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Abstract

Naively trained neural networks tend to ex-
perience catastrophic forgetting in sequential
task settings, where data from previous tasks
are unavailable. A number of methods, us-
ing various model expansion strategies, have
been proposed recently as possible solutions.
However, determining how much to expand
the model is left to the practitioner, and often
a constant schedule is chosen for simplicity,
regardless of how complex the incoming task
is. Instead, we propose a principled Bayesian
nonparametric approach based on the Indian
Buffet Process (IBP) prior, letting the data
determine how much to expand the model
complexity. We pair this with a factoriza-
tion of the neural network’s weight matrices.
Such an approach allows the number of fac-
tors of each weight matrix to scale with the
complexity of the task, while the IBP prior
encourages sparse weight factor selection and
factor reuse, promoting positive knowledge
transfer between tasks. We demonstrate the
effectiveness of our method on a number of
continual learning benchmarks and analyze
how weight factors are allocated and reused
throughout the training.

1 Introduction

Deep learning, trained primarily on a single task un-
der the assumption of independent and identically dis-
tributed (i.i.d.) data, has made enormous progress in
recent years. However, when naively trained sequen-
tially on multiple tasks, without revisiting previous
tasks, neural networks are known to suffer catastrophic
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forgetting (McCloskey & Cohen, 1989; Ratcliff, 1990):
the ability to perform old tasks is often lost while learn-
ing new ones. In contrast, biological life is capable of
learning many tasks throughout a lifetime from decid-
edly non-i.i.d. experiences, acquiring new skills and
reusing old ones to learn fresh abilities, all while re-
taining important previous knowledge. As we strive
to make artificial systems increasingly more intelligent,
natural life’s ability to learn continually is an important
capability to emulate.

Continual learning (Parisi et al., 2019) has attracted
considerable attention recently in machine learning
research, and a number of desiderata have emerged.
Models should be able to learn multiple tasks sequen-
tially, with the eventual number and complexity of tasks
unknown. Importantly, new tasks should be learned
without catastrophically forgetting previous ones, ide-
ally without having to keep any data from previous
tasks to re-train on. Models should also be capable of
positive transfer: previously learned tasks should help
with the learning of new tasks. Knowledge transfer
between tasks maximizes sample efficiency, with this
particularly important when data are scarce.

A number of methods (Rusu et al., 2016; Zhang et al.,
2019; Lee et al., 2020) address continual learning
through expansion: the model is grown with each ad-
ditional task. By diverting learning to new network
components for each task, these approaches mitigate
catastrophic forgetting by design, as previously learned
parameters are left undisturbed. A key challenge for
these strategies is deciding when and how much to
expand the network. While it is typically claimed that
this can be tailored to the incoming task, doing so
requires human estimation of how much expansion is
needed, which is not a straightforward process. Instead,
a preset, constant expansion is commonly employed for
each new task.

Rather than relying on engineered heuristics, we choose
to let the data dictate the model-expansion rate, em-
ploying a Bayesian nonparametric approach. Specifi-
cally, we couple rank-1 weight factor (WF) dictionary
learning with the Indian Buffet Process (IBP) (Ghahra-
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Figure 1: Layer-wise weight factors for continual learning. Dictionaries of weight factors W`
a and W`

b are shared
across all tasks, and a task-specific sparse diagonal matrix Λ`

t specifies the active factors (in this figure, elements
of Λ`

t that are black are zero, and brighter shades correspond to larger numbers). The weighted sum of the active
weight factors yields the weight matrix for a particular task. The number of factors (columns of W`

a and rows of
W`

b) grows as needed with more tasks, with select factors being reused in future tasks. Best viewed in color.

mani & Griffiths, 2006), creating a framework we call
IBP-WF. An IBP-based formulation allows automatic
scaling of the network, but only as needed, even if the
number or complexity of future tasks is unknown ini-
tially. An IBP prior also naturally encourages recycling
of previously learned skills, enabling positive transfer
between tasks, which other expansion methods tend
to either ignore or deal with in a more ad hoc manner.
Finally, Bayesian modeling enables model sampling,
allowing for both ensembling models for increased accu-
racy and uncertainty estimation, which are important
but rarely discussed topics in continual learning.

Our main contributions are as follows. (i) We intro-
duce learning a rank-1 weight factor dictionary for a
neural network expected to perform multiple tasks. We
then introduce the Indian Buffet Process as a prior
for each task’s weight factor selection, showing why
the IBP is a natural choice given continual learning’s
desiderata. (ii) We introduce a simple-but-effective
method based on feature statistics for inferring task
identity (ID) in incremental class settings. (iii) The ef-
fectiveness of IBP-WF is demonstrated on a number of
continual learning tasks, outperforming other methods.
We also visualize the weight factor usage across tasks,
confirming both sparsity and reuse of these factors.

2 Methods

2.1 Weight Factor Dictionary Learning
Consider a multilayer perceptron (MLP) with layers
` = 1, ..., L. In a continual learning setting, we would

like this neural network to learn multiple tasks. Given
differences between tasks, the neural network may re-
quire a different set of weight matrices {W`

t}L`=1 for
each task t. While {W`

t}L`=1 could be learned sepa-
rately for each task, such a model does not incorporate
knowledge reuse, and the total number of model pa-
rameters grows linearly with the number of tasks T .
While immune from catastrophic forgetting, such an
approach is inefficient in both computation and data.

Instead of completely independent models for each task,
we propose constituting W`

t as follows:

W`
t = W`

aΛ`
tW`

b s.t. Λ`
t = diag(λ`t) (1)

where W`
a ∈ RJ×F and W`

b ∈ RF×M are global param-
eters shared across tasks and λ`t ∈ RF is a task-specific
vector. The determination of F is explained in Section
2.2, but in general F is chosen such that after T tasks,
the total number of parameters of this factorized model
is (J + T +M) · F , which is significantly less than the
J ·M · T parameters that would result from learning
each task independently. We may equivalently express
(1) as the weighted sum of rank-1 matrices formed from
the outer product of the vectors corresponding to the
columns W`

a and rows of W`
b:

W`
t =

F∑
k=1

λ`t,k
(
w`
a,k ⊗w`

b,k

)
(2)

where ⊗ denotes the outer product, and the pair w`
a,k

and w`
b,k is the kth column and row of W`

a and W`
b,

respectively. Under this construction, the pairs of
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corresponding columns of W`
a and rows of W`

b can be
interpreted as a dictionary of weight factors, while the
values in λ`t are the factor scores for a particular task
(see Figure 1). By sharing these global weight factors,
the model can reuse features and transfer knowledge
between tasks, with λ`t selecting and weighting the
factors for a particular task t. We construct the factor
scores λ`t as the following element-wise product:

λ`t = r`t � b`t (3)

where b`t ∈ {0, 1}F indicates the active factors for
task t and r`t ∈ RF specifies the corresponding factor
strength. By imposing sparsity with b`t , we concentrate
skills for each task into specific factors, leaving room
for learning other tasks with other factors.

Generalizing to convolutional kernels While
learning the weight factors in (1) was formulated for
fully connected layers, it can be generalized to other
types of layers as well, including 2D convolutional lay-
ers. Unlike the 2D weight matrices comprising the
fully connected layers of a MLP, convolutional kernels
are 4D: in addition to number of input and output
channels (Cin and Cout), they also have two spatial
dimensions denoting the height (H) and width (W )
of the convolutional filter. While learning 4D tensor
factors is certainly possible, in practice H and W tend
to be small (e.g. H = W = 3), so we instead choose
to reshape the kernel (RH×W×Cin×Cout) into a 2D ma-
trix (R(HWCin)×Cout). We then proceed with the same
weight factor learning as in (1).

2.2 Indian Buffet Process for Weight Factors

Critical to the proposed layer-wise weight factors is
the number of factors F : too few and the model lacks
sufficient expressivity to model every task; too many
and the model consumes more memory and computa-
tion than necessary. To further complicate matters,
the number of necessary factors likely increases mono-
tonically as the model encounters more tasks. While a
particular choice of F may be appropriate for T tasks,
it may no longer be sufficient after T ′, with T ′ > T .

Rather than setting it as a constant, we let F grow
naturally with the number of tasks. There are a num-
ber of expansion strategies for continual learning that
have been proposed over the years (Rusu et al., 2016;
Hung et al., 2019; Zhang et al., 2019; Lee et al., 2020).
Many of these expand the model by a constant amount
per task, or rely on the model designer to specify a
schedule or heuristics for the size of the expansion.
These hand-tuned strategies can be brittle, and require
expert knowledge on the complexity of incoming tasks.
Additionally, prior works do not use weight factor dic-
tionaries, so expansion involves adding additional nodes

to each hidden layer or learning entirely new models,
which can increase test-time computation.

Instead, we employ Bayesian nonparametrics, inferring
in a principled manner the scores for the proposed rank-
1 weight factors for each task and the total number of
factors F needed. In particular, we impose the stick-
breaking construction of the IBP (Teh et al., 2007) as
a prior for factor selection:

v`t,i ∼ Beta(α, 1) (4)

π`t,k =
k∏
i=1

v`t,i (5)

b`t,k ∼ Bernoulli(π`t,k) (6)

where α is a hyperparameter controlling the expected
number of nonzero factor scores, and k = 1, 2, ...F
indexes the factor. For the global parameters (W`

a and
W`

b) and the local factor strength (r`t), we use point
estimates. See Appendix A for an overview of the
IBP and the connection of IBP-WF with IBP-based
dictionary learning. Leveraging the IBP in conjunction
with dictionary learning provides a number of natural
advantages within the context of continual learning:

Dynamic control of F The IBP allows the number
of factors F to be determined nonparametrically and
dynamically, growing only as necessary given the com-
plexity of each individual task. Simpler tasks (or ones
similar to previous tasks) may require learning fewer
new factors, while more complex ones lead to more, all
inferred automatically. While F can theoretically grow
unbounded, it does so harmonically – much slower than
the requisite linear growth of the number of tasks.

Factor reuse and positive transfer Given that
continual learning is often deployed when tasks are at
least somewhat correlated, training independent mod-
els can lead to learning redundant features, which is
inefficient both in training data and test time compu-
tation. On the other hand, the construction of π`t (see
(5)) actively encourages reuse of existing weight factors,
prioritizing recycling previously learned skills for new
tasks over creating new ones, which leads to positive
forward transfer. This is in contrast to other methods
whose only source of transfer is initializing from the
previous task’s weights, whose transfer advantage may
be quickly wiped away by gradient descent.

Catastrophic forgetting mitigation The newly
learned weight factors in Wa and Wb are frozen at the
end of a task. This mirrors the freezing of previously
learned weights in existing expansion methods. By
blocking the gradients to weights learned from previous
tasks, we avoid forgetting the model’s ability to perform
older tasks. Note that while factors learned from a
previous task are frozen, the factor scores may change
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with each incoming task allowing the model to control
the usage of a previously trained factor.

Constant inference time cost At test time, IBP
weight factors (outer product of each column of W`

a

and row of W`
b) can be pre-computed; given a task,

the appropriate factors can be retrieved, weighted, and
summed as needed to retrieve {W`

t}L`=1. Imposing
the IBP prior on the usage of factors induces a prior
distribution of Poisson(α) on the number of active
factors. Thus, the number of nonzero factors have a
prior expectation of α, regardless of the number of
tasks T , so the expected forward computation of the
model does not grow with T . This avoids one of the
pitfalls of other expansion methods (e.g., Rusu et al.
(2016); Lee et al. (2020); Kumar et al. (2019)), whose
inference-time computation scale with T .

2.3 Variational Inference

To determine which factors should be active for task t,
we perform variational inference to infer the posterior of
parameters θt = {b`t,v`t}L`=1. We assume the following
variational distributions:

q(θ`t) = q(b`t)q(v`t) (7)
b`t ∼ Bernoulli(π`t ) (8)
v`t ∼ Kumaraswamy(c`t,d`t) (9)

We learn the variational parameters {π`t , c`t,d`t}L`=1
with Bayes by Backprop (Blundell et al., 2015). As
the Beta distribution lacks a differentiable parame-
terization, we use the similar Kumaraswamy distri-
bution (Kumaraswamy, 1980) as the variational dis-
tribution for v`t. We also use a soft relaxation of the
Bernoulli distribution (Maddison et al., 2017) in (6) and
(8) to allow backpropagation through discrete random
variables. The objective for each task is to maximize
the following variational lower bound:

Lt =
Nt∑
n=1

Eq log p
(
y

(n)
t

∣∣θt, x(n)
t ,Wa,Wb, rt

)
−KL (q (θt) ||p (θt))︸ ︷︷ ︸

R

(10)

where Nt is the number of training examples in task
t, Wa = {W`

a}L`=1, Wb = {W`
b}L`=1 and rt = {r`t}L`=1.

The variational lower bound in (10) is maximized with
respect to task-specific parameters (θt, rt) and global
parameters (Wa,Wb). Note that in (10) the first term
provides label supervision and the second term (R)
regularizes the posterior not to stray too far from the
IBP prior. We use mean-field approximation and MC
sampling to approximate the second term:

R =
L∑

`=1

Eq(v`
t

)
[
KL
(
q(b`

t)||p(b`
t|v`

t)
)]

+ KL
(
q(v`

t)||p(v`
t)
)

(11)

where we take samples v`t ∼ q(v`t) to approximate
Eq[log (p(b`t|v`t))] in the first term. For the second
term in (11), we derive an analytic approximation
of Kullback-Leibler (KL) divergence between two Ku-
maraswamy distributions. The derivation and more
details on doing online inference with (10) and (11) are
included in Appendices B and C.

Variational continual learning (VCL) (Nguyen et al.,
2018) addresses catastrophic forgetting using online
inference, i.e., the posterior inferred from the most
recent task is used as a prior for the incoming task.
However, recent work (Farquhar & Gal, 2018, 2019)
suggests that approximate online inference often does
not succeed in mitigating catastrophic forgetting in
realistic continual learning settings, as methods based
solely on approximate inference rely on a simple prior
to capture everything learned on all previous tasks.
Thus, instead of performing online inference for all
parameters {r`t,b`t,v`t}, we only apply online inference
for v`t and learn task-specific parameters {r`t,b`t}. Note
that online inference over v`t encourages the reuse of
factors from previous tasks while having task-specific
parameters allows the model to easily adapt to a new
task by using new factors.

Preserving knowledge If all of W`
a and W`

b were
free to move without constraint, then catastrophic for-
getting may still occur. Indeed, the model could “reuse”
a factor from a previous task and then repurpose it
entirely, undermining the ability to do the former task.
To prevent this, the weight factors (i.e., the columns of
W`

a and rows of W`
b) with factor probability π`t,k > κ

are locked (e.g., with a stop gradient operator) at the
conclusion of a task. Weight factors below the threshold
κ are left free to be modified by future tasks. Through-
out our experiments, we set the threshold as κ = 0.5,
but this can be adjusted based on tolerance for forget-
ting. We include an ablation study on selecting κ in
the Appendix H.2. Alternatively, other regularization
methods (e.g., Kirkpatrick et al. (2017)) can be used
to prevent important factors from drifting too far, but
we leave this combination to future work.

2.4 Task Inference at Test Time

IBP-WF addresses catastrophic forgetting and allows
for positive knowledge transfer. However, as with many
continual learning methods, IBP-WF requires the task
identity associated with each input at test time in
order to select the proper {Λ`

t}L`=1. The validity of this
assumption has occasionally been questioned (Farquhar
& Gal, 2018; Aljundi et al., 2019; Lee et al., 2020). We
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outline here a mechanism for enabling IBP-WF to
operate in an incremental class setting, inferring the
task identity at test time. Given a data point x, we
can infer the task identity by defining the probability
of x belonging to a particular task t as follows:

P (t|x) ∝ P (x|t)P (t) (12)

However, using (12) requires learning a generative
model P (x|t) ∀t ∈ {1, 2, ..., T}, which can be expensive
in both computation and the number of parameters.
To alleviate this issue, we propose a simple yet effective
alternative: we define an approximation to P (x|t) by
using the feature distribution induced by an interme-
diate hidden layer of the trained neural network. In
particular, we approximate (12) by using P (t|φ(x)) as
a surrogate for P (t|x):

P (t|x) ≈ P (t|φ(x)) = P (φ(x)|t)P (t)∑
t′ P (φ(x)|t′)P (t′) (13)

where φ is an intermediate layer defined using the
proposed weight factorization as shown in (1) with
task-specific weights of the first task. We work with
the feature space induced by the parameters of the first
task as they are accessible by the training data of all
tasks that follow. Next, we assume P (φ(x)|t) to be
a Gaussian distribution: P (φ(x)|t) = N (φ(x)|µt,Σt),
where the parameters are the empirical estimates using
the training data.

µ̂t = 1
Nt

Nt∑
n=1

φ(x(n)
t ),

Σ̂t = 1
Nt

Nt∑
n=1

(φ(x(n)
t )− µ̂t)(φ(x(n)

t )− µ̂t)T
(14)

where x(n)
t is a training sample from task t. When we

train our model on task t > 1, we use the task-specific
weights learned for the first task to compute {µt,Σt}.
The parameters {µt,Σt} are stored to infer test-time
task identity. While the features may not be exactly
Gaussian distributed, this assumption has been shown
to work well in deep learning (Heusel et al., 2017; Lee
et al., 2018), and we find it effective in practice; see
Appendix D.2 for task inference accuracy experiments
and t-SNE visualizations of φ. Notably, we achieve
similar accuracy to generative model task inference (Lee
et al., 2020), with a far cheaper method.

Considering the marginal task distribution P (t) ∝ Nt,
the task identity can be inferred as follows:

t̂ = arg min
t

[
log |Σ̂t|

2 − log (Nt)

+ 1
2(φ(x)− µ̂t)T Σ̂−1

t (φ(x)− µ̂t)
] (15)

where t̂ is the inferred task and I is the identity matrix.
While such a strategy does require storing statistics
µ̂t and Σ̂t, the total size of these is still considerably
smaller than parameter statistics required by certain
regularization methods (e.g., EWC (Kirkpatrick et al.,
2017)), as well as the coresets or generative models used
by replay methods (Nguyen et al., 2018; Shin et al.,
2017; van de Ven & Tolias, 2018).

Remark: (Informal) The approximation in (13) is
exact if φ is an invertible map since P (s|t) = M×P (x|t)
with M =

∣∣∣det∂φ
−1

∂s

∣∣∣ when s = φ(x). See Appendix
D.1 for a formal proof.

3 Related Works

There have been a number of diverse continual learning
methods that have been proposed in recent years, most
of which can be roughly grouped by strategy into a few
categories, with some overlap. Regularization-based
approaches (Kirkpatrick et al., 2017; Zenke et al., 2017;
Li & Hoiem, 2017; Nguyen et al., 2018; Aljundi et al.,
2018; Schwarz et al., 2018; Ritter et al., 2018) add
a loss term constraining the network parameters to
remain close to solutions of previously learned tasks.
Others use replay (Kirkpatrick et al., 2017; Lopez-Paz
& Ranzato, 2017; Shin et al., 2017; Nguyen et al.,
2018; Rolnick et al., 2019), which retrains the model
on samples from earlier tasks, either from a saved core
set or with a generative model that must be learned.

Another class of continual learning methods rely on
expansion, the approach taken by IBP-WF. Progressive
Neural Networks (Rusu et al., 2016) learn a new neu-
ral network column for each new task, with previous
columns’ features as additional inputs. While avoiding
catastrophic forgetting by design, both memory and
computation grow linearly with the number of tasks
T , just as if one were to learn independent models per
task. Side-tuning (Zhang et al., 2019) learns a sepa-
rate “side” network for each task, adding the output
to a shared base model; while this experiences linear
growth T of the model size, it reduces the cost by
keeping each side network small. As an alternative to
constant growth, Reinforced Continual Learning (Xu &
Zhu, 2018) uses an LSTM (Hochreiter & Schmidhuber,
1997) controller and REINFORCE (Williams, 1992)
to determine the expansion rate, while Dynamically
Expandable Networks (Yoon et al., 2018) expand by a
constant amount before using sparsity regularization
and loss-based heuristics to prune away unused units.
Pruning between tasks is also utilized by Hung et al.
(2019), where the pruning and re-training is used to
prevent excessive growth of the model. MNDPT (Ve-
niat et al., 2021) adds new modules to the model with
new tasks, reusing modules of older similar tasks.
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Table 1: The average accuracy of seen tasks after learning on a sequence of tasks using a MLP.

Method Replay Split MNIST Permuted MNIST
Incremental Task Incremental Class Incremental Task Incremental Class

Adagrad 98.24 ± 0.59 19.73 ± 0.12 90.78 ± 0.18 27.59 ± 1.07
EWC 98.64 ± 0.87 19.89 ± 0.04 92.49 ± 0.34 23.97 ± 3.21
SI 99.16 ± 0.52 19.71 ± 0.10 95.45 ± 0.59 56.88 ± 4.93
MAS 99.23 ± 0.18 19.58 ± 0.11 96.76 ± 0.26 49.95 ± 2.53
LwF 99.61 ± 0.05 22.31 ± 0.51 81.47 ± 0.38 30.63 ± 0.76
VCL 96.79 ± 0.35 19.43 ± 0.02 91.33 ± 0.93 16.21 ± 0.59
Naive rehearsal X 99.39 ± 0.11 85.97 ± 0.75 96.75 ± 0.19 96.53 ± 0.11
VCL-Coreset X 98.75 ± 0.06 85.15 ± 0.61 93.46 ± 0.49 66.96 ± 4.10
GEM X 98.56 ± 0.08 88.28 ± 0.26 97.14 ± 0.09 96.88 ± 0.05
DGR X 99.54 ± 0.05 91.61 ± 0.26 93.74 ± 0.24 92.96 ± 0.53
RtF X 99.66 ± 0.03 92.56 ± 0.21 97.31 ± 0.01 96.23 ± 0.04
IBP-WF (Ours) 99.69 ± 0.05 92.40 ± 0.15 97.52 ± 0.06 97.50 ± 0.06

A few works have also explored continual learning from
a Bayesian nonparametric perspective. Lee et al. (2020)
combine the Dirichlet process with a mixture of experts,
where each expert is a neural network responsible for a
subset of the data. While this approach does allow the
data to dictate model expansion, mixing only occurs at
the prediction representation, as opposed to throughout
the model as in IBP-WF. This mixture of experts thus
can lead to redundant feature learning and unnecessary
extra computation. Recently, there have been other
attempts to apply IBP to learn the structure of a
neural network for continual learning. Kumar et al.
(2019) proposed Bayesian Structure Adaptation for
Continual Learning (BSCL), which expands the hidden
units in each layer using a binary mask for the weight
filters, with an IBP as the prior of the mask. Since
BSCL uses an IBP over the entire weight matrix, the
inference parameters grow quadratically with the layer
size requiring more memory and making it hard to scale
to large networks, whereas we use the IBP to model the
factor scores where the inference parameters only grow
linearly with the layer size. H-IBP Bayesian Neural
Networks (HIBNN) (Kessler et al., 2020) uses sequential
Bayes to apply hierarchical IBP to the hidden layer
activations of a fully connected neural network. In
contrast, we expand the number of factors of the weight
matrix in each layer, allowing us to scale our method
to deeper networks with convolutional layers.

4 Experiments

We evaluate our method in two settings, which we
call incremental task learning and incremental class
learning. In incremental task learning, the task iden-
tity (ID) of each sample is revealed at test time. In

this case, we can simply use the Λt from the task ID
given. On the other hand, in incremental class learning,
we are not given task IDs during testing. This is the
more difficult case, with many earlier continual learning
methods tending to do poorly. We address this chal-
lenge by using the approach described in Section 2.4,
inferring the task identity by using the training statis-
tics at an intermediate layer. For task inference in
our incremental-class experiments, we consider φ in
(13) to be the representation after the first layer, as it
performed best. We purposely have chosen to not sup-
plement IBP-WF with replay, to isolate the advantages
of using IBP and weight factors. This puts IBP-WF
at a disadvantage compared to replay-based methods.
Nevertheless, IBP-WF outperforms or is comparable
to replay-based methods. Note that with replay (where
we no longer freeze the IBP “dishes” after they are
learned by a given task), the IBP-WF performance is
likely to improve further (via backward transfer); we
reserve that for future work.

We additionally perform an ablation study over the
effect of the IBP, and then visualize some IBP-WF
weight factors to verify some of its behavior. The
description of baselines and the training details are in
Appendices F and G, respectively. Ablation studies for
IBP-WF’s α and κ are also included in Appendices H.1
and H.2. All experiments are run on a NVIDIA Titan
X GPU.

4.1 Datasets and Architectures

We evaluate IBP-WF on a number of common continual
learning benchmarks. For each, the model is trained
on a series of classification tasks arriving in sequence.
This is done without revisiting the data from previous
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Figure 2: Uncertainty in the incremental class setting for Split MNIST dataset. Each plot depicts the uncertainty
on the test sets after training on each task sequentially. The y-axis denotes the uncertainty (as the predictive
entropy in nats), and x-axis denotes the test sets (T1 through T5) for each task.

(a) Split MNIST (5 tasks) (b) Permuted MNIST (10 tasks)

Figure 3: Parameter usage (left) and Average accuracy (right) for IBP-WF and Const-WF. We see that IBP-WF
performs favorably by learning the required number of factors for each task in contrast to Const-WF.

tasks, unless otherwise stated (e.g., some baselines use
a memory buffer for replay to relax this constraint).
The standard train/validation/test splits were used.

Split MNIST Following Zenke et al. (2017), the 10
digit classes of the MNIST (LeCun et al., 1998) dataset
are split into a series of 5 binary classification tasks:
0 vs 1, 2 vs 3, 4 vs 5, 6 vs 7, and 8 vs 9. In the
incremental task setting, where the task ID is given,
this reduces to a binary classification problem during
testing. In the incremental class setting, without task
labels, each model must predict one of 2t classes, up
to a maximum of 10 once all tasks have been seen.

Permuted MNIST First used to characterize catas-
trophic forgetting in neural networks by Goodfellow
et al. (2013), Permuted MNIST has remained a common
continual learning benchmark. The first classification
task is typically chosen to be the MNIST dataset, un-
changed. Each subsequent task consists of the same
10-way digit classification, but with the pixels of the
entire MNIST dataset randomly permuted in a con-
sistent manner. An arbitrary number of tasks can be
generated in this manner; for our experiments, we use
10 tasks. In the incremental-task setting, test-time
evaluation is a 10-way classification problem, while in
incremental class learning we have up to 100 classes.

Results are shown in Table 1. In addition to these
results, we also compare against additional baselines in
Appendix F. IBP-WF outperforms other methods in

most cases and is inferior only to replay-based methods
in one setting. Unlike replay-based methods though,
IBP-WF does not require saving data examples or sep-
arately learning bulky generative models. Compared
with non-replay methods, we see significant improve-
ment, especially in the incremental class setting. Addi-
tionally, due to the Bayesian nature of IBP-WF, one
can quantify the predictive uncertainty, which is a
desirable property of a model, especially in decision
making. Uncertainty estimates can also be used to
detect out-of-distribution samples (Gal, 2016) and ad-
versarial attacks (Smith & Gal, 2018). We demonstrate
the former in Figure 2, where data from unseen tasks
can be identified by the model’s significantly higher
uncertainty. See Appendix E for additional details on
uncertainty estimation methodology.

Split CIFAR10 We split the CIFAR10 (Krizhevsky,
2009) dataset into a sequence of 5 binary classification
tasks (see Figure 5 for the class pairings). Similar to
Split MNIST, this is a binary classification problem at
test time in the incremental task setting, and 2t-wise
classification in the incremental class setting.

State-of-the-art classification performance on CIFAR10
is typically achieved with convolutional neural net-
works. We demonstrate that IBP-WF can scale by
using ResNet-20 (He et al., 2016) as our architecture,
with separate batch normalization layers for each task.
For task inference at test time, we take the average
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Figure 4: (Horizontal axis: Weight factors in the dictionary, vertical axis: Factor scores for 5 tasks in Split
CIFAR10). High overlap in earlier factor scores indicate that tasks reuse factors that were learned by previously
seen tasks. The IBP prior encourages the reuse of previously learned factors, while inducing sparsity on the total
number of active factors.

Table 2: The average accuracy of all seen tasks after
learning the task sequence.

Method Replay Split CIFAR10
Incremental Task Incremental Class

Adagrad 71.56 ± 1.73 19.59 ± 0.02
L2 74.36 ± 0.83 16.86 ± 0.08
EWC 75.91 ± 1.64 18.84 ± 0.06
Online EWC 88.34 ± 1.06 17.54 ± 0.34
SI 87.19 ± 2.06 19.06 ± 0.09
MAS 85.68 ± 1.36 16.29 ± 0.14
Naive rehearsal X 87.79 ± 0.88 34.24 ± 1.38
IBP-WF (Ours) 90.94 ± 2.65 40.40 ± 0.21

across spatial dimensions H and W to get the fea-
ture statistics φ and then proceed with the parameter
estimation procedure introduced in (14). We keep a
buffer of 400 images from previous tasks for the naive
rehearsal baseline. Table 2 shows the results on Split
CIFAR10. We again see that IBP-WF performs well
relative to the baseline methods.

4.2 IBP Ablation Study

To demonstrate the benefits of the IBP prior, we per-
form an ablation study comparing IBP-WF with a
variant without the IBP for weight factor selection and
expansion, in which factor usage and model growth
must be manually set. As the expansion rate is con-
stant, we call this Const-WF(ν, ω), parameterized by
the starting number of factors (ν) in the first task and
number of new factors (ω) added per task. We com-
pare IBP-WF with Const-WF for several corresponding
settings in Figure 3. Importantly, the IBP allows for
automatic expansion as needed, with sublinear har-
monic parameter growth, without human intervention.
IBP-WF’s factor reuse also results in positive transfer,
yielding better accuracy, despite having fewer parame-
ters than Const-WF.

4.3 Visualizations

Weight factor utilization Central to our method is
the IBP prior that controls the growth of the number of
factors and encourages the model to reuse factors. This
controlled growth makes IBP-WF more efficient than
independent models, while the reuse allows for positive
knowledge transfer between tasks. The factor usage
is visualized by plotting the expected factor scores
E [λt] for the first layer of a model trained on the Split
CIFAR10 in Figure 4. One can clearly see the impact
of using the IBP as regularization: early factors are
prioritized in earlier tasks, and new factors are used
with later tasks. We emphasize that the number of
new parameters is not defined directly by some preset
schedule, but rather is inferred from the data.

The sparsity induced by the IBP can also be seen. With
each new task, an increasing number of factor scores
have nonzero entries, as the model adapts the number
of factors F based on the task objective. However, even
for a later task, the probability of a factor being active
remains high for only a few. As a result, each draw
from the posterior tends to be sparse, regularized by the
IBP to have α active factors in expectation. Another
appealing aspect of using an IBP is that the rate of
allocating a new factor decreases with tasks. Finally,
following the “rich-get-richer” principle (here for “rich”,
or widely utilized, factors), the IBP encourages that
factors are reused based on the total number of prior
tasks using it.

CIFAR10 filters We also visualize the first layer
convolutional representations for a model trained with
IBP-WF on Split CIFAR10 (Figure 5). We observe an
interesting property of the model: the feature maps in
earlier tasks are similar compared to the diverse feature
maps for later tasks. This can be attributed to early
tasks using few factors due to the regularizing effect
induced by the IBP on the rank of the weight filter.
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Figure 5: The first layer representations for each class in a trained IBP-WF ResNet-20. Each 4× 4 grid shows
the feature representations after convolution using 16 kernels in the first layer.

However, as the model observes more data, the filters
become more diverse since the number of active factors
increase, resulting in varied features maps. This shows
that as the model sees more tasks, the complexity of
the layer increases through the newly invoked filters.

5 Conclusions

An expansion-based approach combining a dictionary
of weight factors with the IBP has been introduced,
which we call IBP-WF. This synergy provides impor-
tant characteristics within the context of continual
learning, including knowledge reuse across tasks, data-
driven model expansion, and catastrophic-forgetting
mitigation. We also propose a simple and efficient task-
inference scheme, utilizing feature statistics for each
task and enabling operation in incremental class set-
tings. A number of experiments on common continual-
learning benchmarks show the effectiveness of IBP-WF.
Ablation studies demonstrate the effectiveness of the
IBP over linear expansion, and visualizations of the
inferred factor scores and weights illustrate the regular-
ization effects of our method. Notably, the motivation
of IBP-WF is orthogonal to a number of other contin-
ual learning strategies, and combining some of these
with IBP-WF is a promising direction for future work.
For example, IBP-WF can readily be augmented with
replay, and the Dirichlet process mixture model (as in
Lee et al. (2020)) may be a natural Bayesian nonpara-
metric alternative to our feature statistic method for
inferring tasks.
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