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Abstract

Providing meaningful privacy to users of loca-
tion based services is particularly challenging
when multiple locations are revealed in a short
period of time. This is primarily due to the
tremendous degree of dependence that can
be anticipated between points. We propose
a Rényi divergence based privacy framework
for bounding expected privacy loss for con-
ditionally dependent data. Additionally, we
demonstrate an algorithm for achieving this
privacy under Gaussian process conditional
priors. This framework both exemplifies why
conditionally dependent data is so challenging
to protect and offers a strategy for preserving
privacy to within a fixed radius for sensitive
locations in a user’s trace.

1 Introduction

Location data is acutely sensitive information, detail-
ing where we live, work, eat, shop, worship, and often
when, too. Yet increasingly, location data is being up-
loaded for smartphone services such as ride hailing and
weather forecasting and then being brokered in a thriv-
ing user location aftermarket to advertisers and even
investors (Valentino-DeVryes) [2018]). Users share loca-
tion ‘traces’ when they release a sequence of locations,
often across a short period of time. These traces are
then used by central servers to monitor traffic trends,
track individual fitness, target marketing, and even to
study the effectiveness of social-distancing ordinances
(Fowler}, 2020). Here, we aim to provide a local privacy
guarantee, wherein traces are sanitized at the user level
before being transmitted to a centralized service. Note
that this requires different guarantees and mechanisms
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than in aggregate applications making queries on large
location trace databases.

Specifically, we guarantee a radius r of privacy at any
sensitive time point or combination of time points
within a given trace. This is challenging due to the
fact that the locations within traces are highly inter-
dependent. Informally, traces tend to follow relatively
smooth trajectories in time. If not sanitized carefully,
that knowledge alone may be exploited to infer actual
locations from the released version of the trace. This
work centers on designing meaningful privacy defini-
tions and corresponding mechanisms that takes this
dependence into account.

Broadly speaking, the vast majority of prior work on
rigorous data privacy can be divided into two classes
that differ by the kind of guarantee offered: differential
and inferential privacy. Differential privacy (DP) guar-
antees that the participation of a single person in a
dataset does not change the probability of any outcome
by much. In contrast, inferential privacy guarantees
that an adversary who has a certain degree of prior
knowledge cannot make certain sensitive inferences.

DP for releasing aggregate statistics of a spatio-
temporal dataset has been well studied (Fan et all
2013; |Cao et al., |2017; Yang et al., [2015; [dep). There,
the idea is to add enough noise to released statistics
such that the effect of any user’s participation is ob-
scured, even if their locations are highly correlated to
each other or to those of other users. Here, such a
guarantee does not apply since we aim to release a
sanitized version of a single user’s trace.

In this local case we cannot rule out the possibility
that the data curator knows who each individual is
and who participated. Instead, we want to guarantee
that event level information about each trace remains
private. In this work, at any sensitive time ¢ we mask
whether the user visited location A or location B for
any A,B less than r apart. Without ad hoc modifica-
tions, standard DP tools are insufficient for achieving
this for the primary reasons that 1) the domain of
location is virtually unbounded and 2) locations are
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highly dependent across a short period of time. To see
this, consider the following instinctual approaches to
achieving location trace privacy.

Approach A: apply Local Differential Privacy
(LDP) to each trace. Imagine a dataset of traces, each
from a separate individual. Applying LDP implies
that every trace has nearly the same probability of
releasing the same sanitized version. This would be
robust to arbitrary side information about dependence
between locations in any one trace. Unfortunately, the
amount of additive noise needed to achieve this would
destroy nearly all utility: sanitized traces from Califor-
nia would have almost the same probability of showing
up in Connecticut as do those from New York. Even
if we constrained the domain to just Manhattan, this
definition would not permit enough utility to perform
e.g. traffic monitoring.

Approach B: apply LDP to each location within a
trace. To preserve some utility, imagine a single trace
as a dataset of n locations, each of which enjoys e-
LDP guarantees. This alone is not robust to arbitrary
dependence between locations. By the logic of group
LDP, it does satisfy ke-LDP regardless of the depen-
dence between any k locations. This approach has two
setbacks. First, how to set k is unclear. Technically,
all points in the trace are correlated, so to ward off
worst-case correlations one might set it to the length
of the trace, which is identical to Approach A. Second,
even if location is bounded to a single city or county,
satisfying this definition would still destroy nearly all
utility. We cannot use sanitized traces for traffic moni-
toring if locations from either side of town have about
same probability of being sanitized to the same value.

Approach C: apply LDP guarantees to each lo-
cation within a trace, but only within any region
less than width r. This definition is known as Geo-
Indistinguishability (GI) (Andrés et all) [2012). GI
provides a substitute for restricting the domain of lo-
cation allowing us to salvage some utility. Here, only
locations within r of each other are required to have
e-LDP guarantees. In DP parlance, we might say that
‘neighboring traces’ have one location altered by < r
and are identical everywhere else. This gives us the
guarantee we want for a trace with one location, but
not with more than one location. To see why, compare
with Approach B. Analogously, (e, 7)-GI along a trace
provides (ke,r)-GI to any subset of k locations. Like
Approach B, setting k is unclear. Yet unlike Approach
B, GI is not resistant to arbitrary dependence between
any k locations. Any dependence where a change in one
or more location(s) by r implies a change in some other
location(s) by > r breaks the GI guarantee. Even with

the simplest models of dependence (e.g. if we know the
true trace ought to move in a straight line) this is a
problem.

To reiterate, applying LDP to traces or to locations
within traces (Approaches A & B) does not provide
a principled method for meaningful privacy with rea-
sonable utility. GI adapts LDP by giving guarantees
only within a radius . But in relaxing LDP, GI com-
promises the standard DP tools for handling obvious
dependences between data-points like group DP. In our
eyes, this warrants an inferentially private approach.
Here, we continue to provide privacy within a radius
r, thus allowing for utility. Yet instead of providing
resistance to arbitrary dependence across any k loca-
tions, we aim to provide resistance to natural models
of dependence between all locations. One may view
such models as an adversary’s prior beliefs about what
traces are likely, like the straight-line prior mentioned
earlier.

In contrast with differential privacy, providing inferen-
tial privacy guarantees is more complex, and has been
less studied. It is however appropriate for applications
such as ours, where information must be released based
on a single person’s data, the features of which are pri-
vate and dependent. Kifer & Machanavajjhala) (2014])
provide a formal inferential privacy framework called
Pufferfish, and design mechanisms for specific Puffer-
fish instances. As these instances do not apply to our
setting, we adapt the Pufferfish framework to location
privacy and more broadly to releasing any sequence of
real-valued private information.

Contributions: In this work, we propose an inferen-
tially private approach to guaranteeing a radius r of
privacy for sensitive points in location traces in three
parts:

e First, we propose an adaptable privacy framework
tailored to sequences of highly dependent data-
points that adapts Pufferfish privacy (Kifer &
Machanavajjhalal [2014)) to use Rényi Differential
Privacy (RDP) (Mironov, 2017). Given a model of
dependence between points, this framework more
appropriately estimates the risk of inference within
radius 7 on points of interest than do vanilla LDP
approaches.

e We then demonstrate how to implement our frame-
work for the highly flexible and expressive setting
of Gaussian process (GP) priors. These nonpara-
metric models capture the spatiotemporal aspect
of location data (Liang & Haas| [1999; Liu et al.,
1998; |Chen et al.} 2015)). GPs have a natural syn-
ergy with Rényi privacy enabling an interpretable
upper bound on privacy loss for additive Gaussian
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Figure 1: (a) An example graphical model of a four point trace X. (b) The more general grouped version of the model in

(a), with the secret set X5, = {X1, X2} and the remaining set Xy,

privacy mechanisms (that add Gaussian noise to
each point). Using this, we design a semidefinite
program (SDP) that optimizes the correlation of
such mechanisms to minimize privacy loss without
destroying utility, efficiently thwarting the infer-
ence of sensitive locations.

e Finally, we provide experiments on both location
trace and home temperature data to demonstrate
the advantage of these techniques over Approach
C mechanisms like GI. We find that our mecha-
nisms successfully obscure sensitive locations while
respecting utility constraints, even when the prior
model is misspecified.

Ultimately, by resisting only reasonable kinds of depen-
dence in the data we are able to offer both meaningful
privacy and utility. We show that our framework is ro-
bust to misspecification of this reasonable dependence
and offers a privacy loss that is both tractable and
interpretable.

2 Preliminaries and Problem Setting

A user transmits a sequence of N 2-dimensional lo-
cations along with their corresponding timestamps,
collectively forming a ‘trace’. We ‘unroll’ the trace into
n real-valued random variables X = {X1, Xo,..., X, }.
A trace of 10 2d locations has n = 2 x 10 = 20 random
variables X;. Instead of releasing the raw trace X, the
user releases a private version Z = {Z1,Zs,...,Z,},
by way of an additive noise mechanism Z = X + G,
where G = {G1, G, ..., Gy} is random noise produced
by a privacy mechanism.

An adversary, receiving the obscured trace Z, then rea-
sons about the true locations at some sensitive time(s).
To reference the sensitive times, we use index set Ig. If
the sensitive indices are Ig = {1, 2}, the corresponding
location values are Xr, = {X1, X2} (e.g. referring to
the two coordinates of one location). When inferring
the true value of Xj,, the adversary makes use of the
remaining points in the trace at indices Iy = [n]\ILg, de-
noted Xp,,, with obscured values Zy,,. This separation

{Xs, Xa}.

of points into Xy, and Xj,, is represented in Figure

We use location as a guiding example, but such inter-
dependent traces X could take the form of home tem-
perature time series data or spatial data like 3D facial
maps used for identification. Going forward, we will
continue to denote X = {Xi, Xo,...,X,} with the
understanding that any subsequence of d points e.g.
X1, = {X2, Xg, ...} could represent a d-dimensional
sensitive value, or Nd points could represent N d-
dimensional sensitive values.

For the real-valued distributions considered here, Py (o)
refers to a density of distribution X on r.v. e and
P, (e]x) is its regular conditional density given .

2.1 Background

GI limits what can be inferred about the sensitive
X1 from its corresponding Zj , but not from the re-
maining locations Zj,. To do so we need a privacy
definition that specifies what events of random vari-
able Xj, we wish to obscure, which realistic priors of
inter-dependence to protect against, and a privacy loss.

2.2 Basic and Compound Secrets

We borrow heavily from the Pufferfish framework (Kifer
& Machanavajjhala, [2014), and specialize it for the
setting of location traces. We define our own set of
secrets — the collection of events we wish to obscure —
and discriminative pairs, the pairs of secret events we
do not want an adversary to tell between.

Basic Secrets & Pairs After releasing Z, we do
not want an adversary with a reasonable prior on X,
P € O, to have sharp posterior beliefs about the user’s
location at some sensitive time (e.g. one of the sensitive
times in Figure 3 of Appendix 7.1). As such, the
adversary cannot distinguish whether the user visited
location A or some nearby location B at that time.
Let x, € R? represent a possible assignments to X,
hypothesizing the true sensitive location. Any such
assignment is secret, S = {Xj, = =z, : ¥, € R?}.
Specifically, we want the posterior probability of any
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two assignments to X, within a radius r to be close:
Spairs = {(zs, %) : ||zs — xf|l2 < r}. This protects a
single time within a trace of locations. More generally,
in the context of spatiotemporal data of any dimension,
we call this a basic secret.

Compound Secrets & Pairs Suppose we have
three sensitive times (again as in Figure 3). A mech-
anism that blocks inference on each of these separately
does not prevent inference on the combination of them
simultaneously. To obscure hypotheses on all three of
these, we modify our set of secrets to any combination
of assignments to each secret location:

S = {X1sy = a1} N { X1y = o2} N {Xig5 = a3}
zy € R i€ 3]} .

Now, the set of discriminative pairs is any two assign-
ments to all three secret locations:

Spairs - {({17517 Ts2, 1'53}7 {'nglv I;Za I;3})
s = alille <7, i€ [3]}

This protects against compound hypotheses: if daycare
and work are within r of each other, this keeps an
adversary from inferring Xy, = ‘daycare’ and Xig, =
‘work’ versus X1, = ‘work’ and Xpg, = ‘daycare’.
More generally, in the context of spatiotemporal data
of any dimension, we call this a compound secret. Intu-
itively, a mechanism that protects a compound secret
of locations close together in time prevents a Bayesian
adversary from leveraging the remainder of the trace to
infer direction of motion at those sensitive times. Note
that bounding the privacy loss of a compound secret
does not bound the privacy loss of its constituent basic
secrets.

Going forward, we refer to Ig as the ‘secret set’.

2.2.1 Gaussian Processes

For the purpose of location privacy, it is important
to choose a prior class © such that the conditional
distribution Pp (X7, |X1.) is simple to compute for any
secret set Ig and any prior P € ©. Of course, it is
also critical that the prior class naturally models the
data, and thus consists of ‘reasonable assumptions’ for
adversaries. GPs satisfy both these requirements. We
model a full d-dimensional trace sampled at N times
by ‘unrolling’ it into a n = dIN dimensional GP.

Definition 2.1. Gaussian process A trace X is a Gaus-
sian process if Xy,, has a multivariate normal distribu-
tion for any set of indices Ip; C [n]. If X is a gaussian
process, then the function ¢ — E[X;] is called the mean
function and the function (4, j) — Cov(X;, X;) is called
the kernel function.

In this work, the kernel uses locations’ time stamps to
compute their covariance (t;,t;) — Cov(X;, X;), but
generally could use any side information provided with
each location.

GPs have simple, closed form conditional distributions.
Let X ~ N(u, %), where p € R™ and 3 € R™*™. Then,
the random variable Xy, {X1; = 25} ~ N (tty)s, Zujs)s
where fiy)s = pu + BusDos (@5 — ps) and By, =
Yow — BusYse Vsu. Here, pg denotes the mean vector
accessed at indices Ig and X, denotes the covariance
matrix > accessed at rows Ig and columns I .

For GP priors, we will use additive noise G ~
N(0,29). Thus Z = X + G, too, is multivariate
normal. Furthermore, the distribution of any set of
variables conditioned on any other set of variables in
Figure [1| belongs to some multivariate normal distri-
bution.

GPs have been shown to successfully model mobility
(Chen et al., |2015; [Liang & Haasl,[1999; [Liu et al., |[1998),
even in the domain of surveillance video (Kim et al.
2011). Furthermore, although these non-parametric
models are characterized by second order statistics, GPs
are capable of complexity rivaling that of deep neural
networks (Lee et al., 2018]), allowing for scalability to
more complex models and domains. Our proposed
results and algorithms may be applied regardless of the
complexity of the chosen GP.

2.2.2 Rényi Differential Privacy

In the following section, we propose a privacy defi-
nition that adapts Rényi Differential Privacy (RDP)
(Mironovl, |2017) to the Pufferfish framework. RDP
resembles Differential Privacy (Dwork, [2006)), except
instead of bounding the maximum probability ratio or
maz divergence of the distribution on outputs for two
neighboring databases, it bounds the Rényi divergence
of order )\, defined in Equation for distributions
Py and P,. The Rényi divergence bears a nice syn-
ergy with Gaussian processes. If P; = N (u1,%) and
Py = N(uz2,%) — two mean-shifted normal distribu-
tions — the Rényi divergence takes on a simple closed
form shown in Equation .

Py 1 Pp (X = 2)\ >
D <7>2) — 1 08B, (71% X = )

= %(m — p2) TS (1 — pio) (2)

We will make use of this in defining and bounding
privacy loss in the next section.
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3 Conditional Inferential Privacy

We now propose a privacy framework that is tailored
to sequences of correlated data, Conditional Inferen-
tial Privacy (CIP). CIP guarantees a radius r of in-
distinguishability for the basic or compound secrets
associated with any secret set Ig. Specifically, CIP
protects against any adversary with a specific prior on
the shape of the trace, and is agnostic to their prior on
the absolute location of the trace. We call the set of
such prior distributions a Conditional Prior Class.

Definition 3.1. Conditional Prior Class For X =
{X1,...,X,}, prior distributions P;,P; on X are said
to belong to the same conditional prior class © if
a constant shift in the conditioned z, results in a
constant shift on the distribution of Xj,,. Formally,
if conditional distributions Pp,(Xy,|X1s = zs5) =
Pp, (X1, + ¢y | X1 = @5 + ¢y, ) for all z,.

For instance, prior Pp, may concentrate probability
on traces passing through Los Angeles, while Pp; con-
centrates on traces passing through London. Condi-
tioning on each secret in the pair (z,,2%) in L.A. is
analogous to conditioning on each secret in the pair
(zs + ¢}j1g, Ty + ¢yp,) in London. The corresponding
pair of conditional distributions on Xj, in London
(Pp;) are copies of those in L.A. (Pp,) shifted by cf;_.
What matters is that the set of all pairs of conditional
distributions under Pp, induced by secret pairs (xg, %)
is identical to those under Pp, up to a mean shift.
See Appendix 7.5 for a more detailed discussion of

conditional prior classes.

Definition 3.2. (e, \)-Conditional Inferential Privacy
(Spairs, T, ©) Given compound or basic discriminative
pairs Spairs associated with Ig, a radius of privacy r,
a conditional prior class, ©, and a privacy parameter,
e > 0, a privacy mechanism Z = A(X) satisfies (g, \)-
CIP(Spairs, 7, ©) if for all (s;,5;) € Spairs, and all prior
distributions P € ©, where Pp(s;), Pp(s;) > 0,

Pap(Z|X15 = 5i)>
D ’ <e 3
A(PA,p(ZXHS —s,) )

CIP departs from DP type notions of privacy like Ap-
proaches A—C primarily by resisting only a restricted
class of inter-dependence — the conditional prior class
— as opposed to arbitrary dependence of any k locations.
Unlike approaches A and B, we are able to preserve
utility for tasks like traffic monitoring. Unlike approach
C, CIP is still resistant to realistic models of location
inter-dependence.

While this definition borrows heavily from the Pufferfish
framework, it has a few key modifications. Pufferfish is
generally described from a central, not local model. We
specialize the kinds of secrets and discriminative pairs

for the case of local location trace privacy. Addition-
ally, we specialize the type of prior distribution class
needed for this local setting: the conditional prior class.
Finally, we relax the strict max divergence (max log
odds) criterion of the Pufferfish definition to a Rényi
divergence. This guarantees that — with high prob-
ability on draws of realistic traces Z| Xy, — the log
odds will be bounded by €. As A — oo, the log odds
are bounded for all traces, i.e. the max divergence is
bounded. We formalize this in Theorem 3.1}

The Rényi criterion of CIP greatly improves its flexibil-
ity. Unlike the standard DP Approaches A—C which
only take probabilities over the mechanism, we do not
have full control over the randomness at play: it is
partially from A defined by us and from P intrinsic
to the data. Unlike max divergence, Rényi divergence
is available in closed form for many distributions, al-
lowing for a more flexible privacy framework. The \
parameter helps us tune how strict a CIP definition is
and how much noise we need to add. This allows us to
design mechanisms that are resistant to natural models
of dependence while preserving utility.

3.1 Properties

We now identify key properties that make the CIP
guarantee interpretable and robust.

Interpretability: CIP guarantees that a Bayesian
adversary with any prior distribution on traces P in
the conditional prior class © does not learn much about
basic or compound secrets from the released trace Z.
For basic secrets, this means that the adversary’s pos-
terior beliefs regarding sensitive location Xy, are not
much sharper than their prior beliefs before witnessing
Z.

Theorem 3.1. Prior-Posterior Gap: An (g, \)-CIP
mechanism with conditional prior class © guarantees
that for any event O on sanitized trace Z

PP(8i> < e
Pp(s;)

for any P € © with probability > 1 — 6 over draws of
Z| X1y = s; or Z| X1y = s;, where €' and 0 are related
by

log PP’A(SZ‘|Z S O) —log
Pp7A(Sj|Z € O)

log /s

’_
5—5+)\_1.

This holds under the condition that Z| X1, = s; and
Z| X1 = sj have identical support.

A CIP mechanism depends only on the conditional prior
describing the data, not the data itself. Suppose an
adversary’s prior beliefs on Xy, are uniform over some
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region. For A = 5 and € = 0.1, there is only a ~ 1%
chance that their posterior odds on s;, s; will be more
than 3.5, and a =~ 10% chance that they will be more
than 2. This ‘chance’ is over draws of likely remaining
locations Xj,, and the additive noise G. Proofs of all
results are in Appendix 7.2.

For additive noise mechanisms like A(X) = X +G = Z,
the CIP loss can be split into two terms: one accounting
for the direct privacy loss of Zj, on Xy, and a second
accounting for the inferential privacy loss of Zj, on
X]IS via X]IU .

Lemma 3.2. Conditional Independence For an ad-
ditive noise mechanism, a fully dependent trace as in
Figure and any prior P on X the CIP loss may
be expressed as

Pap(Z|X15 = s1)
P (PA p(Z] X1 = Sj)) @)

Pa(Zi)| X, = P Z1, | X
72 |:D)\< A(Zi] ))] +D)\( AP (Z1y | X1
P.A Z |X = SJ) PA773(Z]IU|X]IS

One interpretation of GI is that it assumes all locations
X, are independent. In this case, the second term van-
ishes and the privacy loss only depends on randomness
of the mechanism, not the prior.

Robustness: [Kifer & Machanavajjhalal (2011) show
that it is impossible to achieve both utility and privacy
resistant to all priors. CIP provides resistance to a
reasonable class of priors P € O, but it is possible
that the true distribution Q ¢ ©. In this case, the
privacy guarantees degrade gracefully as the divergence
between Q and P € © grows.

Theorem 3.3. Robustness to Prior Misspecification
Mechanism A satisfies €(X)-CIP for prior class ©. Sup-
pose the finite mean true distribution Q is not in O.
The CIP loss of A against prior Q is bounded by

Pyo(Z| X5 = 5z‘)> ‘
D ’ <e'(A
A(PA,Q<Z|XHS —sy) STV

A= 1L
A_i A2)) + A4 = 3) +

and where A()\) is

g'(\) =

PeO s,e5

Po (X1, | X1s = si)
As long as the conditional distribution on Xy, [ X1, = s;
of prior @ is close to that of some P € O, the privacy
guarantees should change only marginally. This bound
is tightest when £(\) does not grow quickly with order
A

Pp(Xiy | X1s = si) Po (X1, | X1s = si)
f D U S D U S
inf sup max{ *( AN\ P (Xiy | Xig = si)

3.2 CIP for Gaussian Process Priors

A GP conditional prior class is the set of all GP prior
distributions with the same kernel function (i,j) —
Cov(X;, X,) and any mean function ¢ — E[X;]. With
an additive Gaussian mechanism G ~ A (0,2(9)), the
CIP loss of Equation can be bounded for any GP
conditional prior class. See Appendix 7.5 for further
discussion of the GP conditional prior class.

Theorem 3.4. CIP loss bound for GP conditional
priors: Let © be a GP conditional prior class. Let
be the covariance matriz for X produced by its kernel
function. Let S be the basic or compound secret asso-
ciated with g, and S be the number of unique times
in Is. The mechanism A(X) = X + G = Z, where
G ~ N(0,29)) then satisfies (g, \)-Conditional Infer-
ential Privacy (Spairs, T, ©), where

)

where o2 is the variance of each G; € Gy, (diagonal

e < ;\ST2<01§ + a*) (5)

entries of Egg)) and o is the mazimum eigenvalue of
Sep = (ZusZ5)  (Zups + 29) 7 (SusD5h).

The above bound is tight for basic secrets (S = 1). The
two terms of Equation represent the direct ()
*) loss terms of Equation (4 . We
assume that each diagonal entry of Egg) equals some
02, so that each X; € X7, experiences identical direct
privacy loss, which is optimal under utility constraints.

and inferential («

The above bound composes gracefully when multiple
traces of an individual are released.

Corollary 3.4.1. Graceful Composition in Time Sup-
pose a user releases two traces X and X with additive
noise G ~ N (0,%9) and G ~ N'(0, %)), respectively.
Then basic or compound secret X1, of X enjoys (£, \)-

CIP, where
e 955 +a)

and where &* is the maxzimum eigenvalue of Seﬁ =
(EMZS—;)T(ZU‘S + i&@)‘l(zusz;). Y is the covari-
ance matriz of the joint distribution on X, X and

_ »(9) 0
(9) —
= [ 0o @ }

This bound is identical to that of Theorem only us-
ing the joint distribution over X, X and G, G. This pro-
vides some insight to the fact that, unlike DP, even par-
allel composition guarantees are not automatic. Com-
position depends on the conditional prior. In the GP
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setting, if the chosen kernel function decays over time,
we can expect composition to have minimal effects on
privacy for traces separated by long durations.

To reduce the upper bound of Theorem [3.4] we optimize
the correlation (off-diagonal) of $(9) to minimize o*,
and optimize its variance (diagonal) to balance a noise
budget between lowering inferential («*) and direct
(%) loss.

4 Optimized Privacy Mechanisms

Theorem characterizes the privacy loss for GP con-
ditional priors. We next show how to use this The-
orem to design mechanisms that can strategically re-
duce CIP loss given a utility constraint. We mea-
sure ‘utility loss’ as the total mean squared error
(MSE) between the released (Z) and true (X) traces:
MSE(2@) = 3" | E[Z; — X;] = tr(X(9)). We bound
the utility loss by tr(X©)) < no,, where o, is the aver-
age per-point utility loss.

It can be shown that optimizing the privacy loss under
this utility constraint can be described by a semidefi-
nite program (SDP) (formalization/derivation of SDPs
in Appendix 7.3). For a given trace X, define its
covariance matrix ¥ using the the kernel of the GP
conditional prior ¥;; = k(¢,j). Then pass X, the secret
set s, and the utility constraint o; to our first program,
SDP,, which returns noise covariance 2(9). This de-
fines an additive noise mechanism G ~ N(0, $(9)) that
minimizes CIP loss to Ig.

%9 = SDPA (%, I, 0¢)

We can thus use a SDP to minimize the CIP loss to any
single compound or basic secret. However, a trace may
contain multiple locations or combinations thereof that
one wishes to protect. It remains to produce a single
mechanism X9 that bounds the CIP loss to multiple
basic and/or compound secrets in a single trace.

For this we propose SDPg, which uses the fact that if
2"« % it will have lower CIP loss (see Appendix
7.3.2). SDPg takes in a set of covariance matrices
F = {Zg‘q), ey 27(;2)}, each designed to minimize CIP
loss for a single compound or basic secret Ig;. It then
i m]
that maintains the privacy guarantee each Egg ) offered
its corresponding Ig;, while minimizing utility loss.

returns a single covariance matrix (@) > %

In our experiments, we use Algorithm [1| to design a
single mechanism that protects all locations in the trace
— all basic secrets — while minimizing utility loss.

Algorithm 1: Multiple Secrets

Input: Igq,...,Ig,,,0t 2
Output: 2
F =0

for i € [m] do
59 — SDPA (S, Is;, 04);
F=Fuzs?,

end

»(9) = SDPg(F);

return X09);

5 Experiments

Here, we aim to empirically answer: 1) Do our SDP
mechanisms maintain high posterior uncertainty of
sensitive locations? How do they compare to Approach
C baselines of equal MSE? 2) How robust is the SDP
mechanism when the prior covariance Y is misspecified?

Methods To answer these questions, we look at the
range of conditional prior classes that fit real-world
data. For location trace data, we use the GeoLife GPS
Trajectories dataset (Zheng et al., [2010) containing
10k human mobility traces after preprocessing (see
Appendix 7.4 for details). We also consider the pri-
vacy risk of room temperature data (Nef et al., [2015)),
using the SML2010 dataset (Zamora-Martinez et al.
2014)), which contains approximately 40 days of room
temperature data sampled every 15 minutes.

For the location data, having observed that the corre-
lation between latitude and longitude is low (= 0.06)
we treat each dimension as independent. By way of
Corollary 7.2.1, this allows us to bound privacy loss
and design mechanisms for each dimension separately.
Furthermore, having observed that each dimension
fits nearly the same conditional prior, we treat our
dataset of 10k 2-dimensional traces as a dataset of 20k
1-dimensional traces, where each trace represents one
dimension of a 2d location trajectory.

We model the location trace data with a Radial Basis
Function (RBF) kernel GP and the temperature series
data with a periodic kernel GP:

(t;i — t;)?

S

—2sin®(n|t; — t;]/p)
)

kRBF(tiatj) = 0925 exp ( —

kper(ti,t;) = oi exp (

In both kernels, the intrinsic degree of dependence be-
tween points is captured by the lengthscale . However,
the fact that sampling rates vary significantly between
traces means that traces with equal length scales can
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Figure 2: 'Posterior uncertainty interval (higher=better privacy) on Xi4 of a GP Bayesian adversary. A larger l.g
corresponds to greater inter-dependence and reduces posterior uncertainty. The gray interval depicts the middle 50% of the
MLE l.s among traces in each dataset, and the black dotted line the median leg. (a)—(c), (€)—(g) show SDP mechanisms
(blue) maintaining relatively high uncertainty compared to two GI (Approach C) baselines of equal utility (MSE). (d), (h)
show the (minor) change in posterior uncertainty when the prior covariance ¥ used in SDP4 is misspecified: when it is
identical to the true covariance X* known to the adversary (blue), is more correlated (orange), or is less correlated (green).

have very different degrees of correlation. To encap-
sulate both of these effects, we study the empirical
distribution of effective length scale of each trace

bl
eff,x—P eff,y—P

where P is the trace’s sampling period and [, are
the its optimal length scales for each dimension.

lefr 2, lesr,y tell us the average number of neighboring
locations that are highly correlated, instead of time
period. For instance, a given trace with an optimal
lefr,z = 8 tells us that every eight neighboring location
samples in the x dimension have correlation > 0.8.
The empirical distribution of effective length scales
across all traces describes — over a range of logging
devices (sampling rates), users, and movement patterns
— how many neighboring points are highly correlated in
location trace data. After this preprocessing, we are
able to use the kernels that take indices (not time) as
arguments:
(i— j)2)
202
—2sin’(rli — j|/p)
T
eff

krr(i,j) = exp ( —

k‘pER(i,j) = exp (

See Appendix 7.4 for a more detailed discussion of
how the empirical distribution of l.g across traces is
measured.

To impart the range of realistic conditional priors the
gray interval of each plot depicts the middle 50% of

the empirical /. among traces in each dataset. The
dashed vertical line reports the median leg.

Each figure increases the degree of dependence, [qf,
used by the kernel to compute the prior covariance
Y(legt). L(legr) is then used in one of the SDP routines
of Section [ to produce a mechanism () (l.g) that
protects a basic secret (SDP,), a compound secret
(SDP4), or the union of all basic secrets (Multiple Se-
crets). We then observe the 68% confidence interval of
the Gaussian posterior on sensitive points Xy, (blue
line). This is the 20 uncertainty of a Bayesian adversary
with a GP prior represented by X(log) (see Appendix
7.4 for how this is computed). As log increases, their
posterior uncertainty will reduce. Our aim is to mit-
igate this as much as possible with the given utility
constraint. For scale, recall that prior variance diag(X)
is normalized to one. In the case of all basic secrets, we
report the average posterior uncertainty over locations.

We compare the SDP mechanisms with two mecha-
nisms using the logic of Approach C (all three of equal
MSE utility loss): independent/uniform and indepen-
dent/concentrated. The uniform approach adds inde-
pendent Gaussian noise evenly along the whole trace
regardless of Ig, £(9 = o,]. The concentrated ap-
proach allocates the entire noise budget to the sensitive
set Ig.

Results For our first question, see Figures
For both location and temperature data, our
SDP mechanisms maintain higher posterior uncertainty
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than the baselines with identical utility cost for a sin-
gle basic secret, a compound secret, and all basic se-
crets. By actively considering the conditional prior class
parametrized by X, the SDP mechanisms can strategize
to both correlate noise samples and concentrate noise
power such that posterior inference is thwarted at the
sensitive set Ig. For an intuitive illustration of the
chosen X(9)’s, see Appendix 7.1.2.

To answer our second question, see Figures[2d]and [2h]
When the prior covariance > does not represent the
true data distribution known to the adversary, a smaller
posterior uncertainty may be achieved. The orange line
indicates the uncertainty interval of an adversary who
knows the data is less correlated than we believe i.e.
the true ¥* = ¥(0.5l¢). The blue line represents an
adversary who knows the data is more correlated than
we believe i.e. the true ¥* = X(1.5l.%). Both plots
confirm the robustness of our privacy guarantees stated
by Theorem [3.3] Particularly around the median leg
we see that the change in posterior uncertainty with
this change in prior is indeed marginal.

6 Discussion

Related Work Few works have proposed solutions
to the local guarantee when releasing individual traces.
A mechanism offered in [Bindschaedler & Shokril (2016])
releases synthesized traces satisfying the notion of plau-
sible deniability (Bindschaedler et al.l |2017)), but this is
distinctly different from providing a radius of privacy
to sensitive locations. Meanwhile, the frameworks pro-
posed in Xiao & Xiong| (2015) and |Cao et al.| (2019)
nicely characterize the risk of inference in location
traces, but use only first-order Markov models of cor-
relation between points, do not offer a radius of indis-
tinguishability as in this work, and are not suited to
continuous-valued spatiotemporal traces.

Perhaps more technically similar to this work, Song
et al.| (2017) provide a general mechanism that applies
to any Pufferfish framework, as well as a more compu-
tationally efficient mechanism that applies when the
joint distribution of an individual’s features can be
described by a graphical model. The first is too compu-
tationally intensive. The second is for discrete settings,
and cannot accommodate spatiotemporal effects.

Conclusion This work proposes a framework for
both identifying and quantifying the inferential privacy
risk for highly dependent sequences of spatiotemporal
data. As a starting point, we have provided a simple
bound on the privacy loss for Gaussian process priors,
and an SDP-based privacy mechanism for minimizing
this bound without destroying utility. We hope to ex-
tend this work to other data domains with different

conditional priors, and different sets of secrets.
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