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A Proofs for “TWO MOTIVATING EXAMPLES”

A.1 Proofs for Sec 3.1

Lemma 1. Φ[x] + Φ[ 1
x ] ≥ 1.5 with equality holds iff x ∈ {0,∞}.

Proof. Let f(x) = Φ[x] + Φ[ 1
x ]. We observe that f(x) = f(1/x) by definition. So, it is sufficient to show that

for x in the interval (1,∞), f(x) ≥ 1.5 with equality at x→∞. We prove this by showing that in the interval
(1,∞), f(x) is strictly decreasing and limx→∞ f(x) = limx→∞ Φ(x) + Φ(1/x) = Φ(∞) + Φ(0) = 1 + 0.5 = 1.5. To
show f(x) is strictly decreasing we proceed by taking the derivative wrt x,

d

dx
f(x) =

e−
x2

2

√
2π
− e−

1
2x2

x2
√

2π

we show that for the interval (1,∞) this derivative is less than 0. So, we need to show that

e−
x2

2

√
2π
− e−

1
2x2

x2
√

2π
< 0

⇔ x2e−
x2

2 < e−
1

2x2

⇔ log
(
x2
)

+
1

2x2
< x2

Let t = log
(
x2
)
, x > 1→ t > 0

⇔ 2t < et − e−t

This holds for t > 0 as we have that at t = 0. 2 · 0 = 0 = e0 − e−0 and 2t increases at a rate of 2 while
et − e−t increases at a rate of et + e−t > 2 ·

√
et · e−t = 2 as t > 1→ et 6= e−t. Finally for x = 1, we calculate

f(x) ≈ 1.6829 > 1.5.

Theorem 1. Consider a classifier ftrain,σt given as the naive-Bayes classifier obtained by training on the dataset
X with data augmentation of variance σt. Let the class-wise accuracy of ftrain,σt using the randomized smoothing
prediction rule be given as Acc1(σt), Acc2(σt). Then we define the bias (∆(σt)) to be the gap between class-wise
accuracies (∆(σt) = |Acc1(σt)−Acc2(σt)|). For k > 1

2ε − 1, class I decision region grows in size at a rate of
O(σ2

t ) and thus the bias is large for large σt.

Proof. In order to determine the accuracies we start by looking at the decision regions given by the two classifiers.
We show that the decision region of class 1 increases with increasing σ effectively increasing the bias by increasing
the class 1 accuracy while decreasing the class 2 accuracy.

From the structure of the dataset it is easy to show that the naive Bayes classifier yield decision regions:
class 1 : [−(a2 + c0(σ)), ka2 + d0(σ)]

class 2 : [−∞,−(a2 + c0(σ))] ∪ [ka2 + d0(σ),+∞]

The likelihood ratio function rσ(x) = p(x∈ class 2)
p(x∈ class 1) = (1− 2ε)e

−a(2x+a)
2σ2 + 2εe

(2x−ka)ka
2σ2 . This is a convex function is

x resulting in the previous form of decision regions. Thus, we get the following decision regions after smoothing,
class 1 [−(a2 + c1(σ)), ka2 + d1(σ)] and the rest being class 2.

In this case we show that for c0(σ) grows at Θ(σ2) with increasing σ by establishing a lower bound and upper
bound which both grow at the rate of O(σ2).

For the lower bound consider the function ruσ(x) = (1− 2ε)e
ax
σ2 + 2εe

−kax
σ2 > rσ(−(a2 + x)). If for any cl(σ) we

have ruσ(cl(σ)) = 1, then rσ(−(a2 + cl(σ))) < 1. Thus, we see that using the convexity argument from before
c0(σ) > cl(σ). But it is easy to see that if cl(1) is a solution of the equation ru1 (x) = 1 at σ = 1, then σ2cl(1) is a
solution for ruσ(x) = 1.
As ru1 is a continuous function with ru1 (0) = 1 and limx→∞ ru1 (x)→∞, it is sufficient to show that d

dxr
u
1 (0) = a(1−

2ε(k+1)) < 0 (follows from the case condition) to show that ru1 (x) = 1 has a positive real solution and consequently
c0(σ) > σ2cl(1) = O(σ2). From the likelihood function, we can also clearly see that rσ(−(a2 + x)) > (1− 2ε)e

ax
σ2 .

Using this we can establish that c0(σ) < σ2−log(1−2ε)
a making c0(σ) = Θ(σ2).



As d0(σ) ≥ 0, we have that for all σ ∈ (0,∞) the size of the interval [−(a2 + c0(σ)), ka2 + d0(σ)] is bigger
that Cσ2 + C for some positive constant C. Thus, we have that at x = −(a2 + c0(σ) − 1

C ) the probability

x ∈ Class I after smoothing is given as Φ(Cσ
2

σt
) − Φ(−1/C

σt
). By Lemma 1, we get that Φ(Cσ

2

σt
) − Φ( −1

Cσt
) >

Φ(σtC) − Φ( −1
Cσt

) = Φ(σtC) − (1 − Φ( 1
Cσt

)) = Φ(σtC) + Φ( 1
Cσt

) − 1 > 0.5. Thus, we have c1(σ) > c0(σ) − 1
C .

Combining this with the fact that clearly c0(σ) > c1(σ), we have c1(σ) ∈ (c0(σ)− 1
C , c0(σ)) and similarly, we also

have d1(σ) ∈ (d0(σ)− 1
C , d0(σ)). This also gives us c1(σ) = Θ(σ2) = Θ(σ2

t ).

Consider the function fx(σ) = rσ(x). By differentiating this function wrt σ we see that it has only one extremum
point. Using the fact that limσ→∞ fx(σ) = 1 we have that if for any x, fx(σ) = 1 then we see that there the
extremum point lies between σ and ∞. If for any σ′ > σ, fx(σ′) = 1, then there would be a two extremum
points one between σ, σ′ and another between σ′,∞. Using this along with the continuity of fx we get that either
fx(σ′) < 1∀σ′ > σ or fx(σ′) > 1∀σ′ > σ. We can further use the fact that fx(0)→∞ to see that fx is decreasing
at σ making fx(σ′) < 1∀σ′ > σ. Thus, we see that d0(σ), c0(σ) are increasing functions of σ. Combining this
with the previous result shows that the decision region of class I after smoothing increases at O(σ2

t ).

For the bias we see that as σt →∞, class I at least occupies the region (−∞, ka2 ] while class II occupies at most

the region (ka2 ,∞). As a result the bias is lower bounded by (1−Φ(−ka2σo
))− ε(1−Φ(−ka2σo

)) = (1− ε)(1−Φ(−ka2σo
))

which is very high.

Theorem 2. Consider a classifier ftrain,σt given as the naive-Bayes classifer obtained by training on the dataset
X ′ with data augmentation of variance σt. The bias of the classifier ftrain,σt using the randomized smoothing

prediction rule is 1− ε, if k > e2

ε − 1 and σt ≥ a
√

k(k+1)

2ln(2ε(k+1))− 2k
k+2

.

Proof. At x = −a, we see that if the decision region for class 1 is [−(a+ c), ka2 + d], then the probability after
smoothing is

g(−a, 1) =

∫
x′∈Rd

d(−a, x′)ψ(x′, 1)dx′

=

∫ ka
2 +d

−(a+c)

d(−a, x′)dx′

=

∫ ka
2 +d

−∞
d(−a, x′)dx′ −

∫ −(a+c)

−∞
d(−a, x′)dx′

= Φ(
ka
2 + d+ a

σ
)− Φ(

−c
σ

)

≥ Φ(
k+2

2 a

σ
)− Φ(

−c
σ

) (if d ≥ 0)

≥ Φ(
k+2

2 a

σ
)− Φ(− σ

k+2
2 a

) (if c ≥ 2σ2

(k + 2)a
)

> 0.5. (by Lemma 1)

That’s said, the bias will be atleast 1− ε if d ≥ 0 and c ≥ 2σ2

(k+2)a are true. We now check for d ≥ 0: for x ∈ [0, ka2 ],

ψ(x, 1) =

∫
x′∈Rd

d(x, x′)ρ(x′, 1)dx′ = d(x, 0)ρ(0, 1)

=
1√

2πσ2
[
1

2
e−

x2

2σ2 ] =
1√

2πσ2
[(

1

2
− ε)e−

x2

2σ2 + εe−
x2

2σ2 ]

>
1√

2πσ2
[(

1

2
− ε)e−

(x+a)2

2σ2 + εe−
(ka−x)2

2σ2 ] = d(x,−a)ρ(−a, 2) + d(x, ka)ρ(ka, 2)

=

∫
x′∈Rd

d(x, x′)ρ(x′, 2)dx′ = ψ(x, 2),

implying x ∈ [0, ka2 ] belongs to class 1 for the naive bayes classifier. Therefore the decision region for class 1
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extends at least to ka
2 + d with d ≥ 0. Next, we check for c ≥ 2σ2

(k+2)a : at x = −a− 2σ2

(k+2)a , the probability is

ψ(−a− 2σ2

(k + 2)a
, 1) =

∫
x′∈Rd

d(− 2σ + a

(k + 2) aσ
, x′)ρ(x′, 1)dx′ =

1√
2πσ2

[
1

2
e−

x2

2σ2 ]|
x=−a− 2σ2

(k+2)a

ψ(−a− 2σ2

(k + 2)a
, 2) =

∫
x′∈Rd

d(− 2σ + a

(k + 2) aσ
, x′)ρ(x′, 2)dx′ =

1√
2πσ2

[(
1

2
− ε)e−

(x+a)2

2σ2 + εe−
(ka−x)2

2σ2 ]|
x=−a− 2σ2

(k+2)a

.

Therefore we see that ψ(−a− 2σ2

(k+2)a , 1) > ψ(−a− 2σ2

(k+2)a , 2) if

(1− 2ε)e( aσ )2 1
2 + 2

k+2 + 2εe−
k(k+2)

2 ( aσ )2− 2k
k+2 < 1

⇔ (1− 2ε)[e( aσ )2 1
2 + 2

k+2 − 1] < 2ε[1− e−
k(k+2)

2 ( aσ )2− 2k
k+2 ]

⇔ 1

2ε
− 1 <

1− e−
k(k+2)

2 ( aσ )2− 2k
k+2

e( aσ )2 1
2 + 2

k+2 − 1

⇔ 1

2ε
<
e( aσ )2 1

2 + 2
k+2 − e−

k(k+2)
2 ( aσ )2− 2k

k+2

e( aσ )2 1
2 + 2

k+2 − 1

⇔ 1

2ε
<
τl − τ−k(k+2)l−k

τ l − 1
(let τ = e( aσ )2 1

2 , l = e
2
k+2 )

⇔ 1

2ε
< τ−k(k+2)l−k

τ (k+1)2 lk+1 − 1

τ l − 1

⇔ 1

2ε
< τ−k(k+2)l−k

τ (k+1)2 lk+1 − 1

τk+1l − 1

τk+1l − 1

τ l − 1

⇔ 1

2ε
< τ−k(k+1)l−k(Σki=0(τk+1l)i)

τk+1l − 1

τ l − 1
τ−k

⇔ 1

2ε
< (Σki=0(τk+1l)−i)

τ l − τ−k

τ l − 1

⇐ 1

2ε
≤ Σki=0(τk+1l)−i ≤ (k + 1)(τk+1l)−k

⇔ 0 < ln(τ) ≤ ln(2ε(k + 1))− kln(l)

k(k + 1)
=
ln(2ε(k + 1))− 2k

k+2

k(k + 1)

⇐ (
a

σ
)2 1

2
≤
ln(2ε(k + 1))− 2k

k+2

k(k + 1)
, k >

e2

ε
− 1

⇔ σ ≥ a
√

k(k + 1)

2ln(2ε(k + 1))− 2k
k+2

, k >
e2

ε
− 1.

These conclude our proof.



B Definitions for “THEORETICAL CHARACTERIZATION OF THE
SHRINKING PHENOMENON”

B.1 Definitions

Definition 1 (Smoothed). If we use f to denote an original neural network function with outputs in the simplex
∆c = {z ∈ Rc |

∑c
i=1 zi = 1, 0 ≤ zi ≤ 1, ∀i}, then its smoothed counterpart defined on d-dimensional inputs

x ∈ Rd is defined by

fsmooth(x) =

∫
x′∈Rd

f(x′)p(x′)dx′,

where p(x′) is the probability density function of the filter.

Definition 2 (Gaussian smoothing). If p(x′) is the probability density function of a normally-distributed random
variable with an expected value x and standard deviation σ, then we call fsmooth a Gaussian-smoothed function
and denote it by fσ.

Definition 3 (Bounded Decision Regions). If the decision region (disconnected or connected) of class 1 data is a
bounded set in the Euclidean space (can be bounded by a ball of finite radius), then we call these decision regions
bounded decision regions.

Definition 4 (Shrinking of Bounded Decision Regions). A bounded decision region is distinguished as shrinked
after applying smoothing filters if the radius Rσ of SDσ is rigorously smaller than the radius R of SD, i.e. Rσ < R,
where SD and SDσ are the smallest balls containing the original decision region and the smoothed decision region,
respectively.

Definition 5 (Unbounded Decision Regions). If for any ball there exists at least one point in the decision regions
that reside outside the ball, then we call these decision regions unbounded decision regions.

Definition 6 (Semi-bounded Decision Regions). For an unbounded decision region, if there exists any half-space
H (decided by a hyperplane) that contains the unbounded decision region, then we call it semi-bounded decision
region. We say a semi-bounded decision region is bounded in v-direction if there ∃k ∈ R/∞ such that for ∀x ∈ D,
vTx < k.

Definition 7 (Shrinking of Semi-bounded Decision Regions). A semi-bounded decision region bounded in v-
direction is distinguished as shrinked along the direction after applying smoothing filters if the upper bound of
projections of the decision region onto direction v shrinks, i.e. Υv

Dσ < Υv
D, where Υv

D = maxx∈D v
Tx,Υv

Dσ =

maxx∈Dσ v
Tx.

Definition 8 (θ, v-Bounding Cone for a Decision Region). A θ, v cone is defined as a right circular cone C with
axis along −v and aperture 2θ. Then we define the θ, v-bounding cone CDθ,v for D as the θ, v cone that has the

smallest projection on v and contains D, i.e., CDθ,v = arg minD⊆Cθ,v Υv
Cθ,v .
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C Proofs for “THEORETICAL CHARACTERIZATION OF THE SHRINKING
PHENOMENON”

C.1 Proofs for Sec 4.1

Lemma 2. For any two original decision regions A,B, if we have that A ⊂ B, then we also have that Aσ ⊂ Bσ,
where Aσ and Bσ are the decision regions of the Gaussian-smoothed functions.

Proof. Recalling that decision regions Aσ and Bσ satisfy Dσ = {x ∈ Rd|fDσ (x)1 ≥ 1
c} for D = A,B. Therefore

for ∀x ∈ Aσ, we have fAσ (x) ≥ 1
c . And

fBσ (x)1 =

∫
x′∈Rd

fB(x′)1p(x
′)dx′ =

∫
x′∈Rd

1x′∈Bp(x
′)dx′

=

∫
x′∈B

p(x′)dx′ >

∫
x′∈A

p(x′)dx′

=

∫
x′∈Rd

1x′∈Ap(x
′)dx′ =

∫
x′∈Rd

fA(x′)1p(x
′)dx′

= fAσ (x)1 ≥
1

c
,

implying x ∈ Bσ. That said, we have that if x ∈ Aσ, then x ∈ Bσ, making Aσ ⊆ Bσ.

Corollary 1. The smallest ball SDσ containing the smoothed decision region is contained within the smoothed
version of SD, i.e. SDσ ⊆ (SD)σ.

Proof. As we have D ⊆ SD, from Lemma 2 we get Dσ ⊆ (SD)σ. Then by isotropy we have that (SD)σ is also a
ball centered at the same point as SD. As SDσ is the smallest ball containing Dσ, we have that SDσ ⊆ (SD)σ.

We also need another important definition for the coming theorem, the regularized Gamma function:

Definition 9 (Regularized Gamma Function). The lower regularized gamma functions Q(s, x) is defined by

Q(s, x) =

∫ x
0
ts−1e−tdt∫∞

0
ts−1e−tdt

.

Moreover, it is well-known that

Q

(
d

2
,
R2

2σ2

)
=

∫
x′∈Rd,‖x′‖2≤R

(2πσ2)−
d
2 e

x′T x′
2σ2 dx′.

We also give a short proof of this in the proof of Theorem 4. For the number of dimensions d, we summarize the
lemma based on regularized Gamma functions below.

Lemma 3. For ∀d, c ∈ N+, Q(d2 ,
d
2c ) <

1
c holds.

Proof. To prove Q(d2 ,
d
2c ) <

1
c ), by definition 9, we aim at proving

∫∞
0
t
d
2−1e−tdt > c ·

∫ d
2c

0
t
d
2−1e−tdt (∀d ∈ N+).

For c = 1, this is clearly true as tx−1e−t ≥ 0 is true for t ≥ 0. Then we show it also holds for c ≥ 2.

Let g(t) = tx−1e−t, we have g′(t) = tx−2e−t(x− 1− t). Therefore g(t) is increasing when t ≤ x− 1 and decreasing
when t > x− 1. Thus, giving us two equations∫ x

x
c

tx−1e−tdt > min{xx−1e−x, (
x

c
)
x−1

e−
x
c } (c− 1)x

c

x

c
(
x

c
)
x−1

e−
x
c >

∫ x
c

0

tx−1e−tdt



So, we see that for any x, c if we have xx−1e−x ≥ (xc )
x−1

e−
x
c then

∫ x
x
c
tx−1e−tdt > (c − 1) ·

∫ x
c

0
tx−1e−tdt ⇔∫ x

0
tx−1e−tdt > c ·

∫ x
c

0
tx−1e−tdt. Using tx−1e−t ≥ 0,∀x

∫∞
0
tx−1e−tdt ≥

∫ x
0
tx−1e−tdt. So, we have∫∞

0
tx−1e−tdt > c ·

∫ x
c

0
tx−1e−tdt as needed. So, for any x, c it is sufficient to show

xx−1e−x ≥ (
x

c
)
x−1

e−
x
c

in order to prove
∫∞

0
tx−1e−tdt > c ·

∫ x
c

0
tx−1e−tdt. The inequality can be re-written as (x− 1) log(c) > c−1

c x or

(1− 1
x ) > (1− 1

c ) 1
log(c) . We observe that (1− 1

c ) 1
log(c) is a decreasing function of c for c ≥ 1 and (1− 1

x ) is an

increasing function of x.
For x ≥ 4, c ≥ 2, we see (1− 1

x ) ≥ 1− 1
4 = 0.75 > (1− 1

2 ) 1
log(2) ≥ (1− 1

c ) 1
log(c) .

For x ≥ 3
2 , c ≥ 20, we have (1− 1

x ) ≥ 1− 2
3 > (1− 1

20 ) 1
log(20) ≥ (1− 1

c ) 1
log(c) .

For 3
2 ≤ x < 4→ 3 ≤ d < 8 and 2 ≤ c < 20, we numerically verify the values of Q(d2 ,

d
2c ) to see the inequality is

satisfied.
Thus, for d ≥ 3, c ≥ 2 we have the inequality.

For d = 2, we have Q(d2 ,
d
2c ) = Q(1, 1

c ). This has a closed form solution Q(1, x) = 1 − e−x. So, we

need to show that for c ≥ 2 1− e− 1
c < 1

c or e
1
c < c

c−1 or 1
c < log

(
1 + 1

c−1

)
. But we know that for x > −1, x 6= 0,

log(1 + x) > x
x+1 , so log

(
1 + 1

c−1

)
>

1
c−1

1+ 1
c−1

= 1
c which concludes the proof for d = 2, c ≥ 2.

Theorem 3. A bounded decision region shrinks after applying Gaussian smoothing filters with large σ, i.e. if

σ > R
√
c√

2(d−1)
, then Rσ < R, where R and Rσ are the radii of SD and SDσ , the smallest balls bounding the original

decision region and the smoothed decision region, respectively.

Proof. Considering the ball SD, we see that from Corollary 1, Dσ ⊆ (SD)σ. Thus, we see that by the definition of
radius RDσ ≤ R(SD)σ . It is sufficient to show that for large σ, R(SD)σ < RSD . Then we observe that due to the
isotropic nature of Gaussian smoothing, (SD)σ is also a sphere concentric to SD. So, it is sufficient to show that
for a point x at distance RSD from the center x0 of the sphere, fσ(x)1 <

1
c .

Without loss of generality consider D to be the origin-centered sphere of radius R and x = [0, . . . , 0, R]T . It is
sufficient to show for large σ fσ(x)1 <

1
c . By definition 2, we have

fσ(x)1 =

∫
x′∈Rd

f(x′)1p(x
′)dx′

=

∫
‖x′‖2≤R

(2π)−
d
2 |Σ|− 1

2 e−
1
2 (x′−x)TΣ−1(x′−x)dx′

=

∫
‖x′‖2≤R

(2πσ2)−
d
2 e−

(x′−x)T (x′−x)
2σ2 dx′. (1)

Then substituting the value of x, we get the equation.

fσ(x)1 =

∫
‖x′‖2≤R

(2πσ2)−
d
2 e

∑d−1
i=1

x′2i +(x′d−R)2

2σ2 dx′

=

∫ R

−R

∫
∑d−1
k=1 x

′
k
2≤R2−x′d

2

(2πσ2)−
d
2 e−

∑d−1
k=1

(x′k−xk)2

2σ2 dx′1 . . . dx
′
d−1e

− (x′d−xd)
2

2σ2 dx′d

<

∫ R

−R

∫
∑d−1
k=1 x

′
k
2≤R2

(2πσ2)−
d
2 e−

∑d−1
k=1

(x′k−xk)2

2σ2 dx′1 . . . dx
′
d−1e

− (x′d−xd)
2

2σ2 dx′d

= (

∫ R

−R
(2πσ2)−

1
2 e−

(x′d−xd)
2

2σ2 dx′d)(

∫
∑d−1
k=1 x

′
k
2≤R2

(2πσ2)−
d−1
2 e−

∑d−1
k=1

(x′k−xk)2

2σ2 dx′1 . . . dx
′
d−1)

= (Φ(
2R

σ
)− Φ(0)) ·Q(

d− 1

2
,
R2

2σ2
)



Manuscript under review by AISTATS 2021

<
1

2
·Q(

d− 1

2
,
R2

2σ2
).

Using Lemma 3 we get that for d ≥ 3, if R2

2σ2 ≤ d−1
c , then we have 1

2 ·Q(d−1
2 , R

2

2σ2 ) < 1
c . Now, R2

2σ2 <
d−1
c gives

σ >
R
√
c√

2(d− 1)
.

For class 1 data x, the point at the origin has the highest probability to be classified as class 1, i.e. fσ(x)1 =∫
x′∈Rd f(x′)p(x′)dx′ =

∫
‖x′‖2≤R(2π)−

d
2 |Σ|− 1

2 e−
1
2 (x′−x)TΣ−1(x′−x)dx′ ≤ fσ(0)1.

Lemma 4. Assume the decision region of class 1 data is {x ∈ Rd | ‖x‖2 ≤ R}, the point at the origin has the
highest probability to be classified as class 1 by the gaussian-smoothed classifier fσ, i.e. fσ(x)1 ≤ fσ(0)1.

Proof. We do the proof by mathematical induction and begin by giving d = 1 case. For ∀R > 0 and d = 1,
Equation (1) reduces to

fσ(x)1 =

∫ R

−R
(2πσ2)−

1
2 e−

(x′−x)2

2σ2 dx′

a=x′−x
=======

∫ R−x

−R−x
(2πσ2)−

1
2 e−

a2

2σ2 da

f ′σ(x)1 = −(2πσ2)−
1
2 e−

(R−x)2

2σ2 − (−1)(2πσ2)−
1
2 e−

(−R−x)2

2σ2

and f ′σ(x)1 equals to zero only when x = 0. Now suppose the conclusion holds for d− 1 dimensional case, then

when x ∈ Rd we scale fσ(x)1 by (2πσ2)
d
2 and obtain∫

‖x′‖2≤R
e−

(x′−x)T (x′−x)
2σ2 dx′

=

∫
∑d
k=1 x

′
k
2≤R2

e−
∑d
k=1(x′k−xk)2

2σ2 dx′

=

∫ R

−R

∫
∑d−1
k=1 x

′
k
2≤R2−x′d

2

e−
∑d−1
k=1

(x′k−xk)2

2σ2 dx′1 . . . dx
′
d−1e

− (x′d−xd)
2

2σ2 dx′d

≤
∫ R

−R

∫
∑d−1
k=1 x

′
k
2≤R2−x′d

2

e−
∑d−1
k=1

x′k
2

2σ2 dx′1 . . . dx
′
d−1e

− (x′d−xd)
2

2σ2 dx′d

=

∫
∑d
k=1 x

′
k
2≤R2

e−
∑d−1
k=1

x′k
2

2σ2 e−
(x′d−xd)

2

2σ2 dx′

=

∫
∑d−1
k=1 x

′
k
2≤R2

∫
x′d

2≤R2−
∑d−1
k=1 x

′
k
2

e−
(x′d−xd)

2

2σ2 dx′de
−

∑d−1
k=1

x′k
2

2σ2 dx′1 . . . dx
′
d−1

≤
∫
∑d−1
k=1 x

′
k
2≤R2

∫
x′d

2≤R2−
∑d−1
k=1 x

′
k
2

e−
x′d

2

2σ2 dx′de
−

∑d−1
k=1

x′k
2

2σ2 dx′1 . . . dx
′
d−1

=

∫
∑d
k=1 x

′
k
2≤R2

e−
∑d
k=1 x

′
k
2

2σ2 dx′,

where the first inequality comes from the assumption that the conclusion holds for d− 1 dimensional case with
equality if and only if x1 = . . . xd−1 = 0, and the second inequality comes from an one dimensional observation
with equality precisely when xd = 0. This concludes our proof.

Since the value of fσ(0)1 depends on the radius R of the decision region, the dimension d, and the smoothing
factor σ, we denote fσ(0)1 by q(R, d, σ), i.e. q(R, d, σ) := fσ(0)1.



Theorem 4 (Vanishing Rate in the Ball-like Decision Region Case). The decision region of class 1 data vanishes

at smoothing factor σvan >
R
√
c√
d

.

Proof. Noticing that the surface area of a d-dimensional ball of radius r is proportional to rd−1, we can therefore
write out the probability of the point at the origin be classified as class 1 as

q(R, d, σ) =

∫ R
0
rd−1( 1

2πσ2 )
d
2 e−

r2

2σ2 dr∫∞
0
rd−1( 1

2πσ2 )
d
2 e−

r2

2σ2 dr

=

∫ R
0
rd−1e−

r2

2σ2 dr∫∞
0
rd−1e−

r2

2σ2 dr

t= r2

2σ2======

∫ R2

2σ2

0 (2σ2t)
d−1
2 e−tσ2(2σ2t)−

1
2 dt∫∞

0
(2σ2t)

d−1
2 e−tσ2(2σ2t)−

1
2 dt

=

∫ R2

2σ2

0 t
d
2−1e−tdt∫∞

0
t
d
2−1e−tdt

= Q(
d

2
,
R2

2σ2
).

Now let σ =
√

c
dR yields q(R, d,

√
c
dR) = Q(d2 ,

d
2c ). By Lemma 3, we then have Q(d2 ,

d
2c ) <

1
c , implying the

decision region of class 1 data has already vanished and making σ =
√

c
dR an upper bound of the vanishing

smoothing factor.

C.2 Proofs for Sec 4.2

Corollary 2. As D ⊆ CDθ,v, using Lemma 2, we have that the smoothed decision region is contained within the

smoothed version of CDθ,v, i.e. Dσ ⊆ (CDθ,v)σ.

Lemma 5. If the decision region of class 1 data is D = {x ∈ Rd | vTx + ‖v‖‖x‖cos(θ) ≤ 0}, where v =
[0, . . . , 0, 1]T ∈ Rd and 2θ ∈ (−π, π), then after smoothing among the set of points Sa with the same projection
on v the point on the axis has the highest probability of being in class 1. For Sa = {x | vTx = a}, we have
argsupx∈Safσ(x)1 = a · v. Moreover if a1 > a2, then fσ(a1 · v)1 < fσ(a2 · v)1.

Proof. For the first part of the proof consider the set of points Sa = {x | vTx = a}. For any point x is Sa, we see
that

fσ(x)1 =

∫
x′∈Rd

f(x′)1p(x
′)dx′

=

∫
x′d+‖x′‖cos(θ)≤0

(2πσ2)−
d
2 e−

(x′−x)T (x′−x)
2σ2 dx′

= (2πσ2)−
d
2

∫ 0

−∞

∫
Σd−1
k=1x

′
k
2≤tan2(θ)x′d

2

e−
∑d−1
k=1

(x′k−xk)2

2σ2 dx′1 . . . dx
′
d−1e

− (x′d−a)
2

2σ2 dx′d

≤ (2πσ2)−
d
2

∫ 0

−∞

∫
Σd−1
k=1x

′
k
2≤tan2(θ)x′d

2

e−
∑d−1
k=1

x′k
2

2σ2 dx′1 . . . dx
′
d−1e

− (x′d−a)
2

2σ2 dx′d

= fσ(av)1.

where the inequality comes from Theorem 4 with equality iff x1 = . . . xd−1 = 0, i.e. x = [0, . . . , 0, a] ∈ V . Now for
the second part of the proof, let x1 = a1v, x2 = a2v such that a1 > a2. Then

fσ(x1)1 = (2πσ2)−
d
2

∫ −a1
−∞

∫
Σd−1
k=1x

′
k
2≤tan2(θ)(x′d+a1)2

e−
∑d−1
k=1

x′k
2

2σ2 dx′1 . . . dx
′
d−1e

− x′2d
2σ2 dx′d

As a1 + x′d ≤ 0, (a1 + x′d)
2 < (a2 + x′d)

2
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< (2πσ2)−
d
2

∫ −a1
−∞

∫
Σd−1
k=1x

′
k
2≤tan2(θ)(x′d+a2)2

e−
∑d−1
k=1

x′k
2

2σ2 dx′1 . . . dx
′
d−1e

− x′2d
2σ2 dx′d

< (2πσ2)−
d
2

∫ −a2
−∞

∫
Σd−1
k=1x

′
k
2≤tan2(θ)(x′d+a2)2

e−
∑d−1
k=1

x′k
2

2σ2 dx′1 . . . dx
′
d−1e

− x′2d
2σ2 dx′d

= fσ(x2)1.

Lemma 6. ∀a > 0, k ≥ 1, Φ(−a)
Φ(−ka) ≥ e

(k2−1)a2

2 .

Proof. Consider the function h(x) =
√

2πΦ(−x)

e−x2/2
and we will show in the following that it is strictly decreasing for

x > 0. Alternatively, we take the derivative w.r.t. x,

d

dx
h(x) =

√
2πxΦ(−x)

e−x2/2
− 1,

and show that it is negative for x > 0. Since e−x
2/2 > 0, it is sufficient to show that

√
2πxΦ(−x)− e−x2/2 < 0.

Combining that 1)
√

2πxΦ(−x)− e−x2/2 is increasing as

d

dx

(
xΦ(−x)− e−x

2/2

√
2π

)
= Φ(−x)− xe−x

2/2

√
2π

− −xe
−x2/2

√
2π

= Φ(−x) > 0

and 2)
√

2πxΦ(−x) − e−x2/2 → 0 when x → ∞, we have that
√

2πxΦ(−x) − e−x2/2 < 0. As h(x) is strictly
decreasing we have that for any a > 0 and k > 1, ka > a. Thus,

√
2πΦ(−a)

e−a2/2
>

√
2πΦ(−ka)

e−(ka)2/2
.

Rearranging the terms gives the inequality.

Theorem 5. A semi-bounded decision region that has a narrow bounding cone shrinks along v-direction after
applying Gaussian smoothing filters with high σ, i.e. if the region admits a bounding cone CDθ,v with tan(θ) <√

(d−1)
2c log(c−1) , then for σ > (Υv

CDθ,v
−Υv

D) tan(θ)
√

c
d−1 ·

2(d−1)
(d−1)−2 tan2(θ)c log(c−1) , Υv

Dσ < Υv
D.

Proof. In this derivation we assume without loss of generality, v = [0, . . . , 0, 1]T ∈ Rd (It is always possible
to orient the axis to make this happen). From Corollary 2, we can see that Dσ ⊆ (CDθ,v)σ which gives us

Υv
Dσ = maxx∈Dσ v

Tx ≤ maxx∈(CDθ,v)σ v
Tx = Υv

(CDθ,v)σ
. Then to show that Υv

Dσ < Υv
D it is sufficient to show that

Υv
(CDθ,v)σ

< Υv
D.

We observe that we only need to check the point x on the axis of the cone at distance Υv
CDθ,v
−Υv

D from the tip x0

of the cone, i.e., x = x0 − (Υv
CDθ,v
−Υv

D)v. If x is not classified as Class 1 then by Lemma 5, we have that

Υv
(CDθ,v)σ

< vTx = vT (x0 − (Υv
CDθ,v
−Υv

D)v)

= vTx0 − (Υv
CDθ,v
−Υv

D)vT v

= Υv
CDθ,v
− (Υv

CDθ,v
−Υv

D) = Υv
D

From the above argument and the definition of the decision boundary we see that if fσ(x)1 <
1
c , then Υv

Dσ < Υv
D.

Without loss of generality we let x0 be the origin. By definition 2, we have

fσ(x)1 =

∫
x′∈Rd

f(x′)1p(x
′)dx′



=

∫
x′d+‖x′‖cos(θ)≤0

(2πσ2)−
d
2 e−

(x′−x)T (x′−x)
2σ2 dx′

= (2πσ2)−
d
2

∫ 0

−∞

∫
Σd−1
k=1x

′
k
2≤tan2(θ)x′d

2

e−
∑d−1
k=1

(x′k−xk)2

2σ2 dx′1 . . . dx
′
d−1e

− (x′d−xd)
2

2σ2 dx′d

= (2πσ2)−
d
2

∫ 0

−∞

∫
Σd−1
k=1x

′
k
2≤tan2(θ)x′d

2

e−
∑d−1
k=1

x′k
2

2σ2 dx′1 . . . dx
′
d−1e

− (x′d−xd)
2

2σ2 dx′d

= (2πσ2)−
1
2

∫ 0

−∞
q(|x′d tan(θ)|, d− 1, σ)e−

(x′d−xd)
2

2σ2 dx′d

= (2πσ2)−
1
2

∫ 0

−∞
Q(
d− 1

2
,
tan2(θ)x′d

2

2σ2
)e−

(x′d−xd)
2

2σ2 dx′d

Substitute Xd =
xd
σ
,X ′d =

x′d
σ

= (2π)−
1
2

∫ 0

−∞
Q(
d− 1

2
,
tan2(θ)X ′d

2

2
)e−

(X′d−Xd)
2

2 dX ′d

Let M ≤

√
d− 1

c tan2(θ)
, k =

M

Xd

= (2π)−
1
2

∫ 0

M

Q(
d− 1

2
,
tan2(θ)X ′d

2

2
)e−

(X′d−Xd)
2

2 dX ′d

+ (2π)−
1
2

∫ M

−∞
Q(
d− 1

2
,
tan2(θ)X ′d

2

2
)e−

(X′d−Xd)
2

2 dX ′d

< (Φ(−Xd)− Φ(M −Xd))Q(
d− 1

2
,

tan2(θ)M2

2
) + Φ(M −Xd)

<
Φ(−Xd)− Φ(M −Xd)

c
+ Φ(M −Xd)

=
1

c
+

(c− 1)Φ((k − 1)Xd)− Φ(Xd)

c
.

Then we see that using Lemma 6, we see that we see that if e
X2
d((k−1)2−1)

2 ≥ c−1 then (c−1)Φ((k−1)Xd) ≤ Φ(Xd).
So, we need to satisfy the inequalities for some k:√

2 log(c− 1)

(k − 1)2 − 1
≤ −Xd ≤

√
d− 1

k2c tan2(θ)
.

This is only possible if for some k, we have
√

2 log(c−1)
(k−1)2−1 ≤

√
d−1

k2c tan2(θ) or tan(θ) ≤
√

d−1
2c log(c−1) .

√
1− 2

k . So, we

need that

tan(θ) <

√
d− 1

2c log(c− 1)
.

Then we see that giving the cone is narrow enough, we have the required shrinking if we have Xd satisfies

the inequalities for some k. So, we see that if we have −Xd =
√

d−1
k2c tan2(θ) for some k such that tan(θ) ≤√

d−1
2c log(c−1) .

√
1− 2

k is satisfied. So, we need that −xdσ =
√

d−1
k2c tan2(θ) for some suitable k. Thus we need

σ = −xd tan(θ)
√

c
d−1k for some suitable k. Including the constraint on k and substituting the value for xd, we

get that shrinking always happens for

σ ≥ (Υv
CDθ,v
−Υv

D) tan(θ)

√
c

d− 1
· 2(d− 1)

(d− 1)− 2 tan2(θ)c log(c− 1)
.

Theorem 6. The shrinkage of class 1 decision region is proportional to the smoothing factor, i.e. Υv
D −Υv

Dσ ∝ σ.
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Proof. In this case we assume a cone-like decision region which can be represented as D = {x ∈ Rd | vTx +
‖v‖‖x‖cos(θ) ≤ 0} with v = [0, . . . , 0, 1]T without loss of generality. By Lemma 5, we see that in order to get
bounds on Υv

Dσ , we only need to analyze the value of fσ(x)1 for points x along the axis of the cone. Then we see
that for a general point x = av along the axis of the cone, using the same ideas as in proof of Theorem 5, we have

fσ(x)1 =

∫
x′∈Rd

f(x′)1p(x
′)dx′

= (2πσ2)−
d
2

∫ 0

−∞

∫
Σd−1
k=1x

′
k
2≤tan2(θ)x′d

2

e−
∑d−1
k=1

x′k
2

2σ2 dx′1 . . . dx
′
d−1e

− (x′d−a)
2

2σ2 dx′d

= (2πσ2)−
1
2

∫ 0

−∞
Q(
d− 1

2
,
tan2(θ)x′d

2

2σ2
)e−

(x′d−a)
2

2σ2 dx′d

Substitute A =
a

σ
, x′d =

x′d
σ

= (2π)−
1
2

∫ 0

−∞
Q(
d− 1

2
,
tan2(θ)x′d

2

2
)e−

(x′d−A)2

2 dx′d

= f1(Av)1 = f1(
1

σ
x)1.

Using the equation above we see that for smoothing by a general σ,

ΥDσ = sup
x|fσ(x)≥ 1

c

vTx = sup
x|f1( 1

σ x)≥ 1
c

vTx = sup
x′|f1(x′)≥ 1

c

vT (σx′)

= σ sup
x′|f1(x′)≥ 1

c

vTx′ = σΥD1
.

In this case we have ΥD = 0 by construction, so ΥD −ΥDσ = 0− σΥD1
= σ · (−ΥD1

) ∝ σ.

With the above Theorem 6, we can fix the smoothing factor to σ = 1 and further obtain a lower bound of the
shrinking rate w.r.t c, θ, and d:

Theorem 7. The shrinking rate of class 1 decision region is at least
√

d−1
c tan2(θ) ·

(d−1)−2 tan2(θ)c log(c−1)
2(d−1) , i.e.

ΥvDσ−ΥvDσ+δ
δ >

√
d−1

c tan2(θ) ·
(d−1)−2 tan2(θ)c log(c−1)

2(d−1) .

Proof. As in Theorem 6, we assume a cone at origin along v = [0, . . . , 0, 1]T given by D = {x ∈ Rd | vTx +
‖v‖‖x‖cos(θ) ≤ 0}. Following the same proof idea as Theorem 6, we see that the rate is given by the value −ΥD1 .
So, we try to get a bound on the value of −ΥD1

. To establish a lower bound we show that for the point x = av,
f1(x)1 <

1
c . Then by Lemma 5 we have ΥD1

< a or −ΥD1
> −a.

Using the same procedure as in the proof of Theorem 5, we get that if x satisfies the two inequalities√
2 log(c− 1)

(k − 1)2 − 1
≤ −vTx ≤

√
d− 1

k2c tan2(θ)

for suitable real k, then we have f1(x)1 <
1
c . So, we need vTx = −

√
d−1

k2c tan2(θ) for some k such that
√

2 log(c−1)
(k−1)2−1 ≤

x ≤
√

d−1
k2c tan2(θ) . The constraint on k can be re-written as k ≥ 2(d−1)

(d−1)−2 tan2(θ)c log(c−1) . Taking k to be lower

bound, we get that for

−a = −vTx =

√
d− 1

c tan2(θ)
· (d− 1)− 2 tan2(θ)c log(c− 1)

2(d− 1)

f1(x)1 ≤ 1
c . So, we get that the rate is −ΥD1 ≥ −a ≥

√
d−1

c tan2(θ) ·
(d−1)−2 tan2(θ)c log(c−1)

2(d−1) .



D Additional Analysis

D.1 Shrinking effect for unidimensional data

Bounded decision region. Without loss of generality, let the decision region be interval D = [−R,R]. By the
symmetric nature of Gaussian smoothing, we see that Dσ is also an interval of the form [−a, a]. We claim that
for large σ, a < R and for even larger σ, Dσ disappears. Formally, we do the analysis as follows.

For the shrinking, we check the value of fσ(R)1. By definition 2, we see that fσ(R)1 = Φ( 2R
σ )− Φ(0) and if

σ >
2R

Φ−1( 1
2 + 1

c )
,

fσ(R) < 1
c is true. Thus, the bounded decision region of unidimensional data shrinks with smoothing factor

σ > 2R
Φ−1( 1

c+ 1
2 )

.

For the vanishing rate, we check the value of fσ(x)1 at x = 0. Now since fσ(0)1 = Φ(Rσ )−Φ(−Rσ ), we have that if

σ >
R

Φ−1( 1
2 + 1

2c )
,

fσ(0)1 <
1
c is true, i.e., Dσ vanishes.

Semi-bounded decision region. In a unidimensional case, our definition of semi-bounded regions degenerates
into an interval I of the form [a,∞). In this case, Theorem 7 gives a trivial bound of 0 for the shrinkage of the
decision region, suggesting that no shrinking happens. However, we emphasize that in practice, shrinking might
still happen and more detailed analysis is left for future work.

D.2 Bounded decision region behaviors

Figure S1: The vanishing smoothing factor σvan with an increasing input-space dimension in the exemplary
adversarial ball.

The vanishing smoothing factors σvan with different data dimensions implied by Figure 2 of the main text together
with the theoretical lower bound found in Theorem 4 is given as Figure S1.

Figure S2 shows the certified radius behavior as a function of the distance of points from the origin (y-axis) and
the smoothing factor σ (x-axis) for dimension d = 30. The contour lines in Figure S2 mark the certified radius of
points under Gaussian smoothing. It is notable that points closer to the origin generally have larger certified
radii and the certified radius of the point at the origin (y-axis y = 0) drops to zero at vanishing smoothing
factor σvan = 0.184 as specified in Figure S1. Specifically, one can readily verify that the certified radii of points
closer to the origin increase with the growing smoothing factor σ but begin to decrease at certain point, which is
coherent with our observations through Figure 3(a) of the main text. Conducting similar experiments for different
dimensions completes the maximum certified radius vs. data dimension relationship as shown in Figure S3.
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Figure S2: The certified radius of smoothed classifiers with an increasing input-space dimension when d = 30.

Figure S3: The maximum certified radius with an increasing input-space dimension in the exemplary case.

D.3 Semi-bounded decision region certified radius behaviors w.r.t data dimensions

In Figure S4, we show the unscaled certified radius r as a function of an increasing smoothing factor σ for different
input data dimension d with fixed narrowness θ = 45◦. One can then see similar trend as told in Figure 3(a) of
the main text in the bounded decision region case, the maximum certified radius (the peak) also decreases with
the increasing dimension.



r

Figure S4: The unscaled certified radius r of a point on the axis v for different input data dimension d.
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