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Abstract

The fragility of modern machine learning mod-
els has drawn a considerable amount of at-
tention from both academia and the public.
While immense interests were in either craft-
ing adversarial attacks as a way to measure
the robustness of neural networks or devis-
ing worst-case analytical robustness verifica-
tion with guarantees, few methods could enjoy
both scalability and robustness guarantees at
the same time. As an alternative to these
attempts, randomized smoothing adopts a
different prediction rule that enables statisti-
cal robustness arguments which easily scale
to large networks. However, in this paper,
we point out the side effects of current ran-
domized smoothing workflows. Specifically,
we articulate and prove two major points:
1) the decision boundaries of smoothed clas-
sifiers will shrink, resulting in disparity in
class-wise accuracy; 2) applying noise aug-
mentation in the training process does not
necessarily resolve the shrinking issue due to
the inconsistent learning objectives.

1 INTRODUCTION

Current mainstream methods to evaluate robustness
of DNNs against adversarial examples [Szegedy et al.
(2014); Biggio et al. (2013)] employ robustness verifica-
tion. Such techniques can guarantee that no adversarial
examples can exist within a specified distance r from a
given input. As computing the largest possible r has
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been proven to be NP-complete [Katz et al. (2017)], one
popular approach is to derive a certified lower bound
of r through convex/linear relaxation [Hein and An-
driushchenko (2017); Weng et al. (2018a); Singh et al.
(2018); Zhang et al. (2018)], which can be computed
efficiently. Nevertheless, these techniques can hardly
scale to state-of-the-art DNNs on ImageNet, motivat-
ing the idea of applying randomized smoothing [Cohen
et al. (2019); Lecuyer et al. (2019); Li et al. (2019);
Jia et al. (2019); Lee et al. (2019)] (i.e. a spatial low-
pass filter) to transform the original classifier into a
“smoothed“ counterpart. This new smoothed classifier
now returns the class with the highest probability by
querying input data that has been purposely corrupted
by isotropic Gaussian noise N(0, σ2I).

Although randomized smoothing allows non-trivial ro-
bustness verification for the smoothed classifier on Im-
ageNet, the side-effects of randomized smoothing have
not yet been rigorously studied, except for a case-study
of one specific binary classifier in [G luch and Urbanke
(2019), p.2] and some impossibility results on accuracy-
certification trade-off [Yang et al. (2020); Blum et al.
(2020); Kumar et al. (2020)]. The main motivation
of this paper is to take a deep dive into the hidden
cost of randomized smoothing for general multi-class
classifiers.

The development of this paper is as follows: in Section 2
we review basic preliminaries for adversarial robustness
certification with randomized smoothing; in Section 3
we fully expose a major hidden cost of randomized
smoothing – biased predictions, by providing evidences
from both real-life and synthetic datasets; in Section 4
we provide a comprehensive theory exposing the root
of the biased prediction – referred to as the shrinking
phenomenon in the remainder of the paper; in Section 5
we hold a discussion on the effects of data augmentation
on the shrinking phenomenon and implications given
by our theoretical analysis. Table 1 summarizes our
contributions.
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Table 1: A look-up table of theoretical (T) and numerical (N) contributions in Section 4.

region geometry shrinking vanishing rate σvan shrinking rate certified radius

bounded T (Thm. 3) T - lower bnd. (Thm. 4) N - lower bnd. (Fig. 2) N - case study
semi-bounded T (Thm. 5) not applicable T - lower bnd. (Thm.7) N - case study

2 BACKGROUND

2.1 Randomized Smoothing and Adversarial
Robustness

Generally, the prediction of a model for input x0 is
given by taking the highest output of the score function
(a neural network) g(x0). Let ei denote the ith basis
vector with all components 0 and the ith component
be 1. Then the base classifier can be given as

f(x0) = eξA ; ξA = arg max
j

gj(x0). (1)

Correspondingly, under randomized smoothing the pre-
diction for a model g is given as the “most likely” stan-
dard prediction output by the model when noise is
added to the input. Conventionally, the resulting clas-
sifier is referred to as the smoothed classifier and the
type of noise added to the input is denoted as the
smoothing measure. When isotropic Gaussian distribu-
tion N (0, σ2I) is used as the smoothing measure, the
smoothed function fσ is given as

fσ(x0) = eξA ;

ξA = arg max
j

P[j = arg max
i

gi(x)], x ∼ N (x0, σ
2I).

There has been a lot of research in developing ro-
bustness verification techniques for the base classi-
fier in Equation (1) [Hein and Andriushchenko (2017);
Weng et al. (2018a); Gehr et al. (2018); Raghunathan
et al. (2018); Weng et al. (2018b); Wong and Kolter
(2018); Wang et al. (2018); Li et al. (2020)], i.e. given
g, x0, ξA and p, find the maximum value of r such that
arg maxj gj(x0 + δ) = ξA, ∀‖δ‖p ≤ r. However, due
to the intrinsic hardness of the problem [Katz et al.
(2017); Weng et al. (2018a); Tjeng et al. (2018)], the
above approaches can hardly scale to state-of-the-art
deep neural networks such as ResNet-50 and VGG-19
nets. On the other hand, it is also possible to perform
robustness verification on the smoothed classifier. To
solve the problem of certification, Lecuyer et al. (2019)
first applied differential privacy techniques to derive a
non-trivial lower bound of r for p = 1, 2. The bound
was later improved by Li et al. (2019) via the tools in
information theory for p = 2. Recently, Cohen et al.
(2019) proved a tighter bound of r for p = 2 below:

r =
σ

2

[
Φ−1(pA)− Φ−1(pB)

]
, (2)

where σ is the smoothing factor in the Gaussian noise,
Φ−1 is the inverse of standard Gaussian CDF, and pA
and pB are the lower/upper bound on the probability
with class ξA and ξB (ξA is the top-1 class of the
smoothed classifier and ξB is the “runner-up” class),
respectively. In practice, Cohen et al. (2019) sets pB =
1− pA and abstains when pA < 0.5, implying that no
radius can be certified in this case.

2.2 Data Augmentation

In the seminal work of randomized smoothing , Cohen
et al. (2019) and Lecuyer et al. (2019) suggest to apply
randomized smoothing during training (noise augmen-
tation) for better classification accuracy. We first recall
that a standard learning problem takes the form of

R = Ex∈X [l(f(x), h(x))],

where X , Y, l, f , and h are the input space, the out-
put space, the loss function, a neural network, and
the ground-truth classifier, respectively. Given some
probability distribution Dp the noise smoothing risk
takes the form of

RRS = Ex∈X [l(fσ(x), h(x))]

= Ex∈X [l(Ez∼Dp [f(x+ z)], h(x))].

Cohen et al. (2019) motivate the use of corrupted sam-
ples during training by arguing that, when l is chosen
to be the cross entropy and Dp = N (0, σ2I), the noise
augmentation risk

RRS-train = Ex∈X [Ez∼Dp [l(ftrain,σ(x+ z), h(x))]]

constitutes a lower bound of RRS. We distinguish
ftrain,σ from f since they are learned from different ob-
jectives. Throughout this paper, we abbreviate Gaus-
sian noise augmentation (i.e. Dp be the Gaussian
centered at the origin) as data augmentation.

3 TWO MOTIVATING EXAMPLES

The major highlight of randomized smoothing tech-
niques in the scope of adversarial robustness is its
ability to provide non-trivial robustness guarantees
(certified radii) for large networks. With this in mind,
as pointed out in [Cohen et al. (2019), Sec. 3.2.2
last para.], for randomized smoothing with parameter
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Table 2: The mean certified radii (with ± std.) of CIFAR10 classifiers learned with data augmentation and
inferred by the randomized smoothing prediction rule. “certified radius (c)” denotes the correct certified radius.

training σ 0.12 0.25 0.50 1.00 1.50 2.00 3.00
min & max (67.8± 1.9, (55.4± 4.8, (42.4± 4.8, (20.8± 1.3, (9.8± 1.3, (5.4± 0.9, (1.2± 0.8,
class-wise acc.(%) 93.4± 1.3) 89.2± 1.3) 81.9± 2.2) 72.8± 1.5) 61.2± 3.1) 53.2± 3.9) 41.0± 1.0)
certified radius 0.28± 0.01 0.42± 0.02 0.51± 0.03 0.50± 0.01 0.44± 0.01 0.38± 0.01 0.32± 0.01
certified radius (c) 0.34± 0.01 0.56± 0.01 0.80± 0.02 1.07± 0.01 1.25± 0.03 1.40± 0.03 1.80± 0.07

σ, the maximum achievable certified radius is around
4σ, implying larger smoothing factor σ is needed for a
larger maximum achievable certified radius1. This need
is further justified in Cohen et al. (2019) by pointing
out the trade-off between the sample complexity and
certified radii with a fixed smoothing factor. Therefore,
one has to use large σ to achieve the state-of-the-art ro-
bustness guarantees while avoiding impractical sample
complexity.

In Table 2, we validate this point by calculating the
certified radii of CIFAR10 smoothed classifiers with
base classifier trained with data augmentation2. In
this experiment, we vary the smoothing factor σ from
0.12 to 3.00, which is used simultaneously in data
augmentation and randomized smoothing. When re-
porting their certified radius, we consider two metrics:
1) certified radius - the mean of all certified radii in the
testing set, with the radius assigned to zero for wrongly-
classified samples; and 2) correct certified radius - the
mean of certified radii of correctly-classified samples
in the testing set. We then see that with the increas-
ing smoothing factor σ, the average certified radius
of correctly-classified samples keeps rising from only
0.34 to 1.80, obtaining indeed non-trivial robustness
guarantees.

On the other hand, the average certified radius of all
samples climbs to around 0.5 and then decreases to 0.32.
This is because the classification accuracy also drops as
one uses larger σ, pushing more samples to have zero
certified radius. In order to better understand the drop
in accuracy and the affected examples, we provide a
case study over a synthetic dataset.

1One can also gain insights from that the certified radius
r is proportional to the smoothing factor σ (cf. Equation 2).

2Throughout the paper, all the classification results
and certified radii are obtained with the open-source code
provided by Salman et al. (2019).

3.1 Synthetic Datasets

Consider the binary-classification problem on the
dataset (X = X1 ∪ X2) given as mixture of Gaussians:

X1 = (
1

2
− ε) · N (−a, σ2

o) + ε · N (ka, σ2
o);

X2 =
1

2
· N (0, σ2

o);

where a, k, σo ∈ R+/{0}. Then we have

Theorem 1. Consider a classifier ftrain,σt given as
the naive-Bayes classifier obtained by training on the
dataset X with data augmentation of variance σt. Let
the class-wise accuracy of the two classes with ftrain,σt
using the randomized smoothing prediction rule be given
as Acc1(σt) and Acc2(σt). Then we define the bias
(∆(σt)) to be the gap between class-wise accuracies
(∆(σt) = |Acc1(σt)−Acc2(σt)|). For k > 1

2ε − 1, class
I decision region grows in size at a rate of Θ(σ2

t ) and
thus the bias is large for large σt.

It is quite well-known that using higher σ leads to
lowering of accuracy. In general, previous works have
stated the existence of a robustness-accuracy trade-off.
Here, we notice another interesting and quite important
problem that is created by randomized smoothing: ran-
domized smoothing based models for high values of σt
are biased in their predictions. Some classes are favored
a lot more than others, resulting in huge difference in
class-wise accuracies.

In order to better understand the extent of the bias
possible, we also study the limiting case of σo → 0. This
allows us to effectively study large bias without having
σt → ∞. In particular, we consider the dataset(X ′)
with probability mass function :

ρ(0, 1) =
1

2
; ρ(−a, 2) =

1

2
− ε; ρ(ka, 2) = ε,

with a, k defined as before. For this new dataset, we
see that

Theorem 2. Consider a classifier ftrain,σt given as
the naive-Bayes classifier obtained by training on the
dataset X ′ with data augmentation of variance σt. The
bias of the classifier ftrain,σt using the randomized

smoothing prediction rule is 1 − ε, if k > e2

ε − 1 and

σt ≥ a
√

k(k+1)

2ln(2ε(k+1))− 2k
k+2

.
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Table 3: The class-wise accuracy (%) in percentile of classifiers and smoothing factors used in Cohen et al. (2019).

CIFAR10 ImageNet
percentile 1st 25th 50th 75th 100th 1st 25th 50th 75th 100th
σ = 0.00 78 88 91 93 96 14 66 78 88 100

0.12 0 8 15 24 100 0 36 52 66 96
0.25 0 0 0 0 72 0 2 10 20 82
0.50 0 0 0 0 98 0 0 0 0 56

To give intuitive understanding of the critical smooth-
ing factor in Theorem 2, we fix the scale of the dataset
a(k+ 1) to be [0, 1] as is common-practice in the litera-
ture [Cohen et al. (2019); Salman et al. (2019)]. Then,
we observe the shrinking effects happen at σ ≈ 0.7
which is well within the realm of smoothing factors
used in practice (Cohen et al. (2019); Salman et al.
(2019) use smoothing factors upto 1.0 for data augmen-
tation and randomized smoothing). This idea can be
extended to several more general and interesting cases:
a multi-class case giving accuracy 1

c + ε by having class
1 with the same distribution and the rest of the classes
with distributions similar to that of class 2’s; and a
binary-class case where adopting data augmentation
does not change the optimal solution but the subse-
quent randomized smoothing inference still gets low
accuracy for a high enough smoothing factor σ. The
proofs of Theorem 1 and Theorem 2 are included in
the supplementary materials for interested readers.

3.2 Real-Life Datasets

In the existing literature, randomized smoothing re-
mains a legitimate way of providing adversarial robust-
ness. However, the results on the synthetic datasets
suggest randomized smoothing is biased towards some
classes. In order to see if the bias is present in real-life
datasets we consider a new metric, namely the min and
max class-wise accuracy, where we calculate separately
for each class their classification accuracy and report
the minimum and the maximum. In Table 2 we give
the performance of randomized smoothing based classi-
fiers under the new metric. With this metric, one can
then readily see that despite the increasing trend in
certified radii, the class-wise accuracies becomes more
imbalanced at higher smoothing factor σ. Specifically,
when the smoothing factor σ = 0.12, the smoothed
network with base classifier being trained by data aug-
mentation with the same magnitude of Gaussian noise
classifies “cat” samples with 67% accuracy and “auto-
mobile” samples with 92% accuracy. However, when
σ = 1.00, this gap evolves to 22% accuracy (“cat”)
versus 68% accuracy (“ship”). This comes as an un-
pleasant surprise since it essentially means despite the
current success of randomized smoothing in adversarial
robustness, the method can lead to biased predictions,

causing fairness issues.

As remarked earlier, a randomized smoothing model
differs from other models in two phases, data aug-
mentation during training and smoothing during infer-
ence. As the statistical guarantees given by randomized
smoothing depend on the smoothing during inference,
we focus on its role in producing the bias. Before
proceeding, we verify that the bias problem still per-
sists in the absence of augmentation during training.
We conduct the smoothing experiments on the pre-
trained models provided by Cohen et al. (2019). In
Table 3, we report the smoothing factors σ and cor-
responding class-wise accuracies (sorted ascendingly)
in percentile of [1st,25th,50th,75th,100th]. That is,
the 1st and 100th in the percentile correspond to the
lowest (min) and highest (max) class-wise accuracy,
respectively For CIFAR10, the [25th, 75th] percentile
corresponds to the [3rd, 8th] lowest per-class accuracy.
One can then see that originally more than 3/4 of the
classes in datasets have reasonable accuracy, which
decreases as σ goes bigger. Eventually, when σ = 0.5,
more than 3/4 of the classes have 0 accuracy. Notably,
σ = 0.5 is a reasonable number under the current ran-
domized smoothing regime since the largest sigma used
by Cohen et al. (2019) and Salman et al. (2019) is 1.0.
Thus, we see that randomized smoothing produces bi-
ased results even in the absence of data augmentation
during training. In the next section, we analyze how
biased predictions are caused by randomized smooth-
ing depending on the geometry of the underlying data
distribution.

4 THEORETICAL
CHARACTERIZATION OF THE
SHRINKING PHENOMENON

Before we start our theoretical characterization, we first
give a visual inspection of how randomized smoothing
can change the decision regions. Specially, Figure 1
illustrates two toy examples, in which the decision
regions of class 1 data (the dark green region in the
first row and the pink region in the second row) shrink
with larger smoothing factors σ. As consequences of
the shrinkage, the class-wise accuracy for class 1 data
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Figure 1: The 1st row shows examples of bounded decision regions for smoothed classifiers. The 2nd row shows
examples of semi-bounded decision regions. The class 1 decision regions shrink as the smoothing factor σ
increases from left to right. In case (h) with larges σ, the decision region has shrunk so much that class 1 data
are completely misclassified. We also plot the certified radius (Equation 2) of point A and B and show that it
may decrease as σ increases.

drops drastically, leading to the biased prediction.

Indeed, in this section, we aim to take a close look at
this shrinking phenomenon of randomized smoothing,
uncovering the fundamental problem of the technique.
Moreover, we conduct a rigorous study providing also
the bounds of extreme values, beyond which the shrink-
ing phenomenon will happen. Our results are tight
and prove the prevalence of such phenomena. In or-
der to facilitate this analysis we perform the following
reductions.

Problem Reductions. By the definition of random-
ized smoothing, the smoothed function depends on
the base classifier only through the indicator function
f . As the smoothed function fσ only depends on the
partitioning of the input space created by the base
classifier g, we shift our focus from the output of g to
how it partitions the input space, i.e., we are interested
in characterizing all possible partitions of the input
space that can lead to biased prediction as one applies
randomized smoothing with a high σ. As it is hard
to measure a decrease in accuracy directly from the
geometry of the classifier, we approximate the decrease
in accuracy using the mismatch in partitions of input
space provided by f and by fσ.

However, the problem of characterizing the partitions
of the space into multiple classes is intractable. So we
instead focus on tracking the behaviour of the decision
boundary of a single class with respect to randomized
smoothing. Without loss of generality, we set the con-
cerned class as class 1. In this case, we analyze the
misclassification rate for class 1 by the region size of
the input space that is partitioned as class 1 under f

but not under fσ. Considering that for any x ∈ Rd,
the necessary condition for it to be classified as class 1
is to have fσ(x)1 ≥ 1

c , so we do a worst-case analysis
by assuming the reformed class 1 partition is defined
by exactly fσ(x)1 ≥ 1

c . If this overestimated reformed
class 1 partition is still smaller than the original, then
for sure the actual misclassification rate will be higher
than the analysis herein.

Problem Formulation. We formulate our problem as
to characterize the “decision regions” that will shrink or
drift after applying randomized smoothing. Formally,
the decision region D of class 1 data is determined
by the classifier f via D = {x | f(x)1 = 1}. By
adopting randomized smoothing, we obtain fσ(x) =∫
x′∈Rd f(x′)p(x′)dx′ with the decision region denoted

by Dσ = {x | (fσ(x))1 ≥ 1
c}. The scope of this section

is to investigate under what conditions (w.r.t. the clas-
sifier and smoothing factor σ) will the shrinking occur.
On the whole, the shrinking effect depends highly on
the geometry of the data distribution. However, con-
sidering the intractable numbers of possible decision
region geometry, we will only discuss here two major
classes of the geometries (bounded in Section 4.1 and
semi-bounded in Section 4.2) for multidimensional data
(i.e. d > 1). We supplement d = 1 discussions in the
supplementary materials for readers’ references. All the
proofs are also deferred to the supplementary materials
due to page limit.

4.1 Bounded Decision Region

In this section, we aim at proving the shrinking side-
effects incurred by the smoothing filter when the de-
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cision region is bounded. Formally, we say a decision
region is bounded and shrinks according to the follow-
ing definition:

Definition 1 (Bounded Decision Regions). If the deci-
sion region (disconnected or connected) of class 1 data
is a bounded set in the Euclidean space (can be bounded
by a ball of finite radius), then we call these decision
regions bounded decision regions.

We denote the smallest ball that contains the original
decision region of f by SD (D ⊆ SD). Similarly, we let
the smallest ball that contains the smoothed decision
region (the decision region of smoothed classifier) be
SDσ (Dσ ⊆ SDσ ).

Definition 2 (Shrinking of Bounded Decision Regions).
A bounded decision region is considered to have shrinked
after applying smoothing filters if the radius Rσ of SDσ
is strictly smaller than the radius R of SD, i.e. Rσ < R,
where SD and SDσ are the smallest balls containing
the original decision region and the smoothed decision
region, respectively.

For randomized smoothing, we observe that

Corollary 1. The smallest ball SDσ containing the
smoothed decision region is contained within the
smoothed version of SD, i.e. SDσ ⊆ (SD)σ

3.

Theorem 3. A bounded decision region shrinks af-
ter applying randomized smoothing filters with large

σ. Specifically, if σ > R
√
c√

2(d−1)
, then Rσ < R (cf.

Definition 2).

Analysis of bounded decision regions with ran-
domized smoothing. As we have proven that any
bounded decision region shrinks after applying random-
ized smoothing filters, we will investigate in this part
of the paper how fast the decision region (quantified by
Rσ) shrinks/vanishes. From Corollary 1, we have that
the smallest ball SDσ containing the smoothed decision
region is contained within the smoothed version of SD.
Therefore we only consider the worst case when we have
a ball-like decision region. Without loss of generality,
we consider a case when the decision region of class 1
data characterized by the network function is exactly
{x ∈ Rd | ‖x‖2 ≤ R}.
Theorem 4 (Vanishing Rate in the Ball-like Decision
Region Case). The decision region of class 1 data van-

ishes when smoothing factor σvan >
R
√
c√
d

.

We validate Theorem 4 for binary classification (c = 2)
by substituting R by R = 1 and plot the shrinking rate
(the derivatives of Rσ with respect to σ) of the decision

3(SD)σ := {x | (uσ(x))1 ≥ 1
c
}, where uσ(x) =∫

x′∈Rd 1SDp(x
′)dx′ and p(x′) is the pdf of Gaussian cen-

tered at x.

Figure 2: The shrinking rate of the decision region
quantified by Rσ for different input data dimension d.

region as a function of the smoothing factor σ for
different input data dimensions d = {3, 8, 20, 30, 40, 50}
in Figure 2. Notably, the x-axis in Figure 2 is the
varying smoothing factor σ and the y-axis is the rate
of the shrinkage concerning class 1 decision region. We
then see that overall the region vanishes at smaller
smoothing factor σvan with the growing dimension. For
example, the shrinking rate curve stops at smoothing
factor σvan = 0.651 when d = 3 but at smoothing factor
σvan = 0.141 when d = 50. We collect these vanishing
smoothing factors with different data dimensions and
compare with the theoretical lower bounds found in
Theorem 4 in the appendix to demonstrate the tightness
of our theoretical lower bound. In a multi-class case,
the certifiability and prediction do not follow the same
setting as in Cohen et al. (2019). For the certifiability,
the effective number of classes is 2 as Cohen et al. (2019)
treats it as a one vs all setting. Therefore one would be
unable to certify any radius with some smoothing factor
σ < σvan in the multi-class case. We further elaborate
on this point about certifiability in Section 4.3.

4.2 Semi-bounded Decision Region

In this section, we discuss the case when the decision
region is semi-bounded and is not a half-space. For-
mally, we say a decision region is semi-bounded and
shrinks according to the following definitions:

Definition 3 (Semi-bounded Decision Regions). If a
decision region is not bounded and there exists a half-
space H (decided by a hyperplane) that contains the
unbounded decision region, then we call it semi-bounded
decision region. We say a semi-bounded decision region
is bounded in v-direction if there ∃k ∈ R/∞ such that
for ∀x ∈ D, vTx < k.

An illustrative example of semi-bounded decision re-
gions is shown as Figure 1, where we have 3 clusters of
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data points denoting three different classes’ data and
their decision regions. Observing the change in the
decision region of class 1, we define “shrinking” as

Definition 4 (Shrinking of Semi-bounded Decision
Regions). A semi-bounded decision region bounded in
v-direction is distinguished as shrinked along the di-
rection after applying smoothing filters if the upper
bound of projections of the decision region onto di-
rection v shrinks, i.e. Υv

Dσ < Υv
D, where Υv

D =

maxx∈D v
Tx,Υv

Dσ = maxx∈Dσ v
Tx.

With this definition of shrinking of semi-bounded de-
cision regions, we demonstrate in the following that
any “narrow” semi-bounded decision region bounded
in v-dimension will shrink along the direction (cf. Fig-
ure 1(e-h)). We quantify the size of a decision region
as follows:

Definition 5 (θ, v-Bounding Cone for a Decision Re-
gion). A θ, v cone is defined as a right circular cone C
with axis along −v and aperture 2θ. Then we define
the θ, v-bounding cone CDθ,v for D as the θ, v cone that
has the smallest projection on v and contains D, i.e.,
CDθ,v = arg minD⊆Cθ,v Υv

Cθ,v .

Theorem 5. A semi-bounded decision region that has
a narrow bounding cone shrinks along v-direction after
applying randomized smoothing filters with high σ, i.e.
if the region admits a bounding cone CDθ,v with tan(θ) <√

(d−1)
2c log(c−1) , then for σ > (Υv

CDθ,v
−Υv

D) tan(θ)
√

c
d−1 ·

2(d−1)
(d−1)−2 tan2(θ)c log(c−1) , Υv

Dσ < Υv
D (cf. Definition 4).

Concretely, the narrowness condition (the larger the
easier to fulfil) of the cone for MNIST dataset [LeCun
(1998)] relaxes to 0.43π = 76.7◦ , meaning that if any
single class’s decision region can be bounded by a θ, v
cone with θ being less than 76.7◦, then shrinking effect
happens. Correspondingly, this narrowness condition
for CIFAR10 dataset [LeCun (1998)] is 0.46π = 83.2◦

and 0.42π = 75.2◦ for ImageNet dataset [Russakovsky
et al. (2015)]. Notably, for binary classification tasks
(c = 2), according to Theorem 5, the condition for
shrinking reduces to tan(θ) <∞ that implies θ < π/2.
In other words, when there are only two classes, as long
as the semi-decision region is not a half-space, it will
shrink.

Analysis of the semi-bounded case with ran-
domized smoothing. As in Section 4.1, we conduct
the analysis using the worst-case ball-like bounded de-
cision region, here we correspondingly consider a solid
right circular cone along the v direction. The shrink-
age in this case serves as a non-trivial lower bound.
Without loss of generality, we consider a θ, v solid right
circular cone {x ∈ Rd | vTx − ‖v‖‖x‖cos(θ) ≤ 0} as
the decision region D of class 1 data, where −v =
[0, . . . , 0, 1]T ∈ Rd. Since the semi-bounded decision

region is unbounded and will shrink but will not van-
ish, we emphasize in this section only on giving the
shrinking rate with respect to the smoothing factor
σ, the number of classes c, the angle θ, and the data
dimension d with randomized smoothing. Two ma-
jor theorems regarding the shrinking rate in the solid
cone-like decision region are:

Theorem 6. The shrinkage of class 1 decision re-
gion is proportional to the smoothing factor, i.e.
Υv
D −Υv

Dσ ∝ σ.

With the above Theorem 6, we can fix the smoothing
factor to σ = 1 and further obtain a lower bound of
the shrinking rate w.r.t c, θ, and d:

Theorem 7. The shrinking rate of class 1 decision

region is at least
√

d−1
c tan2(θ) ·

(d−1)−2 tan2(θ)c log(c−1)
2(d−1) , i.e.

ΥvDσ−ΥvDσ+δ
δ >

√
d−1

c tan2(θ) ·
(d−1)−2 tan2(θ)c log(c−1)

2(d−1) .

4.3 Remarks on Certified Radii

In the case of bounded decision region, the point at
the origin has the highest probability to be classified
as class 1 (see supplementary materials for the proof).
Therefore when it has less than 0.5 probability to be
classified as class 1, the decision region vanishes and no
point can be certified (certified radius r = 0). Specifi-
cally, Figure 3(a) describes the certified radius r of the
point at the origin using Equations (2) as a function
of the smoothing factor σ and shows that the max-
imum certified radius (the peak) decreases with the
increasing dimension. We include complete certified
radius behavioral plots for different dimensions in the
supplementary materials. As training samples are nor-
mally scaled in practice, they lie within a ball of radius
R ≤

√
d/2. According to Theorem 4, for this ball, the

upper bound of σvan is 1/
√

2 ≈ 0.707. So in practice, if
the decision region of any class lies within the volume
spanned by the training samples, its certifiable region
vanishes for σ ≥ 0.708, regardless of the input-space
dimension d.

In the case of semi-bounded decision region, the point
on the axis has the highest probability to be classified
as class 1, thus we study the certified radius of a point
x0 = [0, . . . , 0, 1] as a function of cone narrowness θ and
smoothing factor σ. Acknowledging that the minimum
distance from x0 to θ, v cones is sin(θ), we show in
Figure 3(b) the scaled certified radius r/ sin(θ) when
d = 25. One can then readily verify that overall the
peak scaled certified radius decreases with θ, e.g. the
scaled certified radius at x0 can be as large as 0.84
when θ = 80◦, while it is at most 0.49 when θ = 10◦.
Moreover, we point out that certified radii drop to
zero when we keep increasing the smoothing factor
σ - the “narrower” (smaller θ) the decision region is,
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r

(a)

r

(b)

Figure 3: (a) The certified radius r of the point at the origin for different input data dimension d; (b) The scaled
certified radius r

sin(θ) of a point on the axis v for cones with different apertures (2θ).

the faster they drop to zero. We discuss the effect of
input data dimension d on the certified radius in the
supplementary materials.

Interestingly, the certified radii increase with the grow-
ing smoothing factor σ but begin to decrease at cer-
tain point - larger certified radius can normally be
obtained by larger smoothing factor σ according to
Equation (2) but the dominance is taken over by the
vanishing decision region when the σ is enough-close
to σvan. This also explains the eventual decrease in
the average certified radius seen in Table 2. For small
values of σ the average certified radius keeps increasing
to a point (σthres ∈ [0.50, 1.00]) after which the effect
of the vanishing decision region reduces the average
certified radius.

5 EFFICACY OF DATA
AUGMENTATION

As Section 4 proves that the biased prediction comes
from the shrinking phenomenon of randomized smooth-
ing, we want to hold a discussion herein investigating
whether the state-of-the-art workflow for boosting ran-
domized smoothing accuracy can solve this issue.

5.1 Counteracting Shrinking Effect Of
Smoothing

Through the above arguments, we see that to counter-
effect the shrinkage induced by randomized smoothing,
one will want to obtain larger decision regions for geo-
metrically compact classes. Assuming a well-balanced
distribution of classes, compact classes have a larger
number of points near the margin compared to more
spread-out classes. As a result, data augmentation
expands the compact classes a lot more compared to
other classes, partially alleviating the shrinking issue
caused by smoothing. As a result, we see that the

experiments in Table 3 (without data augmentation)
have a much bigger bias in prediction compared to
the experiments in Table 4 column “1-standard”, e.g.
when σ = 0.12, Table 3 reads 0 versus 100 and Table 4
reads 67 versus 94.

However, it is important to note that the two effects
do not exactly cancel each other out. Especially for
high values of σ, the expansion caused by data aug-
mentation can cause some of the more compact classes
to dominate over all other classes, resulting in a highly
biased classifier. Table 4 shows that the bias of the
classifier consistently increases with increasing values
of σ regardless of the number of augmenting points
used. This signals two important observations: the
need to limit the use of high values of smoothing factor
σ and the need for a data geometry dependent aug-
mentation scheme to properly counteract the shrinking
effect caused by smoothing.

5.2 Heavy Data Augmentation

Besides showing the minimum and maximum class-
wise accuracies of multiple CIFAR10 classifiers trained
with standard data augmentation, we also give in Ta-
ble 4 the corresponding accuracies for an enhanced
version of data augmentation. Essentially, different
from the standard data augmentation implementation,
where only one point is used to estimate the expec-
tation Ez∼Dp [l(ftrain,σ(x + z), h(x))] inside RRS-train,
we evaluate the expectation using {10, 25, 50} points,
reducing the estimation bias. We denote this scheme
as heavy data augmentation. Using a larger number of
augmentation allows us to approximate the augmented
distribution more closely and remove any unnecessary
bias that is caused by using a bad approximation of the
data augmentation. The results in Table 4 show that
the bias is slightly reduced by using a larger number
{10, 25} of augmentation points but the problem still
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Table 4: The minimum and maximum class-wise accuracy (%) of CIFAR10 classifiers learned with data augmen-
tation and inferred by the randomized smoothing prediction rule. The smaller the gap between the maximum
and the minimum class-wise accuracies is, the better.

#Augmentation Points 1 (standard) 10 25 50
class-wise acc. min max min max min max min max

σ = 0.12 67 94 76 96 78 96 68 97
0.25 55 90 68 92 65 93 48 84
0.50 46 84 51 84 52 81 0 87
1.00 22 73 28 74 27 72 3 64

remains. Particularly, we see the relative improvement
from increasing augmentation points becomes smaller
with a larger smoothing factor σ. It is also worth
noting that the gap in accuracies blows when we use
up to 50 heavy data augmentation points, performing
even worse than using the standard data augmentation.
These observations signal it to be a more fundamental
problem relating to the way we do data augmentation.

6 CONCLUSION

In this paper, we provide a theoretical characterization
showing that randomized smoothing during inference
can lead to a drastic gap among class-wise accuracies,
even when it is included in the training phase. In addi-
tion, we observe that the smoothing during inference is
very sensitive to the distribution of the data and can
have wildly-different effects on different classes depend-
ing on the data geometry. A similar analysis could be
extended to other smoothing functions in addition to
Gaussian smoothing. Crucially, our results point out
the need for limiting the use of large values of σ, as
well as the need for data-geometry dependent noise
augmentation schemes.
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