ ε

Dλ

(
PA,P(Ẑ|X̂IS = ŝi)

PA,P(Ẑ|X̂IS = ŝj)

)
≤ ε̂

We aim to update the losses:

Dλ

(
PA,P(Z, Ẑ|XIS = si)

PA,P(Z, Ẑ|XIS = sj)

)
≤ ε′

Dλ

(
PA,P(Ẑ, Z|X̂IS = ŝi)

PA,P(Ẑ, Z|X̂IS = ŝj)

)
≤ ε̂′

Fortunately, our framework is pretty friendly to figuring this out, and can be done simply by updating the
‘inferential loss term’ α∗ and α̂∗ of each, the max eigenvalues used to compute each of ε and ε̂, respectively. Let’s
focus on ε′, since the same analysis follows for ε̂′.

Recall that α∗ is given by the max eigenvalue of Σeff which is

Σeff =
(
ΣusΣ

−1
ss

)ᵀ(
Σu|s + Σ(g)

uu

)−1(
ΣusΣ

−1
ss

)
Where Σ is the covariance matrix of X1, . . . , Xn and Σ(g) is the noise covariance matrix added. Simply augment
Σ to become the joint covariance matrix ΣJ of X, X̂, and augment Σ(g) to become

Σ
(g)
J =

[
Σ(g) 0

0 Σ̂(g)

]
then update Σeff to Σeff,J which uses both ΣJ and Σ

(g)
J . Using the corresponding max eigenvalue α∗J in the loss

expression of Theorem 3.2 gives us ε′.

Note that for kernels like RBF, ε′ → ε as the traces X and X̂ move apart further and further in time. This is
not the case for traces using a purely periodic kernel with not time decay, and we should expect much worse
composition.
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7.2.6 Traces with Independent Dimensions

In many cases, the different dimensions of the trace may be probabilistically independent, and it may be more
convenient to make separate privacy mechanisms for each. For a 2d trace X, suppose Ix and Iy store the indices
of the latitude points XIx and longitude points XIy , such that X = XIx ∪ XIy . If latitude and longitude are
independent, it may be more convenient to characterize the conditional priors of XIx abd XIy separately. The
question is whether privacy guarantees remain for the full trace X. To answer this, we provide the following
corollary:
Corollary 7.2.1. CIP loss of independent dimensions Let Θ be a GP conditional prior class on a 2d trace
X such that the dimensions are independent. Let IS be some secret set of time indices corresponding to some
basic or compound secret. For the trace X = XIx ∪ XIy , the Gaussian mechanism A(X) = ZIx ∪ ZIy where
ZIx = Ax(XIx) = XIx +GIx and ZIy = Ay(XIy ) = XIy +GIy satisfies (ε, λ)-CIP where

ε ≤ λ

2
Sr2

( 1

σ2
s

+ α∗x + α∗y
)

when Ax and Ay provide λ
2Sr

2
(

1
σ2
s

+ α∗x) and λ
2Sr

2
(

1
σ2
s

+ α∗y) to IS ∩ Ix and IS ∩ Iy, respectively.

The gist of this corollary is that a mechanism can be designed to achieve the bound of Theorem 3.4 to each
dimension independently and released with still-meaningful privacy guarantees. The reason is that this still
includes all secret pairs Spairs

Proof. By independence, XIx and XIy can be treated as two unconnected traces of the type seen in Figure 1.
As such the privacy guarantee of Theorem 3.4 can be upheld for each. The question is whether bounding CIP
loss to the one-dimensional basic or compound secret associated with secret sets IS ∩ Ix and IS ∩ Iy still provides
guarantees for the full secret set IS .

Without loss of generality, we will demonstrate for a basic and a compound secret. Consider the basic secret
set IS = {X10, X11}, where IS ∩ Ix = {X10} (latitude) and IS ∩ Iy = {X11} (longitude). We again assume that
independent gaussian noise of variance σ2

s is added to all XIS , since this is optimal under utility constraints. We
have now bounded the Rényi divergence when conditioning on pairs of hypotheses on latitude and longitude
separately.

Spairsx = Spairsy = {(xs, x′s) : xs ∈ R, ‖xs − x′s‖2 ≤ r}

By independence, this also bounds the Rényi divergence conditioning on pairs of hypotheses on latitude and
longitude jointly:

Spairsxy = {(xs, x′s) : xs ∈ R2, ‖xs − x′s‖2 ≤ r}

In effect, we have guaranteed privacy for any pair of hypotheses (si, sj) in the square circumscribing the circle of
radius r that we with to provide. The analysis on the direct privacy loss is exactly the same as it was in the more
general case. Since the Rényi divergences of XIU ∩XIx and of XIU ∩XIy add, the α∗’s add.

The same goes for a compound secret. Consider three location compound secret pairs given by

Spairsxy =
{(
{xs1, xs2, . . . }, {x′s1, x′s2, . . . }

)
: xsi ∈ R2, ‖xsk − x′sk‖2 ≤ r, ∀ k

}
Instead, we bound privacy loss for

Spairsx = Spairsy =
{(
{xs1, xs2, . . . }, {x′s1, x′s2, . . . }

)
: xsi ∈ R, ‖xsk − x′sk‖2 ≤ r, ∀ k

}
Separately, giving us α∗x and α∗y. This again includes any two hypotheses on the three locations such that each
pair of xsk, x′sk is within a square circumscribing a circle of radius r. We achieve this by bounding privacy loss
for all ∆x in a 3d L2 ball of radius

√
S r, as with ∆y.

This corollary can be extended to all traces of all dimensions that are probabilistically independent.

We make use of the above proof in the Experiments section.
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7.3 Derivation of Algorithms

In this section, we derive the three SDP-based algorithms of Section 4 and their properties.

7.3.1 Derivation of SDPA

SDPA minimizes the privacy loss bound of Theorem 3.4 for any compound or basic secret encoded by secret set
IS . As is clarified in its proof (Appendix 7.2.4), the bound is tight when IS encodes a basic secret. If IS encodes
a compound secret, the tightness depends on the conditional prior class Θ.

Our variable for minimizing this bound is the noise covariance matrix Σ(g). Due to the conditional independence
exhibited by Lemma 3.2, GIS and GIU may be independent. The additive noise Gi ∈ GIS are all independent
Gaussian with variance σ2

s . This is because — conditioning on {XIS = xs} — ZIS is independent of XIU and ZIU .
So, GIS ∼ N (0, σ2

sI), and Σ
(g)
ss = σ2

sI. The additive noise Gi ∈ GIU are all dependent as described by Σ
(g)
uu , and

GIU ∼ N (0,Σ
(g)
uu ). Consequently, Σ(g) is completely characterized by Σ

(g)
uu and σ2

s .

To see how the bound of Theorem 3.4 can be redrafted as an SDP, first notice that its two terms may be written as
the maximum eigenvalue of a matrix product. Here, Σeff = AᵀBA, where A = ΣusΣ

−1
ss and B =

(
Σu|s + Σ

(g)
uu

)−1

1

σ2
s

+ α∗ = maxeig
( 1

σ2
s

I +AᵀBA
)

= maxeig
([

I A
] [ 1

σ2
s
I 0

0 B

] [
I
A

])
= maxeig

(
ÃᵀB̃Ã

)
This expression uses all parameters of Σ(g): σ2

s parametrizes Σ
(g)
ss and Σ

(g)
uu = B−1 − Σu|s, where Σu|s is given by

the kernel function of Θ.

Before casting this as an SDP, we provide a formal definition from Vandenberghe & Boyd (1996):

Definition 7.1. Semidefinite Program The problem of minimizing a linear function of a variable x ∈ Rn subject
to a matrix inequality:

min
x∈Rn

cᵀx

s.t. F0 +

n∑
i=1

xiFi � 0

Ax = b

where the Fi ∈ Rn×n are all symmetric and A ∈ Rp×n is a semidefinite program, or SDP.

The task of minimizing maxeig
(
ÃᵀB̃Ã

)
under MSE constraints can almost be formulated as an SDP:

min
B�0,1/σ2s≥0

β∗

s.t. β∗I � ÃᵀB̃Ã

B � Σ−1
u|s

tr(Σ(g)
uu ) + |IS |σ2

s ≤ not

Here, the first constraint guarantees that the maximum eigenvalue of ÃᵀB̃Ã is bounded by β∗, which the objective
minimizes. At program completion, we set Σ

(g)
uu = B−1 −Σu|s, and the second constraints ensures that this is still

PSD. The final constraint bounds the MSE of the mechanism Σ(g). Note that tr(Σ
(g)
uu ) + |IS |σ2

s = tr(Σ(g)). The
trouble lies the last constraint. Our program variable is B, but the final linear constraint requires Σ(g), which is
expressed using the inverse of B. This is not immediately available in the SDP framework.

To make the final linear constraint available, we invert the above program using the observation that the maximum
eigenvalue of ÃᵀB̃Ã is the inverse of the minimum eigenvalue of (ÃᵀB̃Ã)−1. Instead of optimizing over B and
1/σ2

s, we optimize over B−1 and σ2
s . Since B−1 = Σu|s + Σ

(g)
uu , we may now have a utility constraint directly on the

trace of Σ(g). To make B−1 our program variable, we approximate (ÃᵀB̃Ã)−1 with Ã−1B̃−1Ã−ᵀ. First note that
Ã ∈ Rn×|IS |, and has full column rank for the covariances we work with. So, Ã−1 = (ÃᵀÃ)−1Ãᵀ ∈ R(|IS |×n) is the
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left inverse of Ã and is the least squares solution to Ã−1Ã = ÃᵀÃ−ᵀ = I (we denote its transpose as Ã−ᵀ). It is
also the least squares solution to ÃÃ−1 = Ã−ᵀÃᵀ = I. Thus, we have an approximation of the inverse (ÃᵀB̃Ã)−1:

(ÃᵀB̃Ã) (Ã−1B̃−1Ã−ᵀ) ≈ ÃᵀB̃B̃−1Ã−ᵀ

= ÃᵀÃ−ᵀ

≈ I

We now can optimize in terms of B−1 with the augmented matrix B̃−1:

B̃−1 =

[
σ2
sI 0
0 B−1

]
We then optimize the following SDP:

max
B−1�0,σ2

s≥0
β∗

s.t. β∗I � Ã−1B̃−1Ã−ᵀ

B−1 � Σu|s

tr(B̃)− tr(Σu|s) ≤ not

Upon program completion we recover σ2
s and Σ

(g)
uu = B−1−Σu|s which we know is PSD due to the second constraint.

The first constraint guarantees that the minimum eigenvalue of the approximated inverse is ≥ β∗, which the
objective maximizes. If the minimum eigenvalue of the approximate inverse is close to that of the true inverse, then
we successfully minimize the maximum eigenvalue of ÃᵀB̃Ã, and thus minimize the direct and indirect privacy loss.
The third constraint limits the MSE of Σ(g) since tr(B̃)− tr(Σu|s) = (tr(Σ

(g)
uu ) + |IS |σ2

s + tr(Σu|s))− tr(Σu|s) =

tr(Σ(g)). By inverting ÃᵀB̃Ã, this constraint is available in the SDP framework.

By expressing the above program in terms of the variable Σ(g) instead of indirectly via B−1 and σ2
s , we get SDPA:

SDPA : arg max
Σ(g)�0

β∗

s.t. Ã−1B̃−1Ã−ᵀ � β∗I
tr(Σ(g)) ≤ not

It is straightforward to write this SDP in the form seem in Definition 7.1. The program variables x would be the
diagonal and upper or lower triangular part of Σ(g) along with β∗. With some linear algebra, the first constraint
can be written in the form of F0 +

∑n
i=1 xiFi � 0, and the second constraint can be written as Ax = b. With the

use of contemporary convex programming tools like CVXOPT (Vandenberghe, 2010) rewriting into this form is
unnecessary.

7.3.2 Derivation of SDPB

SDPB takes a set of covariance matrices F = {Σ1, . . . ,Σk}, each of which is designed to protect some secret set
ISi, and returns a covariance matrix Σ(g) that preserves the privacy loss bound of each Σi to each ISi. It does so
while minimizing the utility loss of Σ(g). This algorithm is also expressed as an SDP. It is based on the following
corollary, which we have omitted from the main text:
Corollary 7.2.2. More PSD, More Private: For a basic or compound secret denoted by indices IS, the CIP loss
bound of Equation 5 provided by a Gaussian noise mechanism with covariance Σ(g) is lower than it would be for
any Σ(g)′ ≺ Σ(g).

Proof. First note that if Σ(g) � Σ(g)′, then the same is true for its sub-matrices:

Σ(g)
ss � Σ(g)

ss

′
Σ(g)
uu � Σ(g)

uu

′
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Recall the privacy loss bound of Equation 5:

ε ≤ λ

2
Sr2

( 1

σ2
s

+ α∗
)

Also recall that Σ
(g)
ss = σ2

sI and Σ
(g)
ss

′
= σ2

s
′
I. Since Σ

(g)
ss � Σ

(g)
ss

′
, we already know that σ2

s > σ2
s
′, and thus the

first term of Equation 5 is lower for Σ(g).

It remains to show that the second term is also lower, α∗ < α∗′. Starting with what we’re given,

Σ(g)
uu � Σ(g)

uu

′

Σ(g)
uu + Σu|s � Σ(g)

uu

′
+ Σu|s

(Σ(g)
uu + Σu|s)

−1 ≺ (Σ(g)
uu

′
+ Σu|s)

−1

B ≺ B′

AᵀBA ≺ AᵀB′A

max eig(AᵀBA) < max eig(AᵀB′A)

α∗ < α∗′

Therefore 1
σ2
s

+ α∗ < 1
σ2
s
′ + α∗′, and the CIP bound of Equation 5 is lower for Σ(g) than it is for Σ(g)′.

With Corollary 7.2.2 in mind, SDPB is natural:

SDPB : arg min
Σ(g)

tr(Σ(g))

s.t. Σ(g) � Σ
(g)
i , ∀Σ(g)

i ∈ F

SDPB attempts to minimize, but does not constrain, the utility loss of the chosen Σ(g). To provide an upper
bound on the resulting utility loss, we provided the following claim in the main text:

Claim Utility loss of SDPB: The utility loss of Σ(g) = SDPB(F) is no greater than
∑

Σi∈F tr(Σi).

Proof. The covariance Σ(g)′ =
∑

Σ
(g)
i ∈F

Σ
(g)
i with MSE

∑
Σ

(g)
i ∈F

tr(Σ
(g)
i ) is in the feasible set of SDPB problem

since Σ(g)′ � Σ
(g)
i , ∀Σ(g)

i ∈ F . Unless Σ(g)′ has the lowest MSE of all Σ(g) in the feasible set, a covariance matrix
with better utility will be chosen.

7.3.3 Derivation of Algorithm 1, Multiple Secrets

Multiple Secrets combines SDPA and SDPB to minimize the privacy loss to each basic secret within a trace.
The basic mechanism is useful in cases when inferences at each time within the trace — each basic secret — is
sensitive.

Let ISi be the secret set representing basic secret i, of which there are N (e.g. if location is sampled at N times).
Then ISb = {IS1, . . . , ISN} contains the indices corresponding to each. Multiple Secrets works by first producing
N covariance matrices, Σ

(g)
i = SDPA(ISi,Σ, ot) on each basic secret. It then uses SDPB(F = {Σ(g)

1 , . . . ,Σ
(g)
N }) to

produce a single covariance matrix Σ(g) that preserves the privacy loss to each basic secret (note that, being basic
secrets, the privacy loss bound that SIG OPT optimizes is tight).

By virtue of using SDPB, the MSE of the resultant Σ(g) is minimized but not constrained. To bound the MSE of
the Basic Mechanism by O, we may simply bound the MSE of each Σ

(g)
i by ot = O/N. Then, by the above Claim,

the MSE of the solution cannot be greater than O. In practice, this bound may be too loose. We hope to tighten
it in future work.
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7.4 Experimental details

We use a 2d location trace and a 1d home temperature dataset. For the location data, having observed that
the correlation between latitude and longitude is low (≈ 0.06) we treat each dimension as independent. By way
of Corollary 7.2.1, this allows us to bound privacy loss and design mechanisms for each dimension separately.
Furthermore, having observed that each dimension fits the nearly the same conditional prior, we treat our dataset
of 10k 2-dimensional traces as a dataset of 20k 1-dimensional traces, where each trace represents one dimension
of a 2d location trajectory.

The one-dimensional traces of temperature and location are indexed by timestamps, for which we would use the
following kernel functions:

kRBF(ti, tj) = σ2
x exp

(
− (ti − tj)2

2l2

)
kPER(ti, tj) = σ2

x exp
(−2 sin2(π|ti − tj |/p)

l2

)
(6)

to determine the covariance between two points sampled at times ti and tj . The parameters including variance
σ2
x and length scale l. The lengthscale determines the window of time in which two sampled points are highly

correlated.

Preprocessing of location data We first limit the dataset to traces of under 50 locations that are between
4.5 and 5.5 minutes in duration. Caring only about the conditional dependence between locations, we then
de-mean each trace and normalize its variance to one. Normalizing the variance of traces implicitly sets σ2

x = 1 in
the above RBF kernel, in essence assuming that the adversary has a decent prior for the user’s average speed in a
given trace, and could do the same operation.

Fitting of location data We then find the maximum likelihood RBF kernel for each distinct trace. Having
fixed the variance σ2

x, this amounts to fitting only the length scale for each dimension, lx and ly, individually.
The length scale represents the average window of time during which neighboring locations are highly correlated
(i.e. correlation > 0.8). Relatively smooth traces will have large length scales and chaotic traces will have low
length scales. However, the fact that sampling rates vary significantly between traces means that traces with
equal length scales can have very different degrees of correlation. To encapsulate both of these effects, we study
the empirical distribution of effective length scale of each trace

leff,x =
lx
P

leff,y =
ly
P

where P is the trace’s sampling period and lx, ly are the its optimal length scales. leff,x, leff,y tell us the average
number of neighboring locations that are highly correlated, instead of time period. For instance, a given trace with
an optimal leff,x = 8 tells us that every eight neighboring location samples in the x dimension have correlation
> 0.8. The empirical distribution of effective length scales across all traces describes – over a range of logging
devices (sampling rates), users, and movement patterns – how many neighboring points are highly correlated
in location trace data. After this preprocessing, we are able to use the kernels that take indices (not time) as
arguments.

kRBF(i, j) = exp
(
− (i− j)2

2l2eff

)
kPER(i, j) = exp

(−2 sin2(π|i− j|/p)
l2eff

)
In each plot we then observed a spectrum of conditional priors by sweeping the effective length scale and plotting
posterior uncertainty for various noise mechanisms of equal utility loss. This ranges from a prior assuming nearly
independent location samples (chaotic trace) on the left up to highly dependent location samples (traveling in a
straight line or standing still) on the right. To understand how realistic these conditional prior parameters are,
we displayed the middle 50% of the empirical distribution of leff (x and y together) from the GeoLife dataset.
Note that the distribution of leffx and leffy are nearly identical.

To compute posterior uncertainty, we consider a 50-point one-dimensional location trace. The basic secret is
a single index in the middle of the trace, and the compound secret consists of two neighboring indices also in
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the middle of trace. For each value of leff, we compute the R50×50 conditional prior covariance matrix Σ using
the RBF kernel above. We then compare the posterior uncertainty when Σ(g) is an Approach C baseline, or
an optimized covariance matrix using one of the three algorithms. We re-optimize Σ(g) for each leff, since each
leff represents a different conditional prior class. The MSE is fixed in all figures except the two exhibiting “All
Basic Secrets”, where SDPB is used. Recall that this algorithm minimizes utility loss while maintaining a series
of privacy guarantees. Here, the MSE is identical across mechanisms for each leff, but changes from one leff to
another.

For the temperature data, our preprocessing steps were nearly identical, except we use the periodic kernel instead
of the RBF kernel, and we did not need to remove any traces from the dataset, as the data was much cleaner.

Computation of Posterior Uncertainty Interval Each of the plots in Figure 2 shows the 2σ uncertainty
interval on XIS of a Gaussian process Bayesian adversary with prior covariance Σ and any mean function

The posterior covariance is computed using standard formulas for linear Gaussian systems. Knowing that
Z = X +G, we may write the joint precision matrix Λ (inverse of covariance matrix) of (X,Z) as

Λ(X,Z) =

[
Σ−1 + Σ(g)−1 −Σ(g)−1

−Σ(g)−1
Σ(g)−1

]

It is then a well known result that the conditional covariance matrix is given by

Σx|z = Λ−1
xx

=
(
Σ−1 + Σ(g)−1)−1

This provides the posterior covariance of all locations X given any released trace Z that uses a Gaussian mechanism
with covariance Σ(g). Note that the CIP guarantee naturally keeps posterior uncertainty large since the posterior
density at any two xs close together must be similar. For these Gaussian posteriors, 2σ tells us the adversary’s
68% confidence interval on XIS after obvserving Z.

For basic secrets (one location), we simply report twice the posterior standard deviation at the sensitive index i,
given by

2
√

Σx|z,ii .

For compound secrets involving multiple locations the posterior distribution is a length |IS | multivariate normal
with covariance Σx|z,ss. Intuitively, we wish to find the direction of the vector XIS in which the posterior interval
is the shortest. This is the worst case posterior interval on the compound secret. We do this by reporting

2
√

mineig Σx|z,ss .

7.5 Discussion of GP Conditional Prior Class

Recall that a conditional prior class requires for any PPi , PPj ∈ Θ that

PPi(XIU |XIS = xs) = PPj (XIU + cuijIS |XIS = xs + csijIS )

for all xs. Notice that the mapping (xs, x
′
s) + csijIS is a bijection from Spairs onto itself. As such, each pair of

conditional distributions, (
PPj (XIU |XIS = xs), PPj (XIU |XIS = x′s)

)
induced by (xs, x

′
s) ∈ Spairs is a mean-shifted version of the pair of distributions(

PPi(XIU |XIS = xs − csijIS ), PPi(XIU |XIS = x′s − csijIS )
)
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induced by (xs, x
′
s)− csijIS ∈ Spairs. Since the Rényi divergence between two distributions and two mean-shifted

versions thereof is unchanged, we may use one additive noise mechanism for all priors in class Θ.

To see how this applies to the GP prior class, recall the formula for a conditional multivariate Gaussian distribution:

P (XIU |XIS = xs) = N (µu|s,Σu|s)

where,

µu|s = µu + ΣusΣ
−1
ss (xs − µs)

Σu|s = Σuu − ΣusΣ
−1
ss Σsu

A GP prior class includes all GP distributions with a fixed kernel k(ti, tj) and any mean function µ(t). For a
fixed set of time points, this corresponds to a fixed covariance matrix Σ and any mean parameters µµµ:

X ∼ N (µµµ,Σ)

Let PPi = N (µ̄µµ,Σ) and PPj = N (µ̂µµ,Σ), then conditioned on some sensitive points XIS the distribution on XIU
has the same covariance Σu|s and conditional means

µ̄u|s = µ̄u + ΣusΣ
−1
ss (xs − µ̄s)

= (µ̄u − ΣusΣ
−1
ss µ̄s) + ΣusΣ

−1
ss xs

µ̂u|s = µ̂u + ΣusΣ
−1
ss (xs − µ̂s)

= (µ̂u − ΣusΣ
−1
ss µ̂s) + ΣusΣ

−1
ss xs

which implies that the conditional distributions are identical up to a mean shift for the same xs value.

PPi(XIU |XIS = xs) = PPj (XIU + cuijIS |XIS = xs)

for all xs. Here, cuijIS = (µ̄u − ΣusΣ
−1
ss µ̄s)− (µ̂u − ΣusΣ

−1
ss µ̂s), and csijIS = 0.

To see how this allows a single additive mechanism to work for all mean functions, notice that we also have

PPi(XIU |XIS = x′s) = PPj (XIU + cuijIS |XIS = x′s)

for x′s, so the divergences

Dλ

(
PPi(XIU |XIS = xs)

PPi(XIU |XIS = x′s)

)
= Dλ

(
PPj (XIU + cuijIS |XIS = xs)

PPj (XIU + cuijIS |XIS = x′s)

)
= Dλ

(
PPj (XIU |XIS = xs)

PPj (XIU |XIS = x′s)

)
are equal. The same goes for the noisy trace XIU + ZIU |XIS = xs, when Z is drawn independently of X, allowing
us to bound privacy loss for all P ∈ Θ.


	Appendix
	Illustrations
	NYC Mayoral Staff Member Location Trace
	Juxtaposition of Mechanisms' Covariance Matrices

	Proof of results
	Proof of Theorem 3.3
	Proof of Lemma 3.2
	Proof of Theorem 3.3
	Proof of Theorem 3.4
	Proof of Corollary 3.4.1
	Traces with Independent Dimensions

	Derivation of Algorithms
	Derivation of SDPA
	Derivation of SDPB 
	Derivation of Algorithm 1, Multiple Secrets

	Experimental details
	Discussion of GP Conditional Prior Class


